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Abstract We describe a Farkas-type condition for strong solvability of interval lin-
ear inequalities. The result is used to derive several descriptions of the set of strong
solutions and to show that this set forms a convex polytope.
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1 Introduction

The famous theorem (often called a lemma) proved by Julius Farkas 111 years ago
[1] asserts that a system of linear equations

Ax = b (1)

(with A ∈ R
m×n and b ∈ R

m) has a nonnegative solution if and only if for each
p ∈ R

m, AT p ≥ 0 implies bT p ≥ 0. Several consequences for systems of other
types than (1) can be drawn from this result. For instance, since a system of linear
inequalities

Ax ≤ b (2)

has a solution if and only if the system of linear equations

Ax1 − Ax2 + x3 = b
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has a nonnegative solution, from the Farkas theorem we obtain that (2) is solvable if
and only if for each p ≥ 0, AT p = 0 implies bT p ≥ 0.

Rohn [4] and recently independently Karademir and Prokopyev [3] (see also [6])
formulated a Farkas-type theorem for interval linear equations. Given an m×n interval
matrix A = [A, A] = [Ac − �, Ac + �] = { A | Ac − � ≤ A ≤ Ac + � } (where
Ac = (A + A)/2 and � = (A − A)/2 are the midpoint matrix and the radius matrix
of A, respectively) and an interval m-vector b = [b, b] = [bc − δ, bc + δ] = { b |
bc − δ ≤ b ≤ bc + δ } (where again bc = (b + b)/2 and δ = (b − b)/2), they proved
that the system

Ax = b

has a nonnegative solution for each A ∈ A, b ∈ b if and only if for each p, AT
c p +

�T |p| ≥ 0 implies bT
c p − δT |p| ≥ 0. The presence of absolute values renders,

however, this result practically useful for small values of m only: checking this Farkas-
type condition is NP-hard [4].

In this paper we formulate a Farkas-type condition for interval linear inequalities.
Given an interval matrix A and an interval vector b as above, we are interested in
solvability of each system

Ax ≤ b (3)

with data satisfying

A ∈ A, b ∈ b. (4)

This type of solvability is called strong solvability of a formally written system of
interval linear inequalities Ax ≤ b, see Chapter 2 in [2] for a survey of results. In
Theorem 1 we prove a Farkas-type condition for strong solvability which we then use
to obtain another proof of the result by Rohn and Kreslová [7] saying that if Ax ≤ b is
strongly solvable, then all the systems (3), (4) have a common solution which is called
a strong (it could also be termed “universal”) solution of Ax ≤ b. As the main result
of this paper we give in Theorem 4 four alternative descriptions of the set of strong
solutions, and in the concluding Sect. 5 we show an interconnection between strong
solvability of interval linear equations and that of interval linear inequalities.

2 The Farkas-type theorem

We have the following Farkas-type characterization.

Theorem 1 A system Ax ≤ b is strongly solvable if and only if for each p ≥ 0, AT p ≤
0 ≤ A

T
p implies bT p ≥ 0.

Proof “If”: Let for each p ≥ 0, AT p ≤ 0 ≤ A
T

p imply bT p ≥ 0. Assume to the
contrary that some system (3) with data satisfying (4) is not solvable. Then according
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to the above-quoted Farkas condition for (3) there exists a vector p0 ≥ 0 such that
AT p0 = 0 and bT p0 < 0. But from A ≤ A ≤ A and p0 ≥ 0 we obtain AT ≤ AT ≤
A

T
and AT p0 ≤ AT p0 ≤ A

T
p0, hence AT p0 ≤ 0 ≤ A

T
p0. Thus our assumption

implies bT p0 ≥ 0, but we also have bT p0 ≤ bT p0 < 0, which is a contradiction.
“Only if”: Let each system (3) with data satisfying (4) be solvable. Assume to the

contrary that the Farkas-type condition does not hold, i.e., that there exists a vector
p1 ≥ 0 such that

AT p1 ≤ 0 ≤ A
T

p1

and

bT p1 < 0. (5)

For each i = 1, . . . , n define a real function of one real variable by

fi (t) = (t A•i + (1 − t)A•i )
T p1.

Then fi (0) = (A•i )
T p1 = (A

T
p1)i ≥ 0 and fi (1) = (A•i )

T p1 = (AT p1)i ≤ 0,
hence by continuity there exists a ti ∈ [0, 1] such that fi (ti ) = 0. Now define A
columnwise by

A•i = ti A•i + (1 − ti )A•i (i = 1, . . . , n).

Then A•i , as a convex combination of A•i and A•i , belongs to [A•i , A•i ] for each i ,
hence A ∈ A. Moreover, from the definition of ti we have (AT p1)i = (A•i )

T p1 =
fi (ti ) = 0 for each i , hence AT p1 = 0 which together with (5) implies that the system
Ax ≤ b has no solution in contradiction to our assumption. ��

3 Strong solvability of interval linear inequalities

Let us now have a closer look at the Farkas-type condition of Theorem 1. If we write
it in a slightly different form: for each p,

p ≥ 0, A
T

p ≥ 0, −AT p ≥ 0 implies bT p ≥ 0,

we can see that it is just the Farkas condition for nonnegative solvability of the system

Ax1 − Ax2 ≤ b. (6)

In this way we have found another proof of a theorem by Rohn and Kreslová [7]
formulated, unlike the Farkas condition, in primal terms:

Theorem 2 A system of interval linear inequalities Ax ≤ b is strongly solvable if and
only if the system (6) has a nonnegative solution.
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This result has a nontrivial consequence which is also contained in [7]: namely, the
existence of strong solutions.

Theorem 3 If a system of interval linear inequalities Ax ≤ b is strongly solvable,
then there exists an x0 such that

Ax0 ≤ b (7)

holds for each A ∈ A and b ∈ b.

Proof According to Theorem 2, strong solvability of Ax ≤ b implies nonnegative
solvability of (6). If x1 ≥ 0 and x2 ≥ 0 solve (6), then for each A ∈ A and b ∈ b we
have A(x1 − x2) ≤ Ax1 − Ax2 ≤ b ≤ b, so that x0 = x1 − x2 possesses the required
property. ��

In order to be able to convert solutions of (6) into complementary ones, we need
the following auxiliary result. Minimum of two vectors is understood entrywise.

Proposition 1 If x1, x2 is a nonnegative solution of (6), then for each d with

0 ≤ d ≤ min{x1, x2},

x ′
1 = x1 − d, x ′

2 = x2 − d is also a nonnegative solution of (6).

Proof Since d ≤ min{x1, x2} ≤ x1, we have x ′
1 ≥ 0, and similarly x ′

2 ≥ 0. Next,
Ax ′

1 − Ax ′
2 = Ax1 − Ax2 + (A − A)d ≤ Ax1 − Ax2 ≤ b, so that x ′

1, x ′
2 solve (6).

��
A vector x0 satisfying (7) for each A ∈ A, b ∈ b is called a strong solution of

Ax ≤ b. Denote by XS(A, b) the set of strong solutions. For x = (xi )
n
i=1 let

x+ = (max{xi , 0})n
i=1,

x− = (max{−xi , 0})n
i=1,

and

|x | = (|xi |)n
i=1,

then x = x+−x−, |x | = x++x−, (x+)T x− = 0, x+ ≥ 0 and x− ≥ 0. The following
theorem brings several alternative descriptions of the set of strong solutions.

Theorem 4 We have

XS(A, b) = { x1 − x2 | Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0 } (8)

= { x | Ax+ − Ax− ≤ b } (9)

= { x | Acx + �|x | ≤ b } (10)

= { x | Acx + �t ≤ b, −t ≤ x ≤ t }. (11)

123



A Farkas-type theorem 1595

Proof The equality (8) was proved in [7, Prop. 1]. Denote by X1, X2, X3, X4 the
right-hand side sets in (8)–(11), respectively. We shall prove that X1 ⊆ X2 ⊆ X3 ⊆
X4 ⊆ X1.

“X1 ⊆ X2”: Let x1 ≥ 0, x2 ≥ 0 satisfy Ax1 − Ax2 ≤ b. Put d = min{x1, x2}
(entrywise) and x = x1 − x2. Then d ≥ 0, x+ = x1 − d, x− = x2 − d, and Ax+ −
Ax− ≤ b by Proposition 1 which proves that X1 ⊆ X2.

“X2 ⊆ X3”: From x = x+ − x−, |x | = x+ + x− we have x+ = (|x |+ x)/2, x− =
(|x |−x)/2. Substituting these quantities into Ax+−Ax− ≤ b leads to Acx+�|x | ≤ b.

“X3 ⊆ X4”: If Acx + �|x | ≤ b, then for t = |x | we have Acx + �t ≤ b and
−t ≤ x ≤ t .

“X4 ⊆ X1”: If Acx +�t ≤ b and −t ≤ x ≤ t , then |x | ≤ t and nonnegativity of �

implies Acx+�|x | ≤ Acx+�t ≤ b. Substituting x = x+−x− and |x | = x++x−, we
obtain Ax+− Ax− ≤ b, hence x1 = x+, x2 = x− satisfy x1 −x2 = x, x1 ≥ 0, x2 ≥ 0
and Ax1 − Ax2 ≤ b. ��

In the proof we have relied on the equality (8) proved in [7]. But we can also pursue
another path starting from the following general-purpose theorem.

Theorem 5 Let A = [Ac−�, Ac+�] be an m×n interval matrix, b = [bc−δ, bc+δ]
an interval m-vector, and let x ∈ R

n. Then we have

{ Ax − b | A ∈ A, b ∈ b } = [Acx − bc − (�|x | + δ), Acx − bc + (�|x | + δ)].
(12)

Proof According to [2, Prop. 2.27], there holds

{ Ax | A ∈ A } = [Acx − �|x |, Acx + �|x |].

Then it is sufficient to apply this result to the augmented interval matrix A′ = (A | −b)

and to the augmented vector x ′ = (xT | 1)T to obtain (12). ��

Now, if x is a strong solution of Ax ≤ b, then Ax − b ≤ 0 for each A ∈ A, b ∈ b
which is equivalent to nonpositivity of the upper bound of the right-hand side interval
in (12) which is the case if and only if Acx + �|x | ≤ b. This proves (10), and the
other three descriptions can be proved in the same way as in the main proof.

As a direct consequence of (11) we obtain the next result. As the terminology varies,
we mention explicitly that a polytope can be bounded as well as unbounded.

Corollary 1 The set XS(A, b) is a convex polytope.

Proof The above set X4, described by a set of linear inequalities (11), is a convex
polytope in R

2n , hence XS(A, b), as an x-projection of it, is a convex polytope as well.
��
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4 Computation of a strong solution

The inequalities in (9), (10) provide for direct checks of whether a given x is a strong
solution, or not, whereas the description in (8) makes it possible to find a strong
solution by solving the linear program

min{ eT x1 + eT x2 | Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0 }, (13)

where e = (1, 1, . . . , 1)T ∈ R
n . Indeed, solve (13); if an optimal solution x∗

1 , x∗
2 is

found, then Ax ≤ b is strongly solvable and x = x∗
1 − x∗

2 is a strong solution of it; if
(13) is infeasible, then Ax ≤ b is not strongly solvable (the problem (13) cannot be
unbounded since its objective is nonnegative).

Finally we show that the very form of (6) enforces complementarity of any optimal
solution.

Theorem 6 Each optimal solution x∗
1 , x∗

2 of (13) satisfies (x∗
1 )T x∗

2 = 0.

Proof Assume that it is not so, so that some optimal solution x∗
1 , x∗

2 of (13) satisfies
(x∗

1 )T x∗
2 > 0. Then (x∗

1 )i (x∗
2 )i > 0 for some i . Set d = min{x∗

1 , x∗
2 }, then d ≥ 0

and di > 0, and by Proposition 1, x∗
1 − d, x∗

2 − d is a feasible solution of (13) whose
objective value eT (x∗

1 − d) + eT (x∗
2 − d) = eT x∗

1 + eT x∗
2 − 2eT d < eT x∗

1 + eT x∗
2

is less than the optimal value, a contradiction. ��

5 Strong solvability of interval linear equations and inequalities

For each y ∈ {−1, 1}m(a ± 1-vector) denote by Ty = diag(y) the m × m diagonal
matrix with diagonal vector y. Given an m×n interval matrix A, for each y ∈ {−1, 1}m

let

Ay = { Ty A | A ∈ A }. (14)

It can be easily seen that if A = [Ac − �, Ac + �], then

Ay = [Ty Ac − �, Ty Ac + �],

i.e., Ay is again an interval matrix. The same notation also applies to interval vectors
that are special cases of interval matrices.

Given an m × n interval matrix A and an interval m-vector b, the system of interval
linear equations Ax = b is called strongly solvable [2] if each system

Ax = b

with data satisfying

A ∈ A, b ∈ b

is solvable.
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The following theorem establishes an interconnection between strong solvability
of interval linear equations and inequalities. It shows that with each strongly solvable
system of interval linear equations Ax = b with an m × n interval matrix A we may
associate 2m strongly solvable systems of interval linear inequalities.

Theorem 7 A system Ax = b is strongly solvable if and only if Ay x ≤ by is strongly
solvable for each y ∈ {−1, 1}m.

Proof “Only if”: Let y ∈ {−1, 1}m, A′ ∈ Ay and b′ ∈ by . In view of (14), A′ = Ty A
and b′ = Tyb for some A ∈ A and b ∈ b. Since Ax = b is strongly solvable, Ax = b
and thus also Ty Ax = Tyb and Ty Ax ≤ Tyb are solvable, so that Ay x ≤ by is strongly
solvable.

“If”: Conversely, let each Ay x ≤ by, y ∈ {−1, 1}m , have a strong solution xy , so
that

Ty Axy ≤ Tyb,

which we can write as

Ty(b − Axy) ≥ 0, (15)

holds for each A ∈ A, b ∈ b. Take some fixed A ∈ A and b ∈ b. Then (15) shows that
the residual set

{ b − Ax | x ∈ R
n }

intersects all orthants, hence Theorem 3 in [5] implies that Ax = b has a solution.
Since A ∈ A and b ∈ b were arbitrary, the system Ax = b is strongly solvable, which
was to be proved. ��

This theorem offers some answer to the question why checking strong solvability
on interval linear inequalities is essentially easier than checking that of interval linear
equations: in the former case only one linear program (13) needs to be solved whereas
2m of them are required in the latter case.
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