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Abstract The NC-proximal average is a parametrized function used to continuously
transform one proper, lsc, prox-bounded function into another. Until now it has been
defined for two functions. The purpose of this article is to redefine it so that any finite
number of functions may be used. The layout generally follows that of Hare (SIAM
J Optim 20(2):650–666, 2009), extending those results to the more general case and
in some instances giving alternate proofs by using techniques developed after the
publication of that paper. We conclude with an example examining the discontinuity
of the minimizers of the NC-proximal average.
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1 Introduction

In 2008, Bauschke et al. [2], first addressed the question of how to transform one convex
function into another in a continuous manner. Given proper convex functions f0 and
f1, their proposed solution, the proximal average, used Fenchel conjugates to define a
parameterized function P A(x, λ) such that P A is epi-continuous with respect to λ, and
P A(x, 0) = f0(x), P A(x, 1) = f1(x) for all x . The proximal average has been stud-
ied extensively since its original conception, and many favourable properties and appli-
cations of this approach have arisen [1,3,4,6–9,11,13–15,17,18]. For example, the
minimizers of the proximal average function change continuously with respect to λ [8].
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The proximal average has also been generalized and reformulated in a number of
useful manners. For example, in [1], the proximal average is generalized to a finite
number of convex functions. In [5], the proximal average is generalized to allow for
alternate kernels, which further allowed for applications with monotone operators. In
[9], the proximal average is reformulated to apply to saddle functions. And, in [11],
the proximal average was reformulated to work with two (nonconvex), proper, lsc,
prox-bounded functions. This document generalizes the work done in [11] to allow
for a finite number of such functions.

Given two proper, lsc, prox-bounded functions, f0 and f1, the NC-proximal average
was originally defined as

P Ar (x, λ) := − er+λ(1−λ) (−(1 − λ)er f0 − λer f1) (x)

where λ ∈ [0, 1] and er f is the Moreau envelope of f using the prox-parameter r,
defined as

er f (x) := inf
y

{
f (y) + r

2
|y − x |2

}
.

Associated with the Moreau envelope, and closely related to the NC-proximal average,
is the proximal point mapping Pr f defined as

Pr f (x) := argmin
y

{
f (y) + r

2
|y − x |2

}
.

In [11] the function P Ar is analyzed and a number of propositions and theorems are
developed in order to describe its properties. Here, we extend those results for a finite
number of proper, lsc, prox-bounded functions fi , i ∈ {1, 2, . . . , m}. We begin by
defining the NC-proximal average as

P Ar,δ(x, λ) := − er+δ(λ)

(
−

m∑
i=1

λi er fi

)
(x),

λ ∈ Λ :=
{

(λ1, λ2, . . . , λm) ∈ R
m : λi ≥ 0 for all i and

m∑
i=1

λi = 1

}
,

(1.1)

and δ is any continuous function such that δ(λ) = 0 if λ = ei (the canonical unit
vector whose i th component is 1) for some i, and δ(λ) > 0 otherwise. This definition
generalizes that of [11] in two respects. First, the original definition is restricted to
outer prox-parameter r + λ(1 − λ), when in fact the λ(1 − λ) term can be replaced
by any function δ as described above. Second, the results found in [11] are reworked
in order to accommodate any finite number of functions.

Remark 1 It should be clear that the choice of the function δ used in defining the
NC-proximal average will have a great impact on the parameterized function P Ar,δ .
However, it will become clear in this paper that the underlying properties of P Ar,δ
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The NC-proximal average for multiple functions 851

are in fact not effected by δ. As such, for ease of notation, except when necessary we
shall simplify P Ar,δ to P Ar .

The remainder of this article is organized as follows. Section 2 provides definitions
and shows that P Ar is well-defined. Section 3 explores the prox-regularity and para-
prox-regularity aspects of the function, and Sect. 4 considers its stability. We conclude,
in Sect. 5, with some discussion on the minimizers of the NC-proximal average, includ-
ing an example that demonstrates that the minimizers of the NC-proximal average may
be multi-valued and discontinuous.

2 Preliminaries

Throughout this paper, we use q to represent the norm-squared function, q(x) = |x |2.
This section restates some definitions we need, and shows that under basic assump-
tions, P Ar is a well-defined function.

Definition 1 A proper function f : R
n → R ∪ {∞} is said to be prox-bounded if

there exist r > 0 and a point x̄ such that er f (x̄) > −∞. The infimum of the set of all
such r is called the threshold of prox-boundedness.

Definition 2 A function is lower-C2 on an open set V if it is finite-valued on V and at
any point x ∈ V the function appended with a quadratic term is convex on some open
convex neighborhood V ′ of x . The function is said to be lower-C2 (with no mention
of V ) if V = R

n .

Our first task is to confirm that P Ar is a well-defined and well-behaved function.
The following proposition generalizes [11, Prop 2.5].

Proposition 1 For i ∈ {1, 2, . . . , m} let fi : R
n → R ∪ {∞} be proper, lsc, prox-

bounded functions with respective thresholds r̄i . Let r > max
i

{r̄i }. Then for all λ ∈ Λ,

P Ar is a proper function in x. Furthermore, if λi �= 1 for all i , then P Ar defines
a lower-C2 function in x. Finally, if for some i one has that fi + r

2 q is convex, then
P Ar (·, ei ) = fi .

Proof We know that −er fi is well-defined for all i , since r > r̄i for all i . By [11, Lem
2.4], which is extendible to the case of m functions, we know that −∑m

i=1 λi er fi is
a proper, lower-C2, prox-bounded function, with threshold r̄ ≤ ∑m

i=1 λi r = r . Thus
the Moreau envelope of −∑m

i=1 λi er fi is well-defined and proper whenever the prox-
parameter is greater than or equal to r (as is the case when λ ∈ Λ), and it is lower-C2

whenever the prox-parameter is strictly greater than r (as is the case when λ ∈ Λ

and λi �= 1 for all i). The last statement is proved by applying [16, Ex 11.26 (d)] to
P Ar (x, ei ) = −er (−er fi )(x). 
�

3 Prox-regularity

In this section, we wish to establish the conditions under which the function∑m
i=1 λi er fi is para-prox-regular, so that in Sect. 4 we may explore the stability
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of P Ar . Let us recall what we mean by prox-regularity and para-prox-regularity of a
function.

Definition 3 A proper function f is prox-regular at a point x̄ for v̄ ∈ ∂ f (x̄) if f is
locally lsc at x̄ and there exist ε > 0 and r > 0 such that

f (x ′) ≥ f (x) + 〈v, x ′ − x〉 − r

2
|x ′ − x |2 (3.1)

whenever x ′ �= x, |x ′ − x̄ | < ε, |x − x̄ | < ε, | f (x) − f (x̄)| < ε, v ∈ ∂ f (x), and
|v − v̄| < ε. We say the function is continuously prox-regular at x̄ for v̄ if, in addition,
f is continuous as a function of (x, v) ∈ gph ∂ f at (x̄, v̄). The function is said to be
prox-regular at x̄ (with no mention of v̄) if it is prox-regular at x̄ for every v̄ ∈ ∂ f (x̄),

and simply prox-regular (with no mention of x̄) if it is prox-regular at x̄ for every
x̄ ∈ dom f.

From a graphical point of view, a prox-regular function is one that is locally bounded
below by quadratics of equal curvature. Para-prox-regularity is an extension of this
idea that includes an extra parameter λ.

Definition 4 A proper, lsc function f : R
n × R

s → R ∪ {∞} is parametrically prox-
regular in x at x̄ for v̄ ∈ ∂x f (x̄, λ̄) with compatible parametrization by λ at λ̄ (also
refered to as para-prox-regular in x at (x̄, λ̄) for v̄), with parameters ε > 0 and r > 0,

if

f (x ′, λ) ≥ f (x, λ) + 〈v, x ′ − x〉 − r

2
|x ′ − x |2 (3.2)

whenever x ′ �= x, |x ′ − x̄ | < ε, |x − x̄ | < ε, | f (x, λ) − f (x̄, λ̄)| < ε, |λ − λ̄| < ε,

v ∈ ∂x f (x, λ), and |v − v̄| < ε. It is continuously para-prox-regular in x at (x̄, λ̄) for
v̄ if, in addition, f is continuous as a function of (x, λ, v) ∈ gph ∂x f at (x̄, λ̄, v̄). If the
parameter λ̄, the subgradient v̄, or the point x̄ is omitted, then the para-prox-regularity
of f is understood to mean for all λ̄ ∈ dom f (x̄, ·), for all v̄ ∈ ∂x f (x̄, λ̄), or for all
x̄ ∈ dom f (·, λ̄), respectively.

Proposition 2 For i ∈ {1, 2, . . . , m} let fi : R
n → R ∪ {∞} be proper, lsc, and

prox-bounded with threshold ri . Let r > ri for all i. Define

F(x, λ) =
{

−∑m
i=1 λi er fi (x), λ ∈ Λ

∞, λ �∈ Λ.

Then F is continuously para-prox-regular at any x̄ , with compatible
parametrization by λ at any λ̄ ∈ Λ. Moreover, F is lower-C2 and strictly contin-
uous, and if (0, y) ∈ ∂∞F(x̄, λ̄) then y = 0.

Proof Since fi is proper, lsc and prox-bounded for all i, [16, Ex 10.32] gives us
that −er fi is lower-C2 for all i. The sum of lower-C2 functions is lower-C2, and
any lower-C2 function is strictly continuous [16, Thm 10.31], so F is lower-C2 and
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The NC-proximal average for multiple functions 853

strictly continuous. Finally, [16, Thm 9.31] states that strict continuity of F at (x̄, λ̄)

is equivalent to ∂∞F(x̄, λ̄) = {0}, which gives us that (0, y) ∈ ∂∞F(x̄, λ̄) ⇒ y = 0.

This gives us all the conditions of [10, Thm 5.7], and its conclusion is the result we
seek. 
�
Remark 2 The proof of [11, Lemma 3.3] can also be adapted for a longer, but more
direct proof of Proposition 2.

4 Stability

We are now ready to explore the stability of the NC-proximal average. By Proposition 2,
we can see that P Ar is the Moreau envelope of a para-prox-regular function. This
allows us to take advantage of the work done in [12], where the tilt stability and full
stability of Moreau envelopes and proximal mappings of para-prox-regular functions
was studied.

Theorem 1 [12, Thm 4.6] Let F : R
n × R

s → R ∪ {∞} be proper, lsc, and continu-
ously para-prox-regular at (x̄, λ̄) for v̄ ∈ ∂x F(x̄, λ̄), with parameters ε and r. Assume
further that F is prox-bounded with threshold ρ, and that F satisfies the following:

1. (0, y) ∈ ∂∞F(x̄, λ̄) ⇒ y = 0,

2. (0, λ′) ∈ D∗(∂x F)(x̄, λ̄|v̄)(0) ⇒ λ′ = 0,

3. (x ′, λ′) ∈ D∗(∂x F)(x̄, λ̄|v̄)(v′), v′ �= 0 ⇒ 〈x ′, v′〉 > −ρ′|v′|2 for some ρ′ > 0,

4. ∂x F(x̄, ·) has a continuous selection g near λ̄, with g(λ̄) = v̄.

If r̄ > max{ρ, ρ′, r}, then there exist K > 0 and a neighborhood B = Bδ(x̄ + v̄
r , λ̄, r̄)

such that for all (x, λ, r), (x ′, λ′, r ′) ∈ B we have that Pr Fλ(x) and Pr ′ Fλ′(x ′) are
single-valued, with

|Pr Fλ(x) − Pr ′ Fλ′(x ′)| ≤ K |r(x − x̄) − r ′(x ′ − x̄), λ − λ′, r − r ′)|,

where Fλ(x) = F(x, λ).

Lemma 1 [11, Lem 4.4] Suppose the function H : R
n × R

s → R ∪ {∞} is finite,
single-valued, and Lipschitz continuous in (x, λ) near (x̄, λ̄) with local Lipschitz
constant Lip H. Then

(0, λ′) ∈ D∗H(x̄, λ̄|H(x̄, λ̄))(0) ⇒ λ′ = 0,

and for ρ > Lip H one has

(x ′, λ′) ∈ D∗H(x̄, λ̄|H(x̄, λ̄))(v′), v′ �= 0 ⇒ 〈x ′, v′〉 > −ρ|v′|2.

The next proposition is an analog of [11, Prop 4.5], rewritten to work with a finite
number of functions. The proof of [11, Prop 4.5] is easily adaptable to this setting, so
we present only the key details.
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Proposition 3 For i ∈ {1, 2, . . . , m}, let fi : R
n → R ∪ {∞} be proper, lsc, and

prox-bounded with threshold ri . Let r > max
i

{ri }, and define

F(x, λ):= −
m∑

i=1

λi er fi (x).

If Pr fi is single-valued and Lipschitz continuous for all i, then the following three
properties hold:

1. (0, λ′) ∈ D∗(∂x F)(x̄, λ̄|v̄)(0) ⇒ λ′ = 0,

2. for some ρ > 0 we have (x ′, λ′) ∈ D∗(∂x F(x̄, λ̄|v̄)(v′), v′ �= 0 ⇒ 〈x ′, v′〉 >

−ρ|v′|2, and
3. the set-valued mapping ∂x F(x̄, ·) has a continuous selection g near λ̄.

Proof Since Pr fi is Lipschitz continuous, we have that er fi ∈ C1+ with ∇er fi =
r(I − Pr fi ) [12, Thm 2.4]. Hence,

∂x F(x̄, λ) = ∇x

(
−

m∑
i=1

λi er fi

)
(x̄, λ)

= r

[(
m∑

i=1

λi Pr fi (x̄)

)
− x̄

]

which is linear in λ, showing Property 3. Since Pr fi is single-valued and Lipschitz
continuous, we have ∂x F(x, λ) single-valued and Lipschitz continuous. Properties 1
and 2 follow by applying Lemma 1. 
�
Proposition 4 For i ∈ {1, 2, . . . , m}, let fi : R

n → R ∪ {∞} be proper, lsc, and
prox-bounded with threshold ri . Let r > max

i
{ri }. Then P Ar (·, λ) + r+δ(λ)

2 q(· − x̄)

is convex for any x̄ . Hence, P Ar (·, λ) is lower-C2.

Proof Define Fλ := − ∑m
i=1 λi er fi . Then

P Ar + r + δ(λ)

2
q = −er+δ(λ)(Fλ) + r + δ(λ)

2
q.

By [16, Ex 11.26], we have

−er+δ(λ)(Fλ) + r + δ(λ)

2
q =

(
Fλ + r + δ(λ)

2
q

)∗
((r + δ(λ))·),

where f ∗(x) := supy{〈x, y〉 − f (y)} is the Fenchel conjugate as defined in [2]. This
is an affine function composed with a convex function (as conjugate functions are
convex), and as such it is convex. Notice that shifting the argument of q by x̄ only
results in the addition of a linear term, as

q(x − x̄) = q(x) + 2〈x, x̄〉 + q(x̄)

where q(x̄) is constant and 2〈x, x̄〉 is linear. Hence, P Ar + q(· − x̄) is convex. 
�
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The NC-proximal average for multiple functions 855

Theorem 2 (Stability of P Ar ) For i ∈ {1, 2, . . . , m}, let fi : R
n → R ∪ {∞} be

proper, lsc, and prox-bounded with threshold ri . Let r̄ > max
i

{ri } and r̄ > ρ′ from

Theorem 1 Condition 3. Suppose that for all i, Pr̄ fi is single-valued and Lipschitz
continuous (as is the case when fi is prox-regular). Then P Ar̄ is well-defined and
lower-C2. If in addition

Lip

(
m∑

i=1

λi Pr̄ fi − I

)
≤ 1, (4.1)

then for any λ̄ such that δ(λ̄) > 0 we have

1. P Ar̄ (·, λ̄) ∈ C1+ as a function of x
2. P Ar̄ is locally Lipschitz continuous in λ near λ̄

3. ∇x P Ar̄ is locally Lipschitz continuous in λ near λ̄.

Finally, if fi + r̄
2 q is convex then P Ar̄ (·, ei ) = fi (·).

Proof Let F(x, λ) = −∑m
i=1 λi er̄ fi (x). By Proposition 1, P Ar̄ is well-defined and

finite-valued. Since Pr̄ fi is single-valued for all i, Pr̄ F is single-valued as well. Since
fi is proper, lsc, and prox-bounded for all i, and r̄ is greater than each threshold
ri , Proposition 2 gives us that F is continuously para-prox-regular at (x̄, λ̄) for v̄ ∈
∂x F(x̄, λ̄), and that (0, y) ∈ ∂∞F(x̄, λ̄) ⇒ y = 0. Since Pr̄ fi is single-valued
and Lipschitz continuous for all i, we have all the conditions of [11, Prop 4.5], and
therefore

1. (0, λ′) ∈ D∗(∂x F)(x̄, λ̄|v̄)(0) ⇒ λ′ = 0
2. (x ′, λ′) ∈ D∗(∂x F)(x̄, λ̄|v̄)(v′), v′ �= 0 ⇒ 〈x ′, v′〉 > −ρ|v′|2 for some ρ > 0
3. The mapping ∂x F(x̄, ·) has a continuous selection g near λ̄.

Hence the condition r̄ > max{ρ, ρ′, r} of Theorem 1 is satisfied (recall r = maxi {ri }).
Therefore, all conditions of Theorem 1 hold, and we may assume its result. Since
δ ∈ C2, there exists K̄ > 0 such that

|δ(λ′) − δ(λ)| ≤ K̄ |λ′ − λ|

for all λ′, λ near λ̄. The rest of the proof is the same as that of [11, Thm 4.6]. 
�

Corollary 1 For i ∈ {1, 2, . . . , m}, let fi : R
n → R∪{∞} be proper and lsc such that

for some r > 0, fi + r
2 q is convex for all i. Then fi is prox-regular and prox-bounded,

and inequality (4.1) holds. In particular, all the conditions of Theorem 2 hold.

Proof Since fi + r
2 q is convex for all i, we have that fi is prox-bounded and lower-C2,

and therefore prox-regular, for all i. Since

P1

(
fi + r

2
q
)

= Pr+1 fi ,
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by [16, Prop 12.19] we have that I − P1( fi + r
2 q) is Lipschitz continuous with constant

at most 1. Thus

Lip

{
m∑

i=1

λi Pr+1 fi − I

}
= Lip

{
m∑

i=1

λi (I − Pr+1 fi )

}
≤

m∑
i=1

λ1 = 1.

This provides inequality (4.1). 
�

5 Example

In 2010, Goebel et al. presented a study of the minimizers of the proximal average func-
tion for convex functions. For convex functions fi recall that −er

(−∑m
i=1 λi er fi

)
(x)

defined the proximal average from [2]. It was shown that

Φ(λ) := argmin
x

−er

(
−

m∑
i=1

λi er fi

)
(x)

is single-valued and continuous, provided that all functions are bounded below and
at least one function is essentially strictly convex [8, Thm 3.8]. We next show that
if fi are convex functions, then the minimizers of the NC-proximal average coincide
exactly with the minimizers of the proximal average. In particular, in this case all
results from [8] hold.

Lemma 2 For i ∈ {1, 2, . . . , m} let fi : R
n → R ∪ {∞} be proper, lsc, convex, and

bounded below. Let λ ∈ Λ, then

argmin
x

P Ar (x, λ) = argmin
x

m∑
i=1

λi er fi (x) = argmin
x

−er

(
−

m∑
i=1

λi er fi

)
(x).

Proof The minimizers of P Ar (·, λ) coincide with the minimizers of its Moreau enve-
lope er+δ(λ) P Ar (·, λ). By [16, Ex 11.26(d)], we have that −er+δ(λ) P Ar (x, λ) =(∑m

i=1 −λi er fi (x)
)
, so the first equality holds. The second equality appears in

[8, Lem 3.2]. 
�
If fi are non-convex, then the proximal average is undefined, and the results from

[8] no longer apply. In this case, the results of Theorem 2 provide some small under-
standing of the continuity of the minimizers of the NC-proximal average, as follows.

Corollary 2 Let the conditions of Theorem 2 hold. Let xk ∈ argminx P Ar (x, λk).

Suppose λk → λ̄ and xk → x̄ . Then ∇ P Ar (x̄, λ̄) = 0.

Proof By Theorem 2, ∇ P Ar is Lipschitz continuous in λ. Therefore, there exists
c > 0 such that for all k,

|∇ P Ar (xk, λk) − ∇ P Ar (xk, λ̄) ≤ c|λk − λ̄|.
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Fig. 1 Functions g0 and g1 for ε = 0.5

Since xk ∈ argminP Ar (xk, λk), we know that ∇ P Ar (xk, λk) = 0. So for all k,

|∇ P Ar (xk, λ̄)| ≤ c|λk − λ̄|.

Taking the limit as k → ∞, we find that ∇ P Ar (x̄, λ̄) = 0. 
�

While Corollary 2 gives us a way to identify the minimizers of P Ar , it says nothing
about the single-valuedness or the continuity of said minimizers. The example that
follows illustrates that, in fact, the function of minimizers of the NC-proximal average
may be multi-valued and discontinuous.

Let ε = 1
2 , and define the functions g0 and g1 via

g0(x) := max

{
−x,−1

2
(x − 1)2 + 1

2
, x − 2 + ε

}
,

g1(x) := max

{
−x + ε,−1

2
(x − 1)2 + 1

2
, x − 2

}
.

Then g0 and g1 are proper, lsc, and bounded below (see Fig. 1).
Moreover, gi + 1

2 q is convex for i ∈ {1, 2}. Let k = 2 − √
4 − 2ε, l = √

4 − 2ε

and define

δ0 := 0 δ1 := ε ε0 := ε ε1 := 0
k0 := 0 k1 := k l0 := l l1 := 2.

Consider Pr gi (x̄) = argminx {gi (x) + r
2 |x − x̄ |2}. If r > 1, then we find that

Pr gi (x̄) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̄ + 1
r , x̄ < ki − 1

r

ki , x̄ ∈ [ki − 1
r , ki − ki

r + 1
r ]

r x̄−1
r−1 , x̄ ∈ (ki − ki

r + 1
r , li − li

r + 1
r )

li , x̄ ∈ [li − li
r + 1

r , li + 1
r ]

x̄ − 1
r , x̄ > li + 1

r .
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Fig. 2 G(x̄, λ)

Evaluating the Moreau envelope and simplifying, we get

er gi (x̄) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−x̄ − 1
2r + δi , x̄ < ki − 1

r
r
2 x̄2 − rki x̄ + r−1

2 k2
i + ki , x̄ ∈ [ki − 1

r , ki − ki
r + 1

r ]
− 1

2(r−1)
(r x̄2 − 2r x̄ + 1), x̄ ∈ (ki − ki

r + 1
r , li − li

r + 1
r )

r
2 x̄2 − rli x̄ + r−1

2 l2
i + li , x̄ ∈ [li − li

r + 1
r , li + 1

r ]
x̄ − 2 − 1

2r + εi , x̄ > li + 1
r .

Considering the specific example r = 2, and applying ε = 1
2 , we define the function

G(x̄, λ) := (λe2g0 + (1 − λ)e2g1)(x̄), which can be expanded to

G(x̄, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x̄ − λ
2 + 1

4 , x < − 1
2

λx̄2 + (λ − 1)x̄ − λ−1
4 , x ∈ [− 1

2 , 3−2
√

3
2 )

x̄2 + (λ − 1)(4 − 2
√

3)x̄ − (λ−1)(11−6
√

3)
2 , x ∈ [ 3−2

√
3

2 , 1
2 ]

(1 − 2λ)x̄2 + [−4 + 2
√

3 + (6 − 2
√

3)λ]x̄
+ 11−6

√
3

2 − (6 − 3
√

3)λ, x ∈ ( 1
2 , 3−√

3
2 ]

−x̄2 + 2x̄ − 1
2 , x ∈ ( 3−√

3
2 , 1+√

3
2 )

(2λ − 1)x̄2 + [2 − (2 + 2
√

3)λ]x̄ − 1
2 + (2 + √

3)λ, x ∈ [ 1+√
3

2 , 3
2 )

x̄2 − [4 − (4 − 2
√

3)λ]x̄ + 4 − 5−2
√

3
2 λ, x ∈ [ 3

2 , 1+2
√

3
2 ]

(1 − λ)x̄2 + (5λ − 4)x̄ + 4 − 23
4 λ, x ∈ ( 1+2

√
3

2 , 5
2 ]

x̄ + λ
2 − 9

4 , x < 5
2 .

By Lemma 2, we know that

argmin
x̄

P Ar (x̄, λ) = argmin
x̄

G(x̄, λ).

Figure 2 displays graphs of G for various values of λ.

Noting that G ∈ C1, we find three critical points (where ∂
∂x G(x, λ) = 0):
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1. x̄1 = (1 − λ)(2 − √
3) (leftmost local minimum argument),

2. x̄2 = 1 (local maximum argument),
3. x̄3 = 2 − (2 − √

3)λ (rightmost local minimum argument).

Observe that when λ = 1
2 we have that x̄1 = 2−√

3
2 , x̄3 = 2+√

3
2 , and

G

(
2 − √

3

2
,

1

2

)
= 2 − √

3

2
= G

(
2 + √

3

2
,

1

2

)
.

This verifies that there are two minimizers when λ = 1
2 . Finally, we note that

G(x̄1, λ) < G(x̄3, λ), λ ∈
[

0,
1

2

)
and G(x̄1, λ) > G(x̄3, λ), λ ∈

(
1

2
, 1

]
,

which proves the argmin is a singleton whenever λ �= 1
2 . Therefore, argminP Ar is

not a continuous function of λ.

6 Conclusion

We have seen that, using the Moreau envelope definition, the NC-proximal average can
be generalized to accomodate any finite number of suitable functions. Under appro-
priate conditions, P Ar is well-defined, lower-C2, and locally Lipschitz continuous
in x and in λ. These properties make P Ar a useful function for researchers in the
Optimization field.
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