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Abstract The aim of this paper is to investigate ε-Henig proper efficiency of set-
valued optimization problems in linear spaces. Firstly, a new notion of ε-Henig
properly efficient point is introduced in linear spaces. Secondly, scalarization the-
orems of set-valued optimization problems are established in the sense of ε-Henig
proper efficiency. Finally, under the assumption of generalized cone subconvexlike-
ness, Lagrange multiplier theorems are obtained. Our results generalize some known
results in the literature from topological spaces to linear spaces.
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1 Introduction

In multiobjective programming, it can happen that an optimization problem has no
optimal solutions. To overcome the defect, some authors introduced the notion of
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efficient solutions. Pareto [1] gave the idea of Pareto efficient solution to investigate
some equilibrium problems in economics. Based on Pareto’s idea, Koopmans [2] firstly
introduced the notion of efficient solution of multiobjective optimization problems.
Kuhn and Tucker [3] gave the notion of efficient solution of vector-valued optimization
problems. Usually, the set containing efficient solutions is so big that it has poor
properties. To refine the notion of efficient solution, some authors [4–9] introduced
different kinds of properly efficient solution, such as Geoffrion properly efficient
solution, Benson properly efficient solution, Henig properly efficient solution and
super efficient solution. In different settings, Guerraggio et al. [10] gave some relations
among properly efficient solutions. We know that Henig properly efficient solution not
only has many desirable properties, but also has much weaker existence conditions
than other properly efficient solutions.

With the development of set-valued analysis, properly efficient solutions have been
generalized from vector-valued optimization problems to set-valued ones [11–14].
However, in the above mentioned references, properly efficient solutions were mainly
studied in topological spaces. It is well known that linear spaces are much wider than
topological spaces. To the best of our knowledge, there are only a few authors [15–
17] to study properly efficient solutions of set-valued optimization problems in linear
spaces. The aim of this paper is to investigate ε-Henig proper efficiency of set-valued
optimization problems in linear spaces.

This paper is organized as follows. In Sect. 2, some preliminaries, including nota-
tions and lemmas, are given. In Sect. 3, we introduce a new notion of ε-Henig properly
efficient solution of set-valued optimization problems in linear spaces and compare
it with other ε- properly efficient solutions. In Sect. 4, we present scalarization theo-
rems of set-valued optimization problems in the sense of ε-Henig proper efficiency. In
Sect. 5, we obtain Lagrange multiplier theorems in linear spaces. Our results generalize
some known results in the literature.

2 Preliminaries

Throughout this paper, we always suppose that X, Y and Z are three real ordered
linear spaces and A is a nonempty set in X . Let 0 denote the zero element for every
space. Let K be a nonempty subset in Y . The generated cone of K is defined as
cone(K ) := {λk|k ∈ K , λ ≥ 0}. K is called a convex cone iff

λ1k1 + λ2k2 ∈ K , ∀λ1, λ2 ≥ 0, ∀k1, k2 ∈ K .

A cone K is said to be pointed iff K ∩ (−K ) = {0}. K is said to be nontrivial iff
K �= {0} and K �= Y .

The algebraic dual of Y and Z is denoted by Y ∗ and Z∗, respectively. Let C and D
be two nontrivial, pointed and convex cones in Y and Z , respectively. The algebraic
dual cone C+ and strictly algebraic dual cone C+i of C are, respectively, defined as

C+ := {y∗ ∈ Y ∗|〈y, y∗〉 � 0, ∀y ∈ C}, C+i := {y∗ ∈ Y ∗|〈y, y∗〉 > 0,

∀y ∈ C \ {0}},
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ε-Henig proper efficiency of set-valued optimization problems 1815

where 〈y, y∗〉 denotes the value of the linear functional y∗ at the point y. The meaning
of D+ is similar to that of C+.

Definition 2.1 [18] Let K be a nonempty subset in Y . The algebraic interior of K is
the set

cor(K ) := {k ∈ K |∀k′ ∈ Y, ∃λ′ > 0, ∀λ ∈ [0, λ′], k + λk′ ∈ K }.

From now on, we suppose that cor(C) × cor(D) �= ∅.

Definition 2.2 [19] Let K be a nonempty subset in Y . K is called balanced iff, ∀x ∈
K , ∀λ ∈ [−1, 1], λk ∈ K . K is called absorbent iff 0 ∈ cor(K ).

Remark 2.1 It follows from Definitions 2.1 and 2.2 that, a nonempty subset K in Y is
absorbent iff, ∀y ∈ Y, ∃λ′ > 0, ∀λ ∈ [0, λ′], λy ∈ K .

Definition 2.3 [20] Let K be a nonempty subset in Y . The vector closure of K is the
set

vcl(K ) := {k ∈ Y |∃k′ ∈ Y, ∀λ′ > 0, ∃λ ∈]0, λ′], k + λk′ ∈ K }.

Let F : A ⇒ Y be a set-valued map on A. Write 〈F(x), y∗〉 := {〈y, y∗〉|y ∈
F(x)}, F(A) := ⋃

x∈A F(x) and 〈F(A), y∗〉 := ⋃
x∈A〈F(x), y∗〉.

Definition 2.4 [21] A set-valued map F : A ⇒ Y is called generalized C-
subconvexlike on A iff cone(F(A)) + cor(C) is a convex set in Y .

Lemma 2.1 [17] Let F : A ⇒ Y be a set-valued map on A. If C ⊆ Y is a non-
trivial, pointed and convex cone with cor(C) �= ∅, then the following statements are
equivalent:

(i) F is generalized C-subconvexlike on A;
(ii) vcl(cone(F(A) + C)) is a convex set in Y .

Lemma 2.2 [22] Let K be a nonempty subset in Y . Then K + = (vcl(K ))+.

Lemma 2.3 [23] Let C be a nontrivial, pointed and convex cone with cor(C) �= ∅ in
Y . If y ∈ cor(C) and y∗ ∈ C+\{0}, then 〈y, y∗〉 > 0.

Lemma 2.4 [24] Let V be a linear space, and let M, N ⊆ V be two convex sets such
that M �= ∅, cor(N ) �= ∅ and M ∩ cor(N ) = ∅. Then, there exists a hyperplane
separating M and cor(N ) in V .

3 Characterization of ε-Henig properly efficient point

Definition 3.1 [17] Let K ⊆ Y and ε ∈ C. y ∈ K is called an ε-weakly efficient point
of K with respect to C (denoted by y ∈ ε-WE(K , C)) iff (K −y+ε)∩(−cor(C)) = ∅.
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Definition 3.2 [17] Let K ⊆ Y and ε ∈ C. y ∈ K is called an ε-Benson properly
efficient point of K with respect to C (denoted by y ∈ ε-BE(K , C)) iff vcl(cone(K +
C − y + ε)) ∩ (−C) = {0}.
Definition 3.3 [17] Let K ⊆ Y and ε ∈ C. y ∈ K is called an ε-global properly
efficient point of K with respect to C (denoted by y ∈ ε-GPE(K , C)) iff there exists
a nontrivial, pointed and convex cone C ′ with C \{0} ⊆ cor(C ′) such that (K − y +
ε) ∩ (−C ′ \{0}) = ∅.

Remark 3.1 In [17], we have given the following inclusions:

ε − GPE(K , C) ⊆ ε − BE(K , C) ⊆ ε − WE(K , C).

Definition 3.4 Let B be a nonempty convex subset in Y . B is a base of C iff C =
cone(B) and there exists a balanced, absorbent and convex set V such that 0 /∈ B + V
in Y .

Remark 3.2 When the linear space Y becomes a locally convex space, 0 /∈ cl(B) is
equivalent to the statement that there exists a circled and convex neighbour V such
that 0 /∈ B + V in Y , where cl(B) stands for the topological closure of B. Thus, the
definition of the base B of C in this paper coincides with the one in [6,8,9] when the
linear space Y becomes a locally convex space.

Write Bst := {y∗ ∈ Y ∗|there exists t > 0 such that 〈b, y∗〉 ≥ t, ∀b ∈ B}. From
now on, we suppose that B is a base of C . Let V ⊆ Y is a balanced, absorbent and
convex set with 0 /∈ B + V . Write CV (B) := cone(B + V ).

Remark 3.3 It is easy to check that CV (B) is a nontrivial, pointed and convex cone in
Y . Moreover, 0 /∈ cor(CV (B)).

Now, we introduce a new notion of ε-Henig properly efficient point in linear spaces.

Definition 3.5 Let K ⊆ Y and ε ∈ C. y ∈ K is called an ε-Henig properly efficient
point of K with respect to B (denoted by y ∈ ε-HE(K , B)) iff there exists a balanced,
absorbent and convex set V with 0 /∈ B +V such that cone(K − y +ε)∩(−CV (B)) =
{0}.

The following proposition will give the relation between ε-Henig properly efficient
point and ε-global properly efficient point in linear spaces.

Proposition 3.1 Let K ⊆ Y and ε ∈ C. Then, ε-HE(K , B) ⊆ ε-GPE(K , C).

Proof Let y ∈ ε-HE(K , B). Then, there exists a balanced, absorbent and convex set
V with 0 /∈ B + V such that cone(K − y + ε) ∩ (−CV (B)) = {0}. Clearly,

(K − y + ε) ∩ (−CV (B) \ {0}) = ∅. (1)

Now, we prove that

C \ {0} ⊆ cor(CV (B)). (2)
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Let c ∈ C\{0}. Then, there exist t > 0 and b ∈ B such that c = tb. Clearly,

c + tV = tb + tV = t (b + V ) ⊆ cone(B + V ). (3)

Since V is absorbent, for any y ∈ Y , there exists λ′ > 0, ∀λ ∈ [0, λ′], λy ∈ V . Let
α = tλ′. It follows from (3) and balance of V that

c + α′y = t

(

b + α′

t
y

)

= t

(

b + α′

tλ′ λ
′y

)

∈ t

(

b + α′

α
V

)

⊆ t (b + V ) ⊆ CV (B), ∀α′ ∈ [0, α].
(4)

It follows from (4) that c ∈ cor(CV (B)). Therefore, (2) holds. By Remark 3.3,
CV (B) is a nontrivial, pointed and convex cone in Y . According to (1) and (2), y ∈
ε-GPE(K , C). Hence, ε-HE(K , B) ⊆ ε-GPE(K , C). ��
Remark 3.4 By Remark 3.1 and Proposition 3.1, we obtain the following inclusions:

ε − HE(K , B) ⊆ ε − GPE(K , C) ⊆ ε − BE(K , C) ⊆ ε − WE(K , C).

Proposition 3.2 Let K ⊆ Y and ε ∈ C. Then, ε-HE(K , B) ⊆ ε-HE(K + C, B).

Proof Let y ∈ ε-HE(K , B). Then, there exists a balanced, absorbent and convex set
V with 0 /∈ B + V such that

cone(K − y + ε) ∩ (−CV (B)) = {0}. (5)

Clearly, y ∈ K + C . We assert that

cone(K + C − y + ε) ∩ (−CV (B)) = {0}. (6)

Otherwise, there exist λ1 > 0, k ∈ K , c ∈ C, λ2 > 0, b ∈ B, v ∈ V such that

λ1(k + c − y + ε) = −λ2(b + v) �= 0. (7)

Case 1: c = 0. It follows from (7) that

λ1(k − y + ε) = −λ2(b + v) ∈ −CV (B). (8)

Case 2: c �= 0. Since C\{0} ⊆ cor(CV (B)), it follows from (7) that

λ1(k − y + ε) = −λ1c − λ2(b + v) ∈ −cor(CV (B)) − CV (B) ⊆ −CV (B). (9)
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By (5), (8) and (9), we have λ1(k − y + ε) = 0. Therefore,

λ1c + λ2(b + v) = (λ1c + λ2b) + λ2v = 0. (10)

Since B is a base of C , there exist λ3 ≥ 0 and b ∈ B such that λ1c = λ3b. It follows
from (10) that

0 = (λ1c + λ2b) + λ2v = (λ3b + λ2b) + λ2v

= (λ2 + λ3)

[(
λ3

λ2 + λ3
b + λ2

λ2 + λ3
b

)

+ λ2

λ2 + λ3
v

]

. (11)

According to convexity of B and balance of V , we obtain

λ3

λ2 + λ3
b + λ2

λ2 + λ3
b ∈ B (12)

and

λ2

λ2 + λ3
v ∈ V . (13)

By (11), (12) and (13), 0 ∈ B + V , which contradicts 0 /∈ B + V . Hence, (6) holds.
Thus, we complete the proof. ��
Remark 3.5 The following example shows that ε-HE(K +C, B) ⊆ ε-HE(K , B) does
not hold.

Example 3.1 Let Y = R
2, K = {(y1, y2)|2 ≤ y1 ≤ 4,−0.2 ≤ y2 ≤ 0.8} ⊆ Y, B =

{(y1, y2)|y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0} ⊆ Y, C = {(y1, y2)|y1 ≥ 0, y2 ≥ 0} ⊆ Y
and ε = (0.3, 0.5), y = (2.1, 0.9). Clearly, y ∈ ε-HE(K + C, B). However, y /∈ ε-
HE(K , B).

Remark 3.6 It is easy to check that ε-HE(K , B) = K ∩ ε-HE(K + C, B).

4 Scalarization

In this section, we will establish scalarization theorems of an unconstrainted set-valued
optimization problem in the sense of ε-Henig proper efficiency. Let F : A ⇒ Y be
a set-valued maps on A. Now, we consider the following unconstrainted set-valued
optimization problem:

(VP1) Min F(x) subject to x ∈ A.

Definition 4.1 Let ε ∈ C. x ∈ A is called an ε-Henig properly efficient solution of
(VP1) iff there exists y ∈ F(x) such that y ∈ ε-HE(F(A), B). The pair (x, y) is
called an ε-Henig properly efficient element of (VP1).
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The following example shows that the ε-Henig properly efficient element of a set-
valued optimization problem in real ordered linear spaces may exist, but it does not
exist in topological spaces.

Example 4.1 In (VP1), let X = Y = R
2, A = [0, 1]×[0, 1] ⊆ X, B = {(y1, y2)|y1+

y2 = 1, y1 ≥ 0, y2 ≥ 0} ⊆ Y, C = {(y1, y2)|y1 ≥ 0, y2 ≥ 0} ⊆ Y and ε =
(0.1, 0.1). The set-valued map F : A ⇒ Y is defined as follows:

F(x1, x2) = [1, 1 + x1] × [1, 1 + x2], (x1, x2) ∈ A.

Let x = (1, 1) and y = (1, 1). For the real ordered linear space Y , it is easy to check
that (x, y) is an ε-Henig properly efficient element of (VP1). On the other hand, let

� = {Y,∅} ∪ {Vα|α >
√

2
2 }, where Vα = {(y1, y2)|y2

1 + y2
2 < α, (y1, y2) ∈ Y }.

Clearly, Y is equipped with the topology �. For the topological space (Y, �), it is easy
to check that the set of ε-Henig properly efficient elements of (VP1) is an empty set.

The scalar minimization problem of (VP1) is defined as follows:

(VP1)ϕ Min 〈F(x), ϕ〉 subject to x ∈ A,

where ϕ ∈ Y ∗ \ {0}.
Definition 4.2 [25] Let ε ∈ C. x ∈ A is called an ε-optimal solution of (VP1)ϕ iff
there exists y ∈ F(x) such that

〈y, ϕ〉 ≤ 〈y, ϕ〉 + 〈ε, ϕ〉, ∀x ∈ A, ∀y ∈ F(x).

The pair (x, y) is called an ε-optimal element of (VP1)ϕ .

The following two theorems involve the relations between ε-Henig properly effi-
cient element of (VP1) and ε-optimal element of (VP1)ϕ .

Theorem 4.1 Let ε ∈ C. Suppose that the following conditions hold:

(i) (x, y) is an ε-Henig properly efficient element of (VP1);
(ii) F − y + ε is generalized C-subconvexlike on A.

Then, there exists ϕ ∈ Bst such that (x, y) is an ε-optimal element of (VP1)ϕ .

Proof Since (x, y) is an ε-Henig properly efficient element of (VP1), it follows from
Proposition 3.2 that there exists a balanced, absorbent and convex set V ⊆ Y with
0 /∈ B + V such that

cone(F(A) + C − y + ε) ∩ (−CV (B)) = {0}. (14)

It follows from (14) and Remark 3.3 that

cone(F(A) + C − y + ε) ∩ cor(−CV (B)) = ∅. (15)
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According to (15) and the proof of Proposition 2.1 [17], we have

vcl(cone(F(A) + C − y + ε)) ∩ cor(−CV (B)) = ∅.

Since C is nontrivial, it follows from (2) that cor(−CV (B)) �= ∅. By Condition (ii)
and Lemma 2.1, vcl(cone(F(A)+C − y+ε)) is a convex set in Y . Thus, all conditions
of Lemma 2.4 are satisfied. Therefore, there exists ϕ ∈ Y ∗\{0} such that

〈y1, ϕ〉 ≥ 〈y2, ϕ〉, ∀y1 ∈ vcl(cone(F(A) + C − y + ε)), ∀y2 ∈ −CV (B).

Clearly,

〈y1, ϕ〉 ≥ 〈y2, ϕ〉, ∀y1 ∈ cone(F(A) + C − y + ε), ∀y2 ∈ −CV (B). (16)

Since 0 ∈ CV (B) and F(A)+ C − y + ε ⊆ cone(F(A)+ C − y + ε), it follows from
(16) that

〈y1, ϕ〉 ≥ 0, ∀y1 ∈ F(A) + C − y + ε. (17)

Because 0 ∈ C , it follows from (17) that

〈y, ϕ〉 ≤ 〈y, ϕ〉 + 〈ε, ϕ〉, ∀x ∈ A, ∀y ∈ F(x). (18)

Since 0 ∈ cone(F(A) + C − y + ε), it follows from (16) that

〈y2, ϕ〉 ≥ 0, ∀y2 ∈ CV (B).

Clearly,

〈b + v, ϕ〉 ≥ 0, ∀b ∈ B, ∀v ∈ V . (19)

It follows from (19) and balance of V that

〈b, ϕ〉 ≥ 〈v, ϕ〉, ∀b ∈ B, ∀v ∈ V . (20)

Since V is balanced and absorbent, there exists v ∈ V such that 〈v, ϕ〉 > 0. Write
t := 〈v, ϕ〉. According to (20), we have

〈b, ϕ〉 ≥ t, ∀b ∈ B.

Therefore, ϕ ∈ Bst . It follows from (18) that (x, y) is an ε-optimal element of (VP1)ϕ .
��

Remark 4.1 The conclusion of Theorem 4.1 in [17] is ϕ ∈ C+\{0} and meanwhile
the conclusion of Theorem 4.1 in this paper is ϕ ∈ Bst . It follows from Remark 3.2
that Theorem 4.1 reduces to the necessity of Theorem 3.3.1 in [26] when ε = 0 and
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the linear space Y becomes a locally convex space. Following the line of Theorem 1 in
[27], it is easy to check that the notion of ε-strictly efficient point [14] is equivalent to
the notion of ε-Henig properly efficient point [28] in locally convex spaces. In [29], Xu
and Song have shown that, in locally convex spaces, near-subconvexlikeness of the set-
valued map F introduced by Yang et al.[30] is equivalent to ic-cone-convexlikeness of
the set-valued map F introduced by Sach [31] when the topological interior int(C) �=
∅. Therefore, it follows from Lemma 2.1 and the above statements that Theorem 4.1
is a generalization of Theorem 3.1 in [14].

Theorem 4.2 Let ε ∈ C. If there exists ϕ ∈ C+i such that (x, y) is an ε-optimal
element of (VP1)ϕ , then (x, y) is an ε-Henig properly efficient element of (VP1).

Proof Since (x, y) is an ε-optimal element of (VP1)ϕ , we have

〈y, ϕ〉 + 〈ε, ϕ〉 ≥ 〈y, ϕ〉, ∀x ∈ A, ∀y ∈ F(x). (21)

Let α be a positive constant and B := {b ∈ C |〈b, ϕ〉 = α}. Clearly, cone(B) = C .
Let V := {y ∈ Y ||〈y, ϕ〉| < α}, where α is a positive constant with α < α. Clearly,
V is a balanced, absorbent and convex set in Y .

We assert that 0 /∈ B + V . Otherwise, there exist b ∈ B and v ∈ V such that
b + v = 0. Therefore, 〈b + v, ϕ〉 = 0. On the other hand, 〈b + v, ϕ〉 = α + 〈v, ϕ〉 >

α − α > 0. This is a contradiction. Hence, 0 /∈ B + V .
From the above statements, we obtain that B is a base of C . We assert that

cone(F(A) − y + ε) ∩ (−CV (B)) = {0}. (22)

Otherwise, there exist r1 > 0, r2 > 0, x1 ∈ A, y1 ∈ F(x1), b1 ∈ B and v1 ∈ V such
that

r1(y1 − y + ε) = −r2(b1 + v1) �= 0. (23)

It follows from (23) that 〈y1 − y + ε, ϕ〉 = − r2
r1

〈b1 + v1, ϕ〉 < 0, i.e., 〈y1, ϕ〉 +
〈ε, ϕ〉 < 〈y, ϕ〉. which contradicts (21). Therefore, (22) holds. Thus, (x, y) is an
ε-Henig properly efficient element of (VP1). ��
Remark 4.2 By Remark 3.4, the notion of ε-Henig proper efficiency of set-valued
optimization problems is stronger ε-globally proper efficiency of set-valued optimiza-
tion problems. However, comparing Theorem 4.2 with Theorem 4.2 in [17], we obtain
a stronger conclusion under the same assumptions. Therefore, Theorem 4.2 is a gen-
eralization of Theorem 4.2 in [17]. Since the condition ϕ ∈ C+i is weaker than the
condition ϕ ∈ Bst and the locally convex space Y is replaced by a linear space, Theo-
rem 4.2 generalizes Theorem 3.2 in [14]. Furthermore, if ε = 0 and the linear space is
replaced by the locally convex space Y , then Theorem 4.2 reduces to the sufficiency
of Theorem 3.3.1 in [26].
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5 Lagrange multipliers

In this section, we will derive Lagrange Multiplier rules in the sense of ε-Henig proper
efficiency in linear spaces. Let F : A ⇒ Y and G : A ⇒ Z be two set-valued maps
from A to Y and Z , respectively. we consider the following set-valued optimization
problem:

(VP2) Min F(x) subject to G(x) ∩ (−D) �= ∅.

The feasible set of (VP2) is defined by S := {x ∈ A|G(x) ∩ (−D) �= ∅}.
Definition 5.1 Let ε ∈ C. x ∈ S is called an ε-Henig properly efficient solution of
(VP2) iff there exists y ∈ F(x) such that y ∈ ε-HE(F(S), B). The pair (x, y) is called
an ε-Henig properly efficient element of (VP2).

Let L(Z , Y ) be the set of all linear operators from Z to Y . Write L+(Z , Y ) :=
{T ∈ L(Z , Y )|T (D) ⊆ C}. The Lagrangian set-valued map of (VP) is defined by

L(x, T ) := F(x) + T (G(x)), ∀(x, T ) ∈ A × L+(Z , Y ).

Consider the following unconstrained set-valued optimization problem:

(UVP)T Min L(x, T ) subject to (x, T ) ∈ A × L+(Z , Y ).

Let I (x) = F(x) × G(x), ∀x ∈ A. By Definition 2.4, the set-valued map I :
A ⇒ Y × Z is generalized C × D-subconvexlike on A iff cone(I (A)) + cor(C × D)

is a convex set in Y × Z .

Theorem 5.1 Let ε ∈ C, x ∈ S and 0 ∈ G(x). Suppose that the following conditions
hold:

(i) (x, y) is an ε-Henig properly efficient element of (VP2);
(ii) I (x) is generalized C × D-subconvexlike on A, where I (x) = (F(x)− y + ε)×

G(x);
(iii) vcl(cone(G(A) + D)) = Z.

Then, there exists T ∈ L+(Z , Y ) such that −T (G(x) ∩ (−D)) ⊆ (cor(C) ∪ {0})\
(ε + CV (B)\{0}) and (x, y) is an ε-Henig properly efficient element of (UVP)T .

Proof Since (x, y) is an ε-Henig properly efficient element of (VP2), it follows from
Proposition 3.2 that there exists a balanced, absorbent and convex set V ⊆ Y with
0 /∈ B + V such that

cone(F(S) + C − y + ε) ∩ (−CV (B)) = {0}. (24)

It follows from (24) that

(F(S) + C − y + ε) ∩ cor(−CV (B)) = ∅, (25)
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which implies that (I (S) + C × D) ∩ cor(−(CV (B) × D)) = ∅. We assert that

(I (A) + C × D) ∩ cor(−(CV (B) × D)) = ∅. (26)

Otherwise, there exists x ′ ∈ A such that (I (x ′)+C × D)∩cor(−(CV (B)× D)) �= ∅.
Hence,

(F(x ′) + C − y + ε) ∩ cor(−CV (B)) �= ∅ (27)

and

(G(x ′) + D) ∩ cor(−D) �= ∅. (28)

It follows from (28) that (G(x ′) + D) ∩ (−D) �= ∅. Since D is a convex cone
in Z , it is easy to check that G(x ′) ∩ (−D) �= ∅. Therefore, x ′ ∈ S. According
to (27) and x ′ ∈ S, we obtain (F(S) + C − y + ε) ∩ cor(−CV (B)) �= ∅, which
contradicts (25). So, (26) holds. By (26) and the proof of Theorem 4.1, we can prove that
vcl(cone(I (A)+C×D))∩cor(−(CV (B)×D)) = ∅. It follows from condition (ii) and
Lemma 2.1 that vcl(cone(I (A)+C × D)) is a convex set in Y × Z . Thus, all conditions
of Lemma 2.4 are satisfied. Therefore, there exists (y∗, z∗) ∈ (Y ∗ × Z∗) \ {(0, 0)},
for any r ≥ 0, x ∈ A, (y, z) ∈ F(x) × G(x), (c, d) ∈ CV (B) × D,

r〈y − y + ε, y∗〉 + r〈z, z∗〉 + 〈c, y∗〉 + 〈d, z∗〉 ≥ 0. (29)

Letting r = 0 in (29), we have

〈c, y∗〉 + 〈d, z∗〉 ≥ 0, ∀(c, d) ∈ CV (B) × D. (30)

Fixing c and d in (29), we obtain

〈y − y + ε, y∗〉 + 〈z, z∗〉 + 1

r
(〈c, y∗〉 + 〈d, z∗〉) ≥ 0, ∀r > 0, x

∈ A, (y, z) ∈ F(x) × G(x). (31)

Letting r → +∞ in (31), we have

〈y − y + ε, y∗〉 + 〈z, z∗〉 ≥ 0, ∀x ∈ A, (y, z) ∈ F(x) × G(x). (32)

Since both CV (B) and D are cones, it follows from (30) that y∗ ∈ (CV (B))+ and
z∗ ∈ D+. We assert that y∗ �= 0. Otherwise, z∗ �= 0. It follows from (32) that

〈z, z∗〉 ≥ 0, ∀x ∈ A, z ∈ G(x). (33)

Since z∗ ∈ D+, it follows from (33) that z∗ ∈ (cone(G(A) + D))+. According to
Lemma 2.2, z∗ ∈ (vcl(cone(G(A) + D)))+. By Condition (iii), z∗ ∈ Z+. Therefore,
z∗ = 0, which contradicts z∗ �= 0. Hence, y∗ �= 0. Thus, y∗ ∈ (CV (B))+ \{0}.
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Because C \{0} ⊆ cor(CV (B)), it follows from Lemma 2.3 that y∗ ∈ C+i . Therefore,
there exists c1 ∈ cor(C) such that 〈c1, y∗〉 = 1. The map T : Z → Y is defined as
follows

T (z) := 〈z, z∗〉c1, ∀z ∈ Z . (34)

Since 0 ∈ G(x), it follows from (34) that T ∈ L+(Z , Y ) and y ∈ F(x) ⊆ F(x) +
T (G(x)). Letting x = x and y = y in (32), we obtain

− 〈ε, y∗〉 ≤ 〈z, z∗〉 ≤ 0, ∀z ∈ G(x) ∩ (−D). (35)

Using (34) and (35), we obtain

− T (z) = −〈z, z∗〉c1 ∈ cor(C) ∪ {0}, ∀z ∈ G(x) ∩ (−D). (36)

We assert that

− T (z) /∈ ε + cor(CV (B)), ∀z ∈ G(x) ∩ (−D). (37)

Otherwise, there exists ẑ ∈ G(x)∩(−D) such that −T (ẑ)−ε ∈ cor(CV (B)). Clearly,
〈−T (ẑ)− ε, y∗〉 > 0, i.e., −〈ε, y∗〉 > 〈ẑ, z∗〉, which contradicts (35). Therefore, (37)
holds. By (36) and (37), we obtain −T (G(x) ∩ (−D)) ⊆ (cor(C) ∪ {0}) \ (ε +
cor(CV (B))). Since 0 ∈ G(x), it follows from (32) and (34) that

〈y + T (0), y∗〉 = 〈y, y∗〉 ≤ 〈y + ε, y∗〉 + 〈z, z∗〉 = 〈y + ε, y∗〉 + 〈z, z∗〉〈c1, y∗〉
= 〈y + ε, y∗〉 + 〈〈z, z∗〉c1, y∗〉
= 〈y + T (z) + ε, y∗〉, ∀x ∈ A, y ∈ F(x), z ∈ G(x).

Therefore, (x, y) is an ε-optimal element of the following scalar minimization problem

Min 〈L(x, T ), y∗〉 subject to x ∈ A.

According to Theorem 4.2, (x, y) is an ε-Henig properly efficient element of (UVP)T .
��

Remark 5.1 When linear spaces become locally convex spaces, Theorem 5.1 reduces
to Theorem 4.1 in [14]. Moreover, the conclusion−T (G(x)∩(−D)) ⊆ (cor(C)∪{0})\
(ε+CV (B)\{0}) is stronger than the conclusion −T (G(x)∩(−D)) ⊆ C\(ε+C\{0})
in [14]. When linear spaces become locally convex spaces and ε = 0, Theorem 5.1
reduces to Theorem 3.1 in [32]. Moreover, the condition vcl(cone(G(A) + D)) = Z
is weaker than the condition G(A) ∩ (−cor(D)) �= ∅ in [32].

Theorem 5.2 Let ε ∈ C, x ∈ S and y ∈ F(x). If there exists T ∈ L+(Z , Y ) such that
(x, y) is an ε-Henig properly efficient element of (UVP)T , then (x, y) is an ε-Henig
properly efficient element of (VP2).
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Proof Since (x, y) is an ε-Henig properly efficient element of (UVP)T , it follows
from Proposition 3.3 that there exists a balanced, absorbent and convex set V ⊆ Y
with 0 /∈ B + V such that

cone(F(A) + T (G(A)) − y + ε + C) ∩ (−CV (B)) = {0}. (38)

Let x ∈ S. Taking z ∈ G(x) ∩ (−D), we obtain −T (z) ∈ C , which implies 0 ∈
T (G(x))+C . Therefore, for any x ∈ S, F(x)− y+ε ⊆ F(x)+T (G(x))− y+ε+C .
Clearly,

cone(F(S) − y + ε) ⊆ cone(F(A) + T (G(A)) − y + ε + C). (39)

It follows from (38) and (39) that cone(F(S) − y + ε) ∩ (−CV (B)) = {0}. Hence,
(x, y) is an ε-Henig properly efficient element of (VP2). ��
Remark 5.2 Since ic-cone-convexlikeness of I of Theorem 4.2 in [14] is removed
and locally convex spaces are replaced by linear spaces, Theorem 5.2 generalizes
Theorem 4.2 in [14]. When linear spaces become locally convex spaces and ε = 0,
Theorem 5.2 reduces to Theorem 3.2 in [32]. Moreover, Theorem 5.2 removes the
condition 0 ∈ T (G(x) ∩ (−D)) of Theorem 3.2 in [32].

6 Conclusions

In this work, we extend ε-Henig properly efficient solution from topological spaces
to linear spaces. Some characterizations of ε-Henig properly efficient solution are
given in linear spaces. Some comparisons are made between ε-Henig properly effi-
cient solution and other properly efficient solutions. Using a separation theorem in
linear spaces, we obtain a necessary condition of ε-Henig properly efficient solution
of set-valued optimization problems under the assumption of generalized cone sub-
convexlikeness. Without any convexity, we obtain a sufficient condition of ε-Henig
properly efficient solution of set-valued optimization problems. Under suitable con-
ditions, we derive Lagrange multiplier rules in the sense of ε-Henig proper efficiency.
It is worth noting that the way to define the base B of C in linear spaces is differ-
ent from the one in topological spaces. We do not know that whether the condition
0 /∈ B + V in the definition of base B is equivalent to the condition 0 /∈ vcl(B),
which is one of conditions to define a base of C in topological spaces. Following
our line, whether super efficiency can be discussed in linear spaces is an interesting
topic.
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