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Abstract In this paper, a generalized vector quasi-equilibrium problem (GVQEP) is
introduced and studied on Hadamard manifolds. An existence theorem of solutions
for the GVQEP is established under some suitable conditions. Some applications
to a generalized vector quasi-variational inequality, a generalized vector variational-
like inequality and a vector optimization problem are also presented on Hadamard
manifolds.
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1 Introduction

The equilibrium problem was introduced and studied by Blum and Oettli [1] in 1994
as a generalization of optimization problems and variational inequalities. This prob-
lem contains many important problems as special cases, including Nash equilibrium,
complementarity and fixed point problems. Recently, there has been an increasing
interest in the study of vector equilibrium problems because it provides a unified way
to research some nonlinear problems, for instance, vector variational inequalities, vec-
tor complementary problems, vector saddle point problems and vector optimization
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problems. In recent decades, many results concerned with the existence of solutions
for the vector equilibrium problems and the vector quasi-equilibrium problems have
been established (see, for example, [2–14] and the references therein).

On the other hand, recent interests of a number of researchers are focused on
extending some concepts and techniques of nonlinear analysis in Euclidean spaces
to Riemannian manifolds (see [15–18]). In general, a manifold is not a linear space.
In this setting, the linear space is replaced by a Riemannian manifold and the line
segment by a geodesic (see [16,19]). There are some advantages for a general-
ization of optimization methods from Euclidean spaces to Riemannian manifolds,
because non-convex and non-smooth of constrained optimization problems can be
seen as convex and smooth unconstrained optimization problems from the Riemannian
geometry point of view (see [19–21]). Németh [22] and Colao et al. [23] intro-
duced the variational inequalities and equilibrium problems on Hadamard manifolds,
respectively. They studied the existence of the solutions for variational inequalities
and equilibrium problems on Hadamard manifolds under some suitable conditions.
Recently, Zhou and Huang [24] investigated the relationship between the vector vari-
ational inequality and the vector optimization problem on Hadamard manifolds, and
proved the existence of solutions for the vector variational inequality on Hadamard
manifolds. However, to the best of our knowledge, there is no paper to study the
generalized vector quasi-equilibrium problem (GVQEP) on Hadamard manifolds.
Therefore, it is an interesting problem to consider the GVQEP on Hadamard man-
ifolds.

Motivated and inspired by the work mentioned above, in this paper, we introduce
and study a GVQEP on Hadamard manifolds. We establish an existence theorem of
solutions for the GVQEP under some suitable conditions. We also give some appli-
cations to a generalized vector quasi-variational inequality (GVQVI), a generalized
vector variational-like inequality and a vector optimization problem on Hadamard
manifolds.

2 Preliminaries

In this section we recall some fundamental definitions, properties and notations used
throughout this paper. These can be founded in any introductory books on Riemannian
geometry, for example, [25–27].

Let M be a simply connected m-dimensional manifold and x ∈ M . The tangent
space of M at x is denoted by Tx M and the tangent bundle of M by T M = ⋃

x∈M Tx M ,
which is naturally a manifold. We always assume that M is endowed with a Riemannian
metric to become a Riemannian manifold. We denote by 〈·, ·〉x the scalar product on
Tx M with the associated norm ‖ · ‖x , where the subscript x is sometimes omitted.
Given a piecewise smooth curve γ : [a, b] → M joining x to y, that is, γ (a) = x
and γ (b) = y, we can define the length of γ by l(γ ) = ∫ b

a ‖γ ′(t)‖dt . Then for any
x, y ∈ M , the Riemannian distance d(x, y) which induces the original topology on
M , is defined by minimizing this length over the set of all such curves joining x to y.

Let ∇ be the Levi-Civita connection associated with the Riemannian metric. If
γ is a curve joining x to y in M , then for each t ∈ [a, b],∇ induces an isometry
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Pγ,γ (t),x : Tx M → Tγ (t)M , the so-called parallel transport along γ from x to γ (t).
When the reference to a curve joining x to y is not necessary, we use the notation

Py,x . We say that γ is a geodesic when ∇γ ′
γ ′ = 0, in this case ‖γ ′‖ = 1, γ is said to be

normalized. A geodesic joining x to y in M is said to be minimal if its length equals
d(x, y).

A Riemannian manifold is complete if for any x ∈ M all geodesic emanating from
x are defined for all −∞ < t < +∞. By the Hopf–Rinow Theorem, we know that,
if M is complete, then any pair of points in M can be joined by a minimal geodesic.
Moreover, (M, d) is a complete metric space and bounded closed subsets are compact.

Assuming that M is complete. The exponential map expx : Tx M → M at x is
defined by expx (v) = γv(1, x) for each v ∈ Tx M , where γ (·) = γv(·, x) is the
geodesic starting x with velocity v, that is, γ (0) = x and γ ′(0) = v. It is easy to see
that expx (tv) = γv(t, x) for each real number t .

Definition 2.1 A Hadamard manifold M is a complete simply connected Riemannian
manifold of nonpositive sectional curvature.

Proposition 2.1 [27] Let M be a Hadamard manifold and x ∈ M. Then expx :
Tx M → M is a diffeomorphism and for any two points x, y ∈ M, there exists a
unique normalized geodesic γx,y = expx t exp−1

x y for all t ∈ [0, 1] joining x to y.

Definition 2.2 Let M be a Hadamard manifold. A subset K ⊆ M is said to be convex
if, for any points x and y in K , the geodesic joining x to y is contained in K ; that
is, if γ : [a, b] → M is a geodesic such that x = γ (a) and y = γ (b), then γx,y =
expx t exp−1

x y ∈ K for all t ∈ [0, 1].
Definition 2.3 Let M be a Hadamard manifold, S : M → 2M be a set-valued mapping
and x0 ∈ M . Then S is said to be

(i) upper semicontinuous at x0 if, for any open set V ⊆ M satisfying S(x0) ⊆ V ,
there exists an open neighborhood U (x0) of x0 such that S(x) ⊆ V for all
x ∈ U (x0);

(ii) lower semicontinuous at x0 if, for any open set V ⊆ M satisfying S(x0)
⋂

V �= ∅,
there exists an open neighborhood U (x0) of x0 such that S(x)

⋂
V �= ∅ for all

x ∈ U (x0);
(iii) upper Kuratowski semicontinuous at x0 if, for any sequences {xk}, {yk} ⊆ M

with each yk ∈ S(xk), the relations limk→∞ xk = x0 and limk→∞ yk = y0 imply
y0 ∈ S(x0);

(iv) upper semicontinuous (resp. lower semicontinuous, upper Kuratowski semicon-
tinuous) on M if S is upper semicontinuous (resp. lower semicontinuous, upper
Kuratowski semicontinuous) at every point x ∈ M ;

(v) continuous on M if S is upper semicontinuous and lower semicontinuous at every
point x ∈ M .

Definition 2.4 [28] Let M be a Hadamard manifold, A : M → 2T M be a set-valued
vector field and x0 ∈ M . Then A is said to be

(i) upper semicontinuous at x0 if, for any open set V ⊆ M satisfying A(x0) ⊆ V ⊆
Tx0 M , there exists an open neighborhood U (x0) of x0 such that Px0,x A(x) ⊆ V
for all x ∈ U (x0);
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(ii) upper Kuratowski semicontinuous at x0 if for any sequence {xn} ⊆ M and {un} ⊆
T M with each un ∈ A(xn), the relations limn→∞ xn = x0 and limn→∞ un = u0
imply u0 ∈ A(x0);

(iii) upper semicontinuous (resp. upper Kuratowski semicontinuous) on M if A is
upper semicontinuous (resp. upper Kuratowski semicontinuous) at each point
x ∈ M .

Remark 2.1 It is easy to check that any upper semicontinuous and closed valued vector
field A is upper Kuratowski semicontinuous.

Definition 2.5 Let M be a Hadamard manifold and K ⊆ M be a nonempty convex
set, Y be a Hausdorff topological vector space and W ⊆ Y be a convex cone. Then
f : K → Y is said to be

(i) W -convex if, for any x, y ∈ K ,

f (expx t exp−1
x y) ∈ (1 − t) f (x) + t f (y) − W, ∀t ∈ [0, 1];

(ii) natural W -quasi-convex if, for any x, y ∈ K , t ∈ [0, 1],

f (expx t exp−1
x y) ∈ co( f (x), f (y)) − W,

where co(E) is the convex hull of E ;
(iii) W -quasi-convex if, for any x, y ∈ K , t ∈ [0, 1],

f (expx t exp−1
x y) ∈ z − W, ∀z ∈

⋃
( f (x), f (y)),

where
⋃

( f (x), f (y)) is the upper boundary of f (x) and f (y), that is,

⋃
( f (x), f (y)) = {z ∈ Y : f (x) ∈ z − W and f (y) ∈ z − W }.

Remark 2.2 (i) The notions of W -convexity, natural W -quasi-convexity and W -
quasi-convexity on Hadamard manifold are generalizations of these in Hausdorff
topological vector space [29];

(ii) It is clear that W -convexity implies natural W -quasi-convexity and natural W -
quasi-convexity implies W -quasi-convexity.

3 A generalized vector quasi-equilibrium problem

In this section, we introduce and study a GVQEP on Hadamard manifold and prove the
existence theorem for it, this is a generalization of some results contained in [23,24].

From now on, let M be a Hadamard manifold and K ⊆ M be a nonempty closed
set, let C ⊆ T M be a nonempty set and A : K → 2C be a set-valued vector field,
S : K → 2K , F : K × C × K → R

p be two mappings. We consider the following
GVQEP: find x ∈ K and z ∈ A(x) such that

x ∈ S(x) and F(x, z, y) /∈ −intRp
+, ∀y ∈ S(x).
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Some special cases are as follows.

(I) Let S(x) = K for every x ∈ K , F(x, z, y) = 〈z, exp−1
x y〉 for all (x, z, y) ∈

K × C × K and A be a single-valued vector field. Then (GVQEP) reduces to
the vector variational inequality on Hadamard manifold [24], which consists in
finding x∗ ∈ K such that

〈A(x∗), exp−1
x∗ y〉 /∈ −intRp

+, ∀y ∈ K .

(II) Let S(x) = K and A(x) = z for every x ∈ K , F(x, z, y) = h(x, y) for all
(x, z, y) ∈ K × C × K and p = 1. Then (GVQEP) reduces to the equilibrium
problem on Hadamard manifold [23], which consists in finding x∗ ∈ K such that

h(x∗, y) ≥ 0, ∀y ∈ K .

Definition 3.1 [30] Let Q ⊆ R
p be a nonempty set and R

p
+ ⊆ R

p be a closed convex
cone. Then y ∈ Q is said to be a weak minimizer of Q if, for any y ∈ Q, y − y /∈
−intRp

+. All weak minimizers of Q are denoted by W min
R

p
+ Q.

Lemma 3.1 [30] Let Q ⊆ R
p be a nonempty compact set and R

p
+ ⊆ R

p be a closed
convex cone. Then W min

R
p
+ Q �= ∅.

The following result provides a fixed point theorem in the setting of Hadamard
manifold, it follows from Theorem 3.10 in [23].

Lemma 3.2 Let M be a Hadamard manifold and K ⊆ M be a compact convex set,
V : K → 2K be a upper Kuratowski semicontinuous mapping. Assume that for any
x ∈ K , V (x) is closed and convex. Then there exists a fixed point of V .

Theorem 3.1 Let M be a Hadamard manifold. Suppose that the following conditions
hold:

(i) K ⊆ M is nonempty compact convex;
(ii) S : K → 2K is a continuous set-valued mapping such that S(x) is nonempty

closed convex for every x ∈ K ;
(iii) A : K → 2T M is an upper Kuratowski semicontinuous vector field such that

A(x) is compact convex for every x ∈ K , C ⊆ T M is a compact convex set and
A(x) ⊆ C for every x ∈ K ;

(iv) F : K × C × K → R
p is a continuous mapping satisfying the following condi-

tions:
(a) F(x, z, x) ∈ R

p
+ for every (x, z) ∈ K × C;

(b) the mapping y �→ F(x, z, y) is R
p
+-quasi-convex for every (x, z) ∈ K × C.

Then there exist x ∈ S(x) and z ∈ A(x) such that

F(x, z, y) /∈ −intRp
+, ∀y ∈ S(x).

123



160 X. Li, N. Huang

Proof We define a set-valued mapping P : K × C → 2K as follows:

P(x, z) = {u ∈ S(x) : F(x, z, u) ∈ W min
R

p
+ F(x, z, S(x))}.

Since K is compact, S(x) is closed and S(x) ⊆ K for every x ∈ K , we know
that S(x) is compact for every x ∈ K . It follows from the continuity of F that
F(x, z, S(x)) is compact for every (x, z) ∈ K × C . Moreover, Lemma 3.1 shows that
W min

R
p
+ F(x, z, S(x)) �= ∅ and so P(x, z) �= ∅ for every (x, z) ∈ K × C .

We shall show that

(I) P(x, z) is convex for every (x, z) ∈ K × C ;
(II) P(x, z) is compact for every (x, z) ∈ K × C ;

(III) P is upper Kuratowski semicontinuous on K × C .

To show (I), let u1, u2 ∈ P(x, z) and t ∈ [0, 1]. By the definition of P(x, z), one
has u1, u2 ∈ S(x),

F(x, z, y) − F(x, z, u1) ∈ R
p\(−intRp

+) = R
p
+, ∀y ∈ S(x),

and

F(x, z, y) − F(x, z, u2) ∈ R
p\(−intRp

+) = R
p
+, ∀y ∈ S(x).

Since y �→ F(x, z, y) is R
p
+-quasi-convex for every (x, z) ∈ K × C , we have

F(x, z, y) − F(x, z, expu1
t exp−1

u1
u2) ∈ R

p
+, ∀y ∈ S(x)

and so

F(x, z, expu1
t exp−1

u1
u2) ∈ W min

R
p
+ F(x, z, S(x)), ∀(x, z) ∈ K × C. (1)

Again since S(x) is convex for every x ∈ K , one has expu1
t exp−1

u1
u2 ∈ S(x). This

together with (1) implies that expu1
t exp−1

u1
u2 ∈ P(x, z) and so P(x, z) is convex for

every (x, z) ∈ K × C . Then (I) holds.
Next, we prove (II). Since K is compact and P(x, z) ⊆ K . We need to prove that

P(x, z) is closed for every (x, z) ∈ K × C . Let {un} ⊆ P(x, z) and un → u. We
show that u ∈ P(x, z). In fact, since {un} ⊂ P(x, z), one has un ∈ S(x) and

F(x, z, y) − F(x, z, un) /∈ −intRp
+, ∀y ∈ S(x).

That is,

F(x, z, y) − F(x, z, un) ∈ R
p\(−intRp

+) = R
p
+, ∀y ∈ S(x).

Since R
p
+ is closed, F is continuous and un → u, we have

F(x, z, y) − F(x, z, u) /∈ −intRp
+, ∀y ∈ S(x)

123



GVQEPs on Hadamard manifolds 161

and so

F(x, z, u) ∈ W min
R

p
+ F(x, z, S(x)). (2)

Since S(x) is closed valued for every x ∈ K , we know that u ∈ S(x). This together
with (2) implies that u ∈ P(x, z). Thus, P(x, z) is compact for every (x, z) ∈ K × C .
Then (II) holds.

Next we prove that P is upper Kuratowski semicontinuous on K × C . Let
{(xk, zk)} ⊆ K × C and (xk, zk) → (x, z) with uk ∈ P(xk, zk) and uk → u ∈ K .
Since uk ∈ P(xk, zk), one has uk ∈ S(xk). Since S is continuous and closed valued,
we know that u ∈ S(x) and for every y ∈ S(x), there exists yk ∈ S(xk) such that
yk → y. On the other hand, since uk ∈ P(xk, zk), one has

F(xk, zk, yk) − F(xk, zk, uk) /∈ −intRp
+.

The continuity of F shows that

lim
n→∞ F(xk, zk, uk) = F(x, z, u).

This together with

lim
n→∞ F(xk, zk, yk) = F(x, z, y)

implies that

lim
n→∞ F(xk, zk, yk) − lim

n→∞ F(xk, zk, uk) = lim
n→∞{F(xk, zk, yk) − F(xk, zk, uk)}

∈ R
p\(−intRp

+).

Thus, for any y ∈ S(x), we have

F(x, z, y) − F(x, z, u) /∈ −intRp
+

and so

F(x, z, u) ∈ W min
R

p
+ F(x, z, S(x)).

Therefore, u ∈ P(x, z). This shows that P is upper Kuratowski semicontinuous on
K × C . Thus, (III) holds.

Now we define a set-valued mapping G : K × C → 2K×C as follows:

G(x, z) = P(x, z) × A(x).

It is obvious that G is upper Kuratowski semicontinuous on K × C and G(x, z) is
compact convex for every (x, z) ∈ K ×C . By Lemma 3.2, there exists (x, z) ∈ K ×C
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such that

(x, z) ∈ G(x, z) = P(x, z) × A(x).

That is, x ∈ P(x, z) and z ∈ A(x). Thus, there exists z ∈ A(x) such that

x ∈ S(x) and F(x, z, y) − F(x, z, x) /∈ −intRp
+, ∀y ∈ S(x).

Next we show that F(x, z, y) /∈ −intRp
+ for all y ∈ S(x). If there exists some

y∗ ∈ S(x∗) such that F(x, z, y∗) ∈ −intRp
+, then it follows from F(x, z, x) ∈ R

p
+

that

F(x, z, y∗) − F(x, z, x) ∈ −intRp
+ − R

p
+ = −intRp

+,

which is a contradiction. Thus, there exist x ∈ K and z ∈ A(x) such that

x ∈ S(x) and F(x, z, y) /∈ −intRp
+, ∀y ∈ S(x).

This completes the proof. ��
By Remark 2.2 and Theorem 3.1, we have the following result.

Corollary 3.1 Let M be a Hadamard manifold. Suppose that the following conditions
hold:

(i) K ⊆ M is nonempty compact convex;
(ii) S : K → 2K is a continuous set-valued mapping and S(x) is nonempty closed

convex for every x ∈ K ;
(iii) A : K → 2T M is a upper Kuratowski semicontinuous vector field and A(x)

is compact convex for every x ∈ K , C ⊆ T M is a compact convex set and
A(x) ⊆ C for every x ∈ K ;

(iv) F : K × C × K → R
p is a continuous mapping satisfying the following condi-

tions:
(a) F(x, z, x) ∈ R

p
+ for every (x, z) ∈ K × C;

(b) the mapping y �→ F(x, z, y) is natural R
p
+-quasi-convex for every (x, z) ∈

K × C.

Then there exist x ∈ S(x) and z ∈ A(x) such that

F(x, z, y) /∈ −intRp
+, ∀y ∈ S(x).

Remark 3.1 (i) Let S(x) = K for every x ∈ K , F(x, z, y) = 〈z, exp−1
x y〉 for all

(x, z, y) ∈ K × C × K and A be a single-valued vector field. Then Theorem 3.1
and Corollary 3.1 can be regarded as a generalization of Theorem 3.2 in [24].

(ii) Let S(x) = K and A(x) = z for every x ∈ K , F(x, z, y) = h(x, y) for all
(x, z, y) ∈ K × C × K and p = 1. Then Theorem 3.1 and Corollary 3.1 can be
regarded as a generalization of Theorem 3.2 in [23].
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Next, we present an example to illustrate that all conditions in Theorem 3.1 can
be satisfied and so we can solve the vector quasi-equilibrium problem in the setting
of Hadamard manifold by employing Theorem 3.1. However, the classical existence
theorems for the vector quasi-equilibrium problems in the setting of Euclidean spaces
are not valid.

Example 3.1 Let M = (R++, 〈, 〉) be the Riemannian manifold, where R++ = {x ∈
R : x > 0} and 〈, 〉 is the Riemannian metric 〈, 〉 = g(x)uv with g : R++ → (0,+∞).
Since the map φ : R → M given by φ(x) = ex is an isometry, the sectional curvature
of M is K ≡ 0. Moreover, the tangent plane at x ∈ M denoted by Tx M , equals R.
The Riemannian distance d : M × M → R+ is given by

d(x, y) = |φ−1(x) − φ−1(y)| = | ln(x/y)|,

(see, for example [31]). Therefore, (R++, 〈, 〉) is a Hadamard manifold. The geodesic
curve γ : R → M starting form x(γ (0) = x) will have the equation

γ (t) = xe(v/x)t ,

where v = γ ′(0) ∈ Tx M is the tangent unit vector of γ in the starting point.
The above equation implies that

expx tv = xe(v/x)t .

To get the expression of the inverse exponential map, for any x, y ∈ M , we write

y = expx

(

d(x, y)
exp−1

x y

d(x, y)

)

= xe

(
exp−1

x y
xd(x,y)

)

d(x,y) = xe
exp−1

x y
x .

It follows that

exp−1
x y = x ln(y/x).

Let K = {x |x = et , t ∈ [0, 1]} and p = 2. For any x ∈ K , let S(x) = {y|y = et , t ∈
[ln x, 1]} and A(x) = [1, e]. For any x, y ∈ K and z ∈ Tx M , define F(x, z, y) =
( f1(x, z, y), f2(x, z, y)), where

f1(x, z, y) = 〈z, exp−1
x y〉 + ln y − ln x, f2(x, z, y) = (zx − 3)(ln y − ln x).

Note that K is non-convex in R, S(x) is non-convex for all x ∈ K , f1 and f2 are
both non-convex in the third variable under the usual sense, i.e., in the case M is
endowed with the Euclidean metric. Thus, the classical existence theorems for the
vector quasi-equilibrium problems in the setting of Euclidean spaces are no longer
valid. However, by using the expression of geodesics, K is convex, S(x) is convex
for all x ∈ K , f1 and f2 are convex in the third variable. It is easy to verify that all
conditions in Theorem 3.1 hold and so Theorem 3.1 implies the existence of solutions
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for (GVQEP) and the set {x |x = et , t ∈ [ln(3/e), 1]} is the solution set of (GVQEP)

on M .

4 Applications

This section is devoted to some applications of the existence theorem for GVQEPs
on Hadamard manifolds. The first one is to GVQVIs, followed by the application to
generalized vector variational-like inequalities. The last one is to vector optimization
problems.

4.1 Generalized vector quasi-variational inequalities

Let M be a Hadamard manifold, K ⊆ M be a nonempty closed set, Vi : K →
2T M (i = 1, 2, . . . , p) be a set-valued vector field and S : K → 2K be a set-valued
mapping. We denote by V = V1 × V2 ×· · ·× Vp and consider the following GVQVI:
find x ∈ K and z ∈ V (x) such that

x ∈ S(x) and 〈z, exp−1
x y〉 /∈ −intRp

+, ∀y ∈ S(x).

Lemma 4.1 [28] Let M be a Hadamard manifold, x0 ∈ M and {xn} ⊆ M with
xn → x0. Then the following assertions hold.

(i) For any y ∈ M, we have

exp−1
xn

y → exp−1
x0

y and exp−1
y xn → exp−1

y x0.

(ii) Given un, vn ∈ Txn M and u0, v0 ∈ Tx0 M, if un → u0 and vn → v0, then
〈un, vn〉 → 〈u0, v0〉.

Lemma 4.2 [23,32] Let M be a Hadamard manifold, K ⊆ M be a nonempty set,
x ∈ K and u ∈ Tx M. Define a mapping g : M → R by

g(y) = 〈u, exp−1
x y〉.

Then both g are affine, in other words, g and −g are convex functions.

Theorem 4.1 Let M be a Hadamard manifold. Suppose that the following conditions
hold:

(i) K ⊆ M is nonempty compact convex;
(ii) S : K → 2K is a continuous set-valued mapping and S(x) is nonempty closed

convex for every x ∈ K ;
(iii) For each i = 1, 2, . . . , p, Vi : K → 2T M is an upper Kuratowski semicontinuous

vector field and Vi (x) is compact convex for every x ∈ K , Ci ⊆ T M is a compact
convex set and Vi (x) ⊆ Ci for every x ∈ K .
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Then there exist x ∈ S(x) and z ∈ V (x) such that

〈z, exp−1
x y〉 /∈ −intRp

+, ∀y ∈ S(x).

Proof We denote by C = C1 × C2 × · · · × C p and define F : K × C × K → R
p as

F(x, z, y) = 〈z, exp−1
x y〉.

Obviously the solutions of (GVQVI) are the solutions of F . It is straightforward to see
that F satisfies hypotheses (i), (ii) and (iii) in Theorem 3.1. Now we only need to prove
(iv) of Theorem 3.1. It follows from Lemma 4.1 that the mapping F is continuous
on K × C × K . Since 〈z, exp−1

x x〉 = 0 for every (x, z) ∈ K × C , condition (a) in
Theorem 3.1 holds. By Lemma 4.2, we know that y �→ F(x, z, y) is R

p
+-convex. This

yields that y �→ F(x, z, y) is R
p
+-quasi-convex by Remark 2.2. As a consequence of

Theorem 3.1, there exists x ∈ K and z ∈ V (x) such that

x ∈ S(x) and〈z, exp−1
x y〉 /∈ −intRp

+, ∀y ∈ S(x)

and so x is a solution of (GVQVI). This completes the proof. ��
Example 4.1 Let M, K , p, S and A be the same as in Example 3.1. For any x, y ∈ K
and z ∈ Tx M , define

F(x, z, y) = ( f1(x, z, y), f2(x, z, y)),

where

f1(x, z, y) = 〈z, exp−1
x y〉, f2(x, z, y) = 〈z − 1, exp−1

x y〉.

Then it is easy to verify that all conditions in Theorem 4.1 hold. Therefore, Theorem 4.1
implies that there exists a solution set for (GVQVI).

4.2 Generalized vector variational-like inequalities

Let M be a Hadamard manifold, K ⊆ M be a nonempty closed set, Vi : K → 2T M (i =
1, 2, . . . , p) be a set-valued vector field and η : K × K → T M be a continuous vector
field. Then the generalized vector variational-like inequality (GVVLI) is formulated
as follows: find x ∈ K and z ∈ V (x) such that

〈z, η(y, x)〉 /∈ −intRp
+, ∀y ∈ S(x).

Theorem 4.2 Let M be a Hadamard manifold. Suppose that the following conditions
hold:

(i) K ⊆ M is nonempty compact convex;
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(ii) S : K → 2K is a continuous set-valued mapping such that S(x) is nonempty
closed convex for every x ∈ K ;

(iii) For each i = 1, 2, . . . , p, Vi : K → 2T M is an upper Kuratowski semicontinuous
vector field and Vi (x) is compact convex for every x ∈ K , Ci ⊆ T M is a compact
convex set and Vi (x) ⊆ Ci for every x ∈ K ;

(iv) η : K ×K → T M is a continuous vector field satisfying the following conditions:
(a) 〈z, η(x, x)〉 ∈ R

p
+ for every (x, z) ∈ K × C;

(b) the mapping y �→ 〈z, η(y, x)〉 is R
p
+-quasi-convex for every (x, z) ∈ K × C.

Then there exist x ∈ K and z ∈ V (x) such that

〈z, η(y, x)〉 /∈ −intRp
+, ∀y ∈ K .

Proof We define C = C1 × C2 × · · · × C p and F̂ : K × C × K → R
p as follows:

F̂(x, z, y) = 〈z, η(y, x)〉.

Obviously, the solutions of (GVVLI) are the solutions of F̂ . It is easy to check that F̂
satisfies all the hypotheses in Theorem 3.1. As a consequence of Theorem 3.1, there
exist x ∈ K and z ∈ V (x) such that

〈z, η(y, x)〉 /∈ −intRp
+, ∀y ∈ K .

This completes the proof. ��

4.3 Vector optimization problems

In this section, some relationships between a generalized variational-like inequality
and a vector optimization problem are established, which can be considered as a
generalization of results presented in [24].

Definition 4.1 Let M be a Hadamard manifold and f : M → R
⋃{+∞} be a proper

function. We said that f is locally Lipschitz on M if, for each x ∈ dom f , there exists
εx > 0 such that

| f (z) − f (y)| ≤ Lx d(z, y), ∀z, y ∈ B(x, εx ),

where Lx is some positive number (called the Lipschitz constant of f in neighborhood
of x) and

B(x, εx ) = {y ∈ M; d(x, y) < εx }.

Definition 4.2 [33] Let M be a Hadamard manifold, K ⊆ M be a convex set and
f : M → R

⋃{+∞} be a proper locally Lipschitz function. Given x ∈ K , the
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generalized directional derivative of f at x in the direction v ∈ Tx M , denoted by
f ◦(x, v), is defined by

f ◦(x, v) = lim sup
t↓0y→x

f (expy t (D expx )exp−1
x yv) − f (x)

t
,

where (D expx )exp−1
x y denotes the differential of expx at exp−1

x y.

It is worth to pointed out that an equivalent definition has appeared in [34].

Definition 4.3 [33–35] Let M be a Hadamard manifold, K ⊆ M be a convex set
and f : M → R

⋃{+∞} be a proper locally Lipschitz function. The generalized
subdifferential of f at x ∈ K , denoted by ∂◦ f (x), is defined by

∂◦ f (x) = {w ∈ Tx M : f ◦(x, v) ≥ 〈w, v〉, ∀v ∈ Tx M}.

Lemma 4.3 [35] Let M be a Hadamard manifold, K ⊆ M be a convex set and
f : M → R

⋃{+∞} be a proper locally Lipschitz function. Then for every x ∈ K ,

(i) ∂◦ f (x) is nonempty compact convex;
(ii) ∂◦ f is upper Kuratowski semicontinuous on K .

Remark 4.1 Let M be a Hadamard manifold, K ⊆ M be a convex set, f =
( f1, f2, . . . , f p) : M → R

p be a vector valued function and fi (i = 1, 2, . . . , p) be a
proper locally Lipschitz function. Let ∂◦ f (x) = ∂◦ f1(x) × ∂◦ f2(x) × · · · × ∂◦ f p(x)

for all x ∈ K . Then it is easy to check that x �→ ∂◦ f (x) is upper Kuratowski semi-
continuous on K and ∂◦ f (x) is compact convex valued for every x ∈ K .

By Remark 4.1 and Theorem 3.1, we obtain the following result.

Theorem 4.3 Let M be a Hadamard manifold, K ⊆ M be a compact convex set, fi :
M → R

p(i = 1, 2, . . . , p) be a proper locally Lipschitz function, η : K × K → T M
be a continuous vector field satisfying the following conditions:

(i) 〈z, η(x, x)〉 ∈ R
p
+ for every (x, z) ∈ K × C;

(ii) the mapping y �→ 〈z, η(y, x)〉 is R
p
+-quasi-convex for every (x, z) ∈ K × C.

Then there exist x ∈ K and z ∈ V (x) such that

〈z, η(y, x)〉 /∈ −intRp
+, ∀y ∈ K .

Next, we consider the following vector optimization problem:

(VOP) :
{

W min
R

p
+ f (x)

x ∈ K ,

where K ⊆ M is a nonempty set and f : M → R
p is a vector valued function. It is

easy to check that x∗ ∈ K is a efficient weak solution of (VOP) iff

f (y) − f (x∗) /∈ −intRp
+, ∀y ∈ K .
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Definition 4.4 [36] Let M be a Hadamard manifold, K ⊆ M be a convex set and
h : M → R

⋃{+∞} be a proper locally Lipschitz function. Then h is said to be invex
with respect to η, if there exists η : M × M → T M such that

h(y) − h(x) ≥ h◦(x, η(y, x)), ∀y, x ∈ M.

Theorem 4.4 Let M be a Hadamard manifold, K ⊆ M be a nonempty set and
fi : M → R

p(i = 1, 2, . . . , p) be invex with respect to η. If x is a solution of the
following generalized variational-like inequality: find x ∈ K and z ∈ ∂◦ f (x) such
that

〈z, η(y, x)〉 /∈ −intRp
+, ∀y ∈ K .

Then x is a weak efficient solution of (VOP).

Proof Suppose that x is not a weak efficient solution of (VOP). Then there exists
x∗ ∈ K such that

f (x∗) − f (x) ∈ −intRp
+.

This implies that, for each i = 1, 2, . . . , p,

fi (x∗) − fi (x) < 0.

Since fi (i = 1, 2, . . . , p) is invex with respect to η, one has

fi (x∗) − fi (x) ≥ f ◦
i (x, η(x∗, x)).

By the definition of ∂◦ f , we know that, for every z ∈ ∂◦ f (x),

〈z, η(x∗, x)〉 ∈ −intRp
+,

which is a contradiction. This completes the proof. ��
Remark 4.2 If f is convex and differentiable on M, η(y, x) = exp−1

x y for all (y, x) ∈
M ×M , then Theorems 4.3 and 4.4 can be regarded as a generalization of Theorem 3.1
in [24].
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