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Abstract In a general normed vector space, we study the perturbed minimal time
function determined by a bounded closed convex set U and a proper lower semi-
continuous function f (·). In particular, we show that the Fréchet subdifferential and
proximal subdifferential of a perturbed minimal time function are representable by
virtue of corresponding subdifferential of f (·) and level sets of the support function
of U . Some known results is a special case of these results.
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1 Introduction

Let X be a normed vector space, U be a bounded closed convex subset of X , and
f : X → R̄ be a proper lower semicontinuous function. We define the perturbed
minimal time function T f : X → R by

T f (x) := inf
s∈X

{T (x, s) + f (s)}, for all x ∈ X, (1.1)

where T (x, s) := inf{t ≥ 0: s − x ∈ tU }. It is easy to see that, if U ≡ B, then
T (x − s) = ‖x − s‖, where B is the unit ball in X .

For x ∈ X , the perturbed minimal time problem is to find an element z0 ∈ X such
that

T (x, z0) + f (z0) = T f (x).
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1922 Y. Zhang et al.

In particular, if f = IS , where IS denote the indicator function IS of a closed set S (the
definition will be given below), then the perturbed minimal time function T f reduces
to the minimal time function TS in [14], which is defined by the following differential
inclusion

ẋ(t) ∈ U, x(0) = x . (1.2)

In other words,

TS(x) ≡

⎧
⎪⎨

⎪⎩

inf{T > 0: there exists a trajectory x(·) satisfying (1.2)

with x(0) = x and x(T ) ∈ S}, x /∈ S;
0, x ∈ S.

If f = J + IS and U ≡ B, then the perturbed minimal time function T f and the
perturbed minimal time problem reduce to the perturbed distance function d J

S and the
perturbed optimization problem minJ (x, S) defined in [23], respectively, that is,

T f (x) = d J
S (x) := inf

s∈S
{‖s − x‖ + J (s)}, for all x ∈ X,

and

minJ (x, S) := {z0 ∈ S|‖x − z0‖ + J (z0) = d J
S (x)}.

Baranger [1] proved that if S is a nonempty closed subset of a uniformly convex Banach
space X , then the set of all x ∈ X for the perturbed optimization problem minJ (x, S)

has a solution is a dense Gδ-subset of X , which extends a result in [22] on the best
approximation problem. For other results on perturbed optimization problems, see for
example [3,8,9,15,16,18–21]. In particular, Cobzas [9] extended Baranger’s result
to the setting of reflexive Kadec Banach space; while Ni [18] relaxed the reflexivity
assumption made in Cobzas’ result. The existence results have been applied to optimal
control problems governed by partial differential equations, see for example, [1–3,8,
12].

Assuming that the origin is an interior point of U , Colombo and Wolenski [10,11]
studied the proximal and Fréchet subdifferentials of the function TS(x) in a Hilbert
space. He and Ng [13] studied the Fréchet and proximal subdifferentials of TS in a
Banach space. When the origin is an interior point of U , the function TS is globally
Lipschitz, so the Clarke subdifferential of TS is also discussed in [13]. Jiang and He
[14] show the Frechét and proximal subdifferentials of the minimal time function TS

without requiring the origin be an interior point of U in normed space. In particular, if
U is the (closed) unit ball in X , then TS(x) reduces to the usual distance dS(x), which
is defined by

dS(x) := inf
s∈S

‖s − x‖ for all x ∈ X.
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The subdifferentials of dS were studied in [4–7], and the subdifferentials of perturbed
distance functions d J

S were studied in [17,23].
In order to reduce the symmetry of the norm, we replace the distance function

in [23] by T (·, ·), which does not have the symmetry, and explore the Fréchet sub-
differentials and the Proximal subdifferentials of its perturbed functions T f (·), the
perturbed functions T f (·) are encountered in constraint optimization, via applying
various perturbation, penalization, and approximation techniques. Our main results
extend the corresponding ones in [14] from the minimal time function to perturbed
minimal time function, and extend the corresponding ones in [23] from the general
perturbed distance functions to general perturbed minimal time functions.

2 Preliminaries

Let X be a normed vector space with norm denoted by ‖ · ‖. Let X∗ denote the
topological dual of X . We use B(x; r) to denote the open ball centered at x with
radius r > 0 and 〈·, ·〉 to denote the pairing between X∗ and X . Let g: X → R be a
lower semicontinuous function and x ∈ X . g is said to be center Lipschitz on S at x
with Lipschitz constant L , if

|g(y) − g(x)| ≤ L‖y − x‖, ∀y ∈ S.

Let us recall the following well-known classes of subdifferentials for g at x .

• The proximal subdifferential of g at x is the set

∂ P g(x) :=
{

ξ ∈ X∗: lim inf‖v‖→0

g(x + v) − g(x) − 〈ξ, v〉
‖v‖2 > −∞

}

.

In other words, ξ ∈ ∂ P g(x) if and only if there exist σ > 0 and δ > 0 such that

g(x + v) − g(x) ≥ 〈ξ, v〉 − σ‖v‖2, for all v ∈ B(0, δ).

• The Frechét subdifferential of g at x is the set

∂ F g(x) :=
{

ξ ∈ X∗: lim inf‖v‖→0

g(x + v) − g(x) − 〈ξ, v〉
‖v‖ ≥ 0

}

.

That is, ξ ∈ ∂ F g(x) if and only if for any σ > 0, there exists δ > 0 such that

g(x + v) − g(x) ≥ 〈ξ, v〉 − σ‖v‖, for all v ∈ B(0, δ).

Recall that f satisfies the center Lipschitz condition on X at x , if there exists L > 0
such that

| f (y) − f (x)| ≤ L‖y − x‖, for each y ∈ X.
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The support function of a set K ⊂ X is defined by

�K (ξ) := sup
x∈K

〈ξ, x〉.

The indicator function IS of S is defined by

IS(x) ≡
{

0, x ∈ S;
+∞, x /∈ S.

In view of [14, Proposition 2.2], we have the following result.

Proposition 2.1 T (x, s) = 0 if and only if x = s.

We use S0 to denote the set of all points x ∈ X such that x is a solution of the
perturbed optimization problem, i.e.,

S0 = {x ∈ X |T f (x) = f (x)}.
Remark 2.1 It is obviously that, if f = IS , then S0 equals S in [14]; if f = IS + J
and U is the unit ball in X , then S0 equals S0 in [23].

3 Fréchet subdifferential of a minimal time function

Theorem 3.1 Let x ∈ S0. The following assertions hold.

1. ∂ F T f (x) ⊂ ∂ F f (x) ∩ {ξ ∈ X∗: �U (−ξ) ≤ 1}.
2. If f (·) is center Lipschitz on X at x with Lipschitz constant 0 ≤ L < 1/M, where

M := supu∈U ‖u‖, then we have

∂ F T f (x) = ∂ F f (x) ∩ {ξ ∈ X∗: �U (−ξ) ≤ 1}.
Proof (1) Let ξ ∈ ∂ F T f (x). Then for any σ > 0, there exists δ > 0 such that

T f (y) − T f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖ (3.1)

for all y ∈ B(x; δ).
We will prove

f (y) − f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖, for all y ∈ B(x; δ). (3.2)

Thus ξ ∈ ∂ F f (x).

By (3.1) and definition of S0, (3.2) is trivial if y ∈ B(x; δ) ∩ S0, we may assume
that y ∈ B(x; δ)\S0, by the definition of T f , we have T f (y) ≤ f (y), and as x ∈ S0,
we have from (3.1) that

f (y) − f (x) − 〈ξ, y − x〉 ≥ T f (y) − T f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖
Hence, f (y) − f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖, for all y ∈ B(x; δ).
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Fix any v ∈ U . Let tλ := T f (x − λv), where λ > 0. Since x − (x − λv) ∈ λU ,
T (x − λv, x) ≤ λ, tλ ≤ λ + f (x) < ∞. It follows from (3.1) that for sufficiently
small λ > 0,

λ + f (x) ≥ tλ ≥ f (x) + λ〈−ξ, v〉 − λσ‖v‖,

which implies that 〈−ξ, v〉 ≤ 1 + σ‖v‖. Since σ > 0 and v ∈ U are arbitrary,
�U (−ξ) ≤ 1.

(2) It is sufficient to prove

∂ F f (x) ∩ {ξ ∈ X∗: �U (−ξ) ≤ 1} ⊂ ∂ F T f (x).

Let ξ ∈ ∂ F f (x) be such that �U (−ξ) ≤ 1.

For any σ > 0, take σ0 ∈
(

0,
(1−L M)σ
(1+M‖ξ‖)

)
. By the definition of Fréchet normal cone,

there exists δ > 0 such that

f (y) − f (x) − 〈ξ, y − x〉 ≥ −σ0‖y − x‖, for all y ∈ B(x; δ). (3.3)

Then

T f (y) − T f (x) − 〈ξ, y − x〉 ≥ −σ0‖y − x‖, for all y ∈ S0 ∩ B(x; δ). (3.4)

Let δ0 := (1−L M)δ
3(1+M‖ξ‖) < δ. Then

T f (y) − T f (x) − 〈ξ, y − x〉 ≥ −σ0‖y − x‖, for all y ∈ S0 ∩ B(x; δ0). (3.5)

Now we prove that (3.5) holds for all y ∈ B(x; δ0)\S0. Therefore, ξ ∈ ∂ F T f (x).
If not, then there is y0 �∈ S0 such that

‖y0 − x‖ < δ0 and T f (y0) < T f (x) + 〈ξ, y0 − x〉 − σ‖y0 − x‖. (3.6)

The latter implies that

T f (y0) ≤ f (x) + ‖ξ‖‖y0 − x‖. (3.7)

Let t := T f (y0). By the definition of T f , for any ε ∈
(

0,
(1−L M)δ

3M

)
, there are

t1 ∈ (0, t + ε), and s ∈ X such that t1 = T (y0, s) + f (s) < t + ε. By the definition

of T , for any ε′ ∈
(

0,
(1−L M)δ

3M

)
, there are t2 ∈ (t1 − f (s), t1 − f (s) + ε′), u ∈ U ,

such that s − y0 = t2u. Thus (3.7) and f is center Lipshitz on X at x yield that
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‖s − x‖ ≤ ‖y0 − x‖ + (t1 − f (s) + ε′)‖u‖ ≤ ‖y0 − x‖ + (t + ε − f (s) + ε′)M

≤ ‖y0 − x‖ + ( f (x) + ‖ξ‖‖y0 − x‖ + ε − f (s) + ε′)M

≤ (1 + M‖ξ‖)‖y0 − x‖ + ( f (x) − f (s))M + (ε + ε′)M

≤ (1 + M‖ξ‖)‖y0 − x‖ + L M‖s − x‖ + (ε + ε′)M

Then, we have

‖s − x‖ ≤ 1 + M‖ξ‖
1 − L M

‖y0 − x‖ + M

1 − L M
(ε + ε′) < δ. (3.8)

This verifies that s ∈ B(x; δ). Applying (3.3), (3.8) and �U (−ξ) ≤ 1, we have

T f (y0) − T f (x) − 〈ξ, y0 − x〉 = t − f (x) − 〈ξ, y0 − s〉 − 〈ξ, s − x〉
≥ t − f (x) − 〈ξ, y0 − s〉 + ( f (x) − f (s) − σ0‖s − x‖)
= t − (t1 − f (s) + ε′)〈−ξ, u〉 − f (s) − σ0‖s − x‖
≥ t − (t1 − f (s) + ε′) − f (s) − σ0‖s − x‖
≥ − ε − ε′ −σ0‖s − x‖
≥ − ε − ε′ −σ0

(
1 + M‖ξ‖
1 − L M

‖y0 − x‖ + M

1 − L M
(ε + ε′)

)

≥ −
(

1 + M

1 − L M
σ0

)

(ε + ε′) − 1 + M‖ξ‖
1 − L M

σ0‖y0 − x‖

≥ −
(

1 + M

1 − L M
σ0

)

(ε + ε′) − σ‖y0 − x‖.

Letting ε′ → 0+ and ε → 0+, it yields that

T f (y0) − T f (x) − 〈ξ, y0 − x〉 ≥ −σ‖y0 − x‖,

which contradicts to (3.6). ��
In particular, letting f = IS , we get the following corollary, which was proved

in [14].

Corollary 3.1 Assume that f = IS, where S is a closed convex subset of X, if x ∈ S,
then

∂ F T f (x) = ∂ F T (x) = N F
S (x) ∩ {ξ ∈ X∗: �U (−ξ) ≤ 1}.

In particular, letting f = IS + J and U ≡ B, we get the following corollary, which
was proved in [23].

Corollary 3.2 Assume that f = IS + J and U ≡ B, where B is the unit ball in X
and S is a closed convex subset of X, let x ∈ S0. The following assertions hold.

1. ∂ F T f (x) = ∂ F d J
S (x) ⊂ ∂ F (J + IS)(x) ∩ B∗.

2. If J (·) is center Lipschitz on S at x with Lipschitz constant 0 ≤ L < 1, then we
have
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Subdifferentials of a perturbed minimal time function 1927

∂ F T f (x) = ∂ F d J
S (x) = ∂ F (J + IS)(x) ∩ B∗.

4 Proximal subdifferential of a minimal time function

Theorem 4.1 Let x ∈ S0. The following assertions hold.

1. ∂ P T f (x) ⊂ ∂ P f (x) ∩ {ξ ∈ X∗: �U (−ξ) ≤ 1}.
2. If f (·) is center Lipschitz on X at x with Lipschitz constant 0 ≤ L < 1/M, where

M := supu∈U ‖u‖, then we have

∂ P T f (x) = ∂ P f (x) ∩ {ξ ∈ X∗: �U (−ξ) ≤ 1}.

Proof (1) Let ξ ∈ ∂ P T f (x). Then there exist σ, δ > 0 such that

T f (y) − T f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖2 (4.1)

for all y ∈ B(x; δ).
We wil prove

f (y) − f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖2, for all y ∈ B(x; δ). (4.2)

Then ξ ∈ ∂ P f (x).

By (4.1) and the definition of S0, (4.2) is trivial if y ∈ B(x; δ)∩ S0, we may assume
that y ∈ B(x; δ)\ S0. By the definition of T f , we have T f (y) ≤ f (y), and as x ∈ S0,
we have from (4.1) that

f (y) − f (x) − 〈ξ, y − x〉 ≥ T f (y) − T f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖2.

Hence, f (y) − f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖2, for all y ∈ B(x; δ).
Fix any v ∈ U . Let tλ := T F (x − λv), where λ > 0. Since x − (x − λv) ∈ λU ,

T (x − λv, x) ≤ λ, tλ ≤ λ + f (x) < ∞. It follows from (4.1) that for sufficiently
small λ > 0,

λ + f (x) ≥ tλ ≥ f (x) + λ〈−ξ, v〉 − λ2σ‖v‖2,

which implies that 〈−ξ, v〉 ≤ 1. Therefore, �U (−ξ) ≤ 1.
(2) It is sufficient to prove

∂ P f (x) ∩ {ξ ∈ X∗: �U (−ξ) ≤ 1} ⊂ ∂ P T f (x).

Let ξ ∈ ∂ P f (x) be such that �U (−ξ) ≤ 1. Then there exist σ1, δ > 0 such that

f (y) − f (x) − 〈ξ, y − x〉 ≥ −σ1‖y − x‖2, for all y ∈ B(x; δ). (4.3)

Take σ := 2
(

1+M‖ξ‖
1−L M

)2
σ1 > σ1. Thus (4.3) implies that

f (y) − f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖2, for all y ∈ B(x; δ). (4.4)
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and

T f (y) − T f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖2, for all y ∈ S0 ∩ B(x; δ). (4.5)

Let δ0 := (1−L M)δ
3(1+M‖ξ‖) < δ. Then

T f (y) − T f (x) − 〈ξ, y − x〉 ≥ −σ‖y − x‖2, for all y ∈ S0 ∩ B(x; δ0). (4.6)

Now we prove that (4.6) holds for all y ∈ B(x; δ0)\S0. Therefore, ξ ∈ ∂ P T f (x).
If not, then there is y0 �∈ S0 such that

‖y0 − x‖ < δ0 and T f (y0) < T f (x) + 〈ξ, y0 − x〉 − σ‖y0 − x‖2. (4.7)

The latter implies that

T f (y0) ≤ J (x) + ‖ξ‖‖y0 − x‖. (4.8)

Let t := T f (y0). By the definition of T f , for any ε ∈
(

0,
(1−L M)δ

3M

)
, there are

t1 ∈ (t, t + ε), and s ∈ X such that t1 = T (y0, s) + f (s) < t + ε, by the definition of

T , for any ε′ ∈
(

0,
(1−L M)δ

3M

)
, there are t2 ∈ (t1 − f (s), t1 − f (s) + ε′) u ∈ U , such

that s − y0 = t2u. Thus (4.8) and f is center Lipshitz on X at x yield that

‖s − x‖ ≤ ‖y0 − x‖ + (t1 − f (s) + ε′)‖u‖ ≤ ‖y0 − x‖ + (t + ε − f (s) + ε′)M

≤ ‖y0 − x‖ + ( f (x) + ‖ξ‖‖y0 − x‖ + ε − f (s) + ε′)M

≤ (1 + M‖ξ‖)‖y0 − x‖ + ( f (x) − f (s))M + (ε + ε′)M

≤ (1 + M‖ξ‖)‖y0 − x‖ + L M‖s − x‖ + (ε + ε′)M

Then, we have

‖s − x‖ ≤ 1 + M‖ξ‖
1 − L M

‖y0 − x‖ + M

1 − L M
(ε + ε′) < δ. (4.9)

This verifies that s ∈ B(x; δ). Applying (4.4), (4.9) and �U (−ξ) ≤ 1, we have

T f (y0) − T f (x) − 〈ξ, y0 − x〉 = t − f (x) − 〈ξ, y0 − s〉 − 〈ξ, s − x〉
≥ t − f (x) − 〈ξ, y0 − s〉 + ( f (x) − f (s) − σ1‖s − x‖2)

= t − (t1 − f (s) + ε′)〈−ξ, u〉 − f (s) − σ1‖s − x‖2

≥ t − (t1 − f (s) + ε′) − f (s) − σ1‖s − x‖2

≥ − ε − ε′ −σ1‖s − x‖2

≥ − ε − ε′ −2σ1

(
1 + M‖ξ‖
1 − L M

)2

‖y0 − x‖2 − 2σ0

(
M

1 − L M

)2

(ε + ε′)2

≥ − ε − ε′ −2σ1

(
M

1 − L M

)2

(ε + ε′)2 − σ‖y0 − x‖2.
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Letting ε′ → 0 + and ε → 0+, it yields that

T f (y0) − T f (x) − 〈ξ, y0 − x〉 ≥ −σ‖y0 − x‖2,

which contradicts to (4.7). ��
In particular, letting f = IS , we get the following corollary, which is proved in

[14].

Corollary 4.1 Assume that f = IS, where S is a closed convex subset of X, if x ∈ S,
then

∂ P T f (x) = ∂ P T (x) = N P
S (x) ∩ {ξ ∈ X∗: �U (−ξ) ≤ 1}.

In particular, letting f = IS + J and U ≡ B, we get the following corollary, which
was proved in [23].

Corollary 4.2 Assume that f = IS + J and U ≡ B, where B is the unit ball in X
and S is a closed convex subset of X, let x ∈ S0. The following assertions hold.

1. ∂ P T f (x) = ∂ P d J
S (x) ⊂ ∂ P (J + IS)(x) ∩ B∗.

2. If J (·) is center Lipschitz on S at x with Lipschitz constant 0 ≤ L < 1, then we
have

∂ P T f (x) = ∂ P d J
S (x) = ∂ P (J + IS)(x) ∩ B∗.
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