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Abstract In this paper, we introduce a modified relaxed projection algorithm and a
modified variable-step relaxed projection algorithm for the split feasibility problem in
infinite-dimensional Hilbert spaces. The weak convergence theorems under suitable
conditions are proved. Finally, some numerical results are presented, which show the
advantage of the proposed algorithms.
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1 Introduction

Let C and Q be the nonempty closed convex subsets of the real Hilbert spaces H1 and
H2, respectively. The split feasibility problem (SFP) is formulated as finding a point
x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q, (1)
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1032 Q.-L. Dong et al.

where A : H1 → H2 is a bounded linear operator. The SFP in finite-dimensional
Hilbert spaces was first introduced by Censor and Elfving [1] for modeling inverse
problems which arise from phase retrievals and in medical image reconstruction [2].
Many researchers studied the SFP and introduced various algorithms to solve it (see
[2–12] and references therein).

For the split feasibility problem in the finite-dimensional real Hilbert spaces, Byrne
[2,3] presented the so-called CQ algorithm for solving the SFP, that does not involve
matrix inverses. Take an initial guess x0 ∈ H1 arbitrarily, and define {xn} recursively
as

xn+1 = PC (I − γ A∗(I − PQ)A)xn, (2)

where 0 < γ < 2/L , and where PC denotes the metric projection onto C and L is the
spectral radius of the operator A∗ A. Then the sequence {xn} generated by (2) converges
strongly to a solution of SFP whenever H1 is finite-dimensional and whenever there
exists a solution to SFP (1). In the CQ algorithm, Byrne assumed that the projections
PC and PQ are easily calculated. However, in some cases it is impossible or needs too
much work to exactly compute the metric projection. Yang [13] presented a relaxed
CQ algorithm, in which PC and PQ are replaced by PCn and PQn , which are the metric
projections onto two halfspaces Cn and Qn , respectively. Clearly, Yang’s algorithm is
easy to implement.

Recently, based on work of Yang [13] and Qu and Xiu [14], Wang et al. [15]
presented two relaxed inexact projection methods and a variable-step relaxed inexact
projection method. The second relaxed inexact projection methods (Algorithm 3.2 in
[15]) is to find xn+1 satisfying

‖xn+1 − PCn (I − γ A∗(I − PQn )A)xn‖ ≤ εn‖(I − PQn )Axn‖, n = 0, 1, . . . . (3)

So xn+1 is in the ball B(s, r) with s = PCn (xn − γ A∗(I − PQn )Axn) and r =
εn‖(I − PQn )Axn‖. In the proofs of the convergence theorems, Wang et al. [15] used
the fact that, from (3) and limn→∞ ‖(I − PQn )Axn‖ = 0, it follows that for sufficiently
large n, xn+1 is the projection of xn in Cn . However, it is obvious that xn+1 may not
in Cn if PCn (xn − γ A∗(I − PQn )Axn) ∈ ∂Cn, since Cn is a half-space. To overcome
the gap, we modify the algorithms of [13] and [14] and proposed a relaxed projection
algorithm as follows

xn+1 = αn PCn xn + (1 − αn)PCn (I − γ A∗(I − PQn )A)xn, (4)

and a variable-step relaxed projection algorithm in infinite-dimensional real Hilbert
space. From the following remark, it is easy to see that the algorithm (4) is the special
case of (3) proposed by Wang et al. [15].
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Modified relaxed projection algorithms 1033

Remark 1.1 It follows, from (4),

‖xn+1−PCn (I −γ A∗(I −PQn )A)xn‖ =αn‖PCn xn −PCn (xn −γ A∗(I −PQn )Axn)‖
≤ αn‖γ A∗(I −PQn )Axn‖
≤ αnγ

√
L‖(I −PQn )Axn‖.

Let εn = αnγ
√

L and then (3) is derived.

This paper is organized as follows. In Sect. 2, we review some concepts and existing
results. In Sect. 3, we present a modified relaxed projection methods for the SFP and
establish the convergence of the algorithm. A modified variable-step relaxed inexact
projection algorithm is presented in Sect. 4. In Sect. 5, we report some computational
results with the proposed algorithms.

2 Preliminaries

In this section, we review some definitions and lemmas which will be used in this
paper.

Definition 2.1 Let F be a mapping from a set � ⊂ H into H. Then

• F is said to be monotone on �, if

〈F(x) − F(y), x − y〉 ≥ 0, ∀x, y ∈ �;

• F is said to be α-inverse strongly monotone (α-ism), with α > 0, if

〈F(x) − F(y), x − y〉 ≥ α‖F(x) − F(y)‖2, ∀x, y ∈ �;

• F is said to be Lipschitz continuous on � with constant λ > 0, if

‖F(x) − F(y)‖ ≤ λ‖x − y‖, ∀x, y ∈ �.

The projection is an important tool for our work in this paper. Let � be a closed
convex subset of real Hilbert space H. Recall that the (nearest point or metric) projec-
tion from H onto �, denoted P�, is defined in such a way that, for each x ∈ H, P�x
is the unique point in � such that

‖x − P�x‖ = min{‖x − z‖ : z ∈ �}

The following two lemmas are useful characterizations of projections.

Lemma 2.1 Given x ∈ H and z ∈ �. Then z = P�x if and only if

〈x − z, y − z〉 ≤ 0, for all y ∈ �.

Lemma 2.2 For any x, y ∈ H and z ∈ �, it holds
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1034 Q.-L. Dong et al.

(i) ‖P�(x) − P�(y)‖2 ≤ 〈P�(x) − P�(y), x − y〉;
(ii) ‖P�(x) − z‖2 ≤ ‖x − z‖2 − ‖P�(x) − x‖2.

Remark 2.1 From Lemma 2.2 (i), we know that P� is a monotone, 1-ism and nonex-
pansive (i.e., ‖P�(x) − P�(y)‖ ≤ ‖x − y‖) operator. Moreover, it is easily verified
that the operator I − P� is also 1-ism, where I denotes the identity operator, i.e., for
all x, y ∈ H:

〈(I − P�)x − (I − P�)y, x − y〉 ≥ ‖(I − P�)x − (I − P�)y‖2. (5)

Let F denote a mapping on H. For any x ∈ H and α > 0, define:

x(α) = P�(x − αF(x)), e(x, α) = x − x(α).

From the nondecreasing property of ‖e(x, α)‖ on α > 0 by Toint [16] (see Lemma
2(1)) and the nonincreasing property of ‖e(x, α)‖/α on α > 0 by Gafni and Bertsekas
[17] (see Lemma 1a), we immediately conclude a useful lemma.

Lemma 2.3 Let F be a mapping on H. For any x ∈ H and α > 0, we have:

min{1, α}‖e(x, 1)‖ ≤ ‖e(x, α)‖ ≤ max{1, α}‖e(x, 1)‖.

For the SFP, we firstly assume that the following conditions are satisfied:

(1) The solution set of the SFP denoted by � := {x ∈ C : Ax ∈ Q} is nonempty.
(2) The set C is given by

C = {x ∈ H1 : c(x) ≤ 0},

where c : H1 → R is a convex function, and C is nonempty.
The set Q is given by

Q = {y ∈ H2 : q(y) ≤ 0},

where q : H2 → R is a convex function, and Q is nonempty.
(3) c and q are subdifferentiable on C and Q. (Note that the convex function is

subdifferentiable everywhere in R
N .) For any x ∈ H1, at least one subgradient

ξ ∈ ∂c(x) can be calculated, where ∂c(x) is defined as follows:

∂c(x) = {z ∈ H1 : c(u) ≥ c(x) + 〈u − x, z〉, for all u ∈ H1}.

For any y ∈ H2, at least one subgradient η ∈ ∂q(y) can be calculated, where

∂q(y) = {w ∈ H2 : q(v) ≥ q(y) + 〈v − y, w〉, for all v ∈ H2}.

(4) c and q are bounded on bounded sets. (Note that this condition is automatically
satisfied if H1 and H2 are finite dimensional.)
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Modified relaxed projection algorithms 1035

From Banach-Steinhaus Theorem (see Theorem 2.5 in [18]), it is easy to get the
following result.

Remark 2.2 Assumption (4) guarantees that if {xn} is a bounded sequence in H1 (resp.
H2) and {x∗

n } is a sequence in H1 (resp. H2) such that x∗
n ∈ ∂c(xn) (resp. x∗

n ∈ ∂q(xn))
for each n, then {x∗

n } is bounded.

Lemma 2.4 [19] Let {an} be a sequence of nonnegative number such that

an+1 ≤ (1 + λn)an,

where {λn} satisfies
∑∞

n=1 λn < +∞. Then limn→∞ an exists.

Lemma 2.5 [20] Let K be a nonempty closed convex subset of a Hilbert space H.
Let {xn} be a bounded sequence which satisfies the following properties:

• every weak limit point of {xn} lies in K ;
• limn→∞ ‖xn − x‖ exists for every x ∈ K .

Then {xn} converges weakly to a point in K.

3 A modified relaxed projection algorithm

In this section we propose a modified relaxed algorithm and prove the weak conver-
gence of the proposed algorithm.

Algorithm 3.1 Let x0 be arbitrary. Let {αn} ⊂ (0,∞), and

xn+1 = αn PCn xn + (1 − αn)PCn (I − γ A∗(I − PQn )A)xn, (6)

where γ ∈ (0, M), M := min{2/‖A‖2,
√

2/‖A‖}, and {Cn} and {Qn} are the
sequences of closed convex sets constructed as follows:

Cn = {x ∈ H1 : c(xn) + 〈ξn, x − xn〉 ≤ 0},

where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) + 〈ηn, y − Axn〉 ≤ 0},

where ηn ∈ ∂q(Axn).

Remark 3.1 By the definition of subdifferentials, it is clear that C ⊂ Cn and Q ⊂ Qn .
Also note that Cn and Qn are half-space, thus, the projections PCn and PQn have
closed-form expression.

Theorem 3.1 Let {xn} be the sequence generated by the Algorithm 3.1 Let {αn} ⊂
(0,∞) satisfy

∞∑

n=0

α2
n < +∞.
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Then {xn} converges weakly to a solution of SFP(1).

Proof Set σ = γ 2‖A‖2 − 2γ, then σ < 0. Let δn =
√

− 2
σ
αn . From (6), we have

‖xn+1 − PCn (I − γ A∗(I − PQn )A)xn‖
= αn‖PCn xn − PCn (xn − γ A∗(I − PQn )Axn)‖
≤ αn‖γ A∗(I − PQn )Axn‖
≤ αnγ ‖A‖‖(I − PQn )Axn‖. (7)

Take arbitrarily x∗ ∈ �, then we have

‖xn+1 − x∗‖2 = ‖xn+1 − PC (I − γ A∗(I − PQn )A)xn‖2

+‖PC (I − γ A∗(I − PQn )A)xn − x∗‖2

+ 2〈xn+1 − PC (I − γ A∗(I − PQn )A)xn, PC (I − γ A∗(I − PQn )A)xn − x∗〉.
(8)

From Cauchy-Schwarz inequality and arithmetic and geometric means inequality, it
is follows

2〈xn+1 − PC (I − γ A∗(I − PQn )A)xn, PC (I − γ A∗(I − PQn )A)xn − x∗〉
≤ 1

δ2
n
‖xn+1 − PC (I − γ A∗(I − PQn )A)xn‖2

+δ2
n‖PC (I − γ A∗(I − PQn )A)xn − x∗‖2. (9)

Substituting (9) into (8), we obtain

‖xn+1 − x∗‖2 ≤ (1 + δ2
n)‖PCn (I − γ A∗(I − PQn )A)xn − x∗‖2

+
(

1 + 1

δ2
n

)

‖xn+1 − PCn (I − γ A∗(I − PQn )A)xn‖2. (10)

Since x∗ ∈ Cn , we have

‖PCn (I − γ A∗(I − PQn )A)xn − x∗‖2 ≤ ‖(xn − x∗) − γ A∗(I − PQn )Axn‖2

= ‖xn − x∗‖2 + γ 2‖A∗(I − PQn )Axn‖2 − 2γ 〈xn − x∗, A∗(I − PQn )Axn〉
≤ ‖xn − x∗‖2 + γ 2‖A‖2‖(I − PQn )Axn‖2 − 2γ 〈Axn − Ax∗, Axn − PQn Axn〉.

(11)
It is easily seen that

〈Axn − Ax∗, Axn − PQn Axn〉
= ‖(I − PQn )Axn‖2 + 〈PQn Axn − Ax∗, Axn − PQn Axn〉. (12)
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Since Ax∗ ∈ Q ⊂ Qn , by Lemma 2.1, we get

〈PQn Axn − Ax∗, Axn − PQn Axn〉 ≥ 0. (13)

Combining (11)–(13), we have

‖PCn (I − γ A∗(I − PQn )A)xn − x∗‖2

≤ ‖xn − x∗‖2 + (γ 2‖A‖2 − 2γ )‖(I − PQn )Axn‖2

= ‖xn − x∗‖2 + σ‖(I − PQn )Axn‖2 (14)

Applying (7), (10) and (14), we obtain

‖xn+1 − x∗‖2 ≤ (1 + δ2
n)‖xn − x∗‖2

+
[

σ(1 + δ2
n) + γ 2‖A‖2α2

n

(

1 + 1

δ2
n

)]

‖(I − PQn )Axn‖2

≤
(

1 +
(

− 2

σ

)

α2
n

)

‖xn − x∗‖2

+
(
γ 2‖A‖2 − 2

) (

α2
n − 1

2
σ

)

‖(I − PQn )Axn‖2, (15)

which with σ < 0 and γ ≤ √
2/‖A‖ implies

‖xn+1 − x∗‖2 ≤
(

1 +
(

− 2

σ

)

α2
n

)

‖xn − x∗‖2. (16)

So, using Lemma 2.4, we have limn→∞ ‖xn − x∗‖ exists, and hence {xn} is bounded.
From (15), it follows that

σ

(
γ 2‖A‖2

2
− 1

)

‖(I − PQn )Axn‖2 ≤
(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

)

+
(

− 2

σ

)

α2
n‖xn − x∗‖2.

Consequently we get by αn → 0,

lim
n→∞ ‖Axn − PQn Axn‖ = 0. (17)

Set

un = A∗(I − PQn )Axn → 0. (18)

We next demonstrate that

‖xn+1 − xn‖ → 0.

123



1038 Q.-L. Dong et al.

To see this, we note the identity

‖xn+1 − xn‖2 = ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2〈xn+1 − xn, xn+1 − x∗〉. (19)

On the other hand, using xn+1 = αn PCn xn + (1 − αn)PCn (xn − γ un), we have

〈xn+1 − xn, xn+1 − x∗〉 = αn〈PCn xn − xn, xn+1 − x∗〉
+αn(1 − αn)〈PCn (xn − γ un) − xn, PCn xn − x∗〉
+(1 − αn)2〈xn − PCn (xn − γ un), x∗ − PCn (xn − γ un)〉. (20)

Since x∗ ∈ C ⊂ Cn, we have by Lemma 2.1

〈(xn − γ un) − PCn (xn − γ un), x∗ − PCn (xn − γ un)〉 ≤ 0.

Therefore,

〈xn − PCn (xn − γ un), x∗ − PCn (xn − γ un)〉
= 〈(xn − γ un) − PCn (xn − γ un), x∗ − PCn (xn − γ un)〉

+〈γ un, x∗ − PCn (xn − γ un)〉
≤ 〈γ un, x∗ − PCn (xn − γ un)〉
≤ γ ‖un‖‖x∗ − PCn (xn − γ un)‖. (21)

Since {xn} is bounded, by αn → 0 and (18), (20), (21), we get

〈xn+1 − xn, xn+1 − x∗〉 ≤ αn〈PCn xn − xn, xn+1 − x∗〉
+αn(1 − αn)〈PCn (xn − γ un) − xn,

PCn xn − x∗〉 + (1 − αn)2γ ‖un‖‖x∗ − PC (xn − γ un)‖
→ 0,

which by (19) and existence of limn→∞ ‖xn − x∗‖ yields

‖xn+1 − xn‖ → 0. (22)

Since {xn} is bounded, which implies that {ξn} is bounded, we see that the set of
weak limit points of {xn}, ωw(xn), is nonempty. We now show ��
Claim ωw(xn) ⊂ �.

Indeed, assume x̂ ∈ ωw(xn) and {xn j } is a subsequence of {xn} which converges
weakly to x̂ . Since xn j +1 ∈ Cn j , we obtain

c(xn j ) + 〈ξn j , xn j +1 − xn j 〉 ≤ 0.
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Thus,

c(xn j ) ≤ −〈ξn j , xn j +1 − xn j 〉 ≤ ξ‖xn j +1 − xn j ‖,

where ξ satisfies ‖ξn j ‖ ≤ ξ for all n. By virtue of the lower semicontinuity of c, we
get by (22)

c(x̂) ≤ lim inf
j→∞ c(xn j ) ≤ 0,

Therefore, x̂ ∈ C.

Next we show that Ax̂ ∈ Q. To see this, by (17), set yn = Axn − PQn Axn → 0
and let η be such that ‖ηn‖ ≤ η. Then, since Axn j − yn j = PQn j

Axn j ∈ Qn j , we get

q(Axn j ) + 〈ηn j , (Axn j − yn j ) − Axn j 〉 ≤ 0.

Hence,

q(Axn j ) ≤ 〈ηn j , yn j 〉 ≤ η‖yn j ‖ → 0.

By the weak lower semicontinuity of q and the fact that Axn j → Ax̂ weakly, we
arrive at the conclusion

q(Ax̂) ≤ lim inf
j→∞ q(Axn j ) ≤ 0.

Namely, Ax̂ ∈ Q.

Therefore, x̂ ∈ �. Now we can apply Lemma 2.5 to K := � to get that the full
sequence {xn} converges weakly to a point in �.

4 A modified variable-step relaxed projection algorithm

In the Algorithm 3.1, the stepsizes γ are all fixed. In this section, based on the algorithm
of Qu and Xiu [14], we present a modified variable-step projection method which needs
not compute the spectral radius of the operator A∗ A, and the objective function can
sufficiently decrease at each iteration.

For every n, using Qn we define the function Fn : H1 → H1 by

Fn(x) = A∗(I − PQn )Ax .

The variable-step relaxed projection algorithm is defined as follows:

Algorithm 4.1 Given constants γ > 0, l ∈ (0, 1), μ ∈ (0,
√

2/2). Let x0 be arbi-
trary. Let {αn} ⊂ (0,∞), and let

yn = PCn (xn − βn Fn(xn)),
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where βn = γ lmn and mn is the smallest nonnegative integer m such that

‖Fn(xn) − Fn(yn)‖ ≤ μ
‖xn − yn‖

βn
. (23)

Let

xn+1 = αn yn + (1 − αn)PCn (xn − βn Fn(yn)), (24)

where {Cn} and {Qn} are the sequences of closed convex sets constructed as follows:

Cn = {x ∈ H1 : c(xn) + 〈ξn, x − xn〉 ≤ 0},

where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) + 〈ηn, y − Axn〉 ≤ 0},

where ηn ∈ ∂q(Axn).

Although Cn, Qn and Fn depend on n, we have the following two nice lemmas (see
[14]).

Lemma 4.1 For all n = 0, 1, 2, . . . , Fn is Lipschitz continuous on H1 with constant
L and 1/L-ism on H1, where L is the spectral radius of the operator A∗ A. Therefore,
Armijo-like search rule (23) is well defined.

Lemma 4.2 For all n = 0, 1, . . . ,

μl

L
< βn ≤ γ.

Theorem 4.1 Let {xn} be the sequence generated by the Algorithm 4.1 Let {αn} ⊂
(0,∞) satisfy

∞∑

n=0

α2
n < +∞.

Then {xn} converges weakly to a solution of SFP(1).

Proof From (23) and (24), it is easily seen that

‖xn+1 − PCn (xn − βn Fn(yn))‖ = αn‖yn − PCn (xn − βn Fn(yn))‖
= αn‖PCn (xn − βn Fn(xn)) − PCn (xn − βn Fn(yn))‖
≤ αnβn‖Fn(xn) − Fn(yn)‖
≤ αnμ‖xn − yn‖. (25)
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Let x∗ be a solution of the SFP (1), using the similar procedure in the proof of Theo-
rem 3.1, we obtain

‖xn+1 − x∗‖2 ≤ (1 + α2
n)‖PCn (xn − βn Fn(yn)) − x∗‖2

+
(

1 + 1

α2
n

)

‖xn+1 − PCn (xn − βn Fn(yn))‖2. (26)

Following the line of the proof of (7) in [14], we have

‖PCn (xn − βn Fn(yn)) − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − μ2)‖xn − yn‖2. (27)

Combining (25)–(27), we get

‖xn+1 − x∗‖2 ≤ (1 + α2
n)‖xn − x∗‖2

+
[

α2
nμ2

(

1 + 1

α2
n

)

− (1 + α2
n)(1 − μ2)

]

‖xn − yn‖2

≤
(

1 + α2
n

)
‖xn − x∗‖2 + (1 + α2

n)(2μ2 − 1)‖xn − yn‖2, (28)

which with μ ∈ (0,
√

2/2) yields

‖xn+1 − x∗‖2 ≤
(

1 + α2
n

)
‖xn − x∗‖2.

So, using Lemma 2.4, we get that limn→∞ ‖xn −x∗‖ exists, and hence {xn} is bounded.
From (28), it follows that

(1 − 2μ2)‖xn − yn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + α2
n‖xn − x∗‖2. (29)

Consequently we get

lim
n→∞ ‖xn − yn‖ = 0. (30)

We next demonstrate that

‖xn+1 − xn‖ → 0. (31)

Using (23), we obtain

‖xn+1 − xn‖2 ≤ 2(‖xn+1 − yn‖2 + ‖yn − xn‖2)

= 2(1 − αn)2‖PCn (xn − βn Fn(yn)) − yn‖2 + 2‖yn − xn‖2

= 2(1 − αn)2‖PCn (xn − βn Fn(yn)) − PCn (xn − βn Fn(xn))‖2 + 2‖yn − xn‖2

≤ 2(1 − αn)2β2
n‖Fn(xn) − Fn(yn)‖2 + 2‖yn − xn‖2

≤ 2[μ2(1 − αn)2 + 1]‖xn − yn‖2,

which by (30) yields (31).
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Since {xn} is bounded, we see that the set of weak limit points of {xn}, ωw(xn), is
nonempty and {Axn} is bounded which implies that {ηn} is bounded. Let η be such
that ‖ηn‖ ≤ η. We now show ��
Claim ωw(xn) ⊂ �.

Assume x̂ ∈ ωw(xn) and {xni } is a subsequence of {xn} which converges weakly
to x̂ . Using the similar procedure in the proof of Theorem 3.1, by (31), we get x̂ ∈ C.

Next we show that A(x̂) ∈ Q. Define

en(x, β) = x − PCn (x − βFn(x)), n = 0, 1, 2, . . . .

Then from Lemmas 2.3 and 4.2, and Eq. (30), we have:

min

{

1,
μl

L

}

‖eni (xni , 1)‖ ≤ ‖eni (xni , βni )‖ = ‖xni − yni ‖ → 0,

which implies

lim
i→∞ ‖eni (xni , 1)‖ = 0. (32)

Using Lemma 2.1 and x∗ ∈ C ⊂ Cni , we have for all i = 1, 2, . . . ,

〈xni − Fni (xni ) − PCni
(xni − Fni (xni )), PCni

(xni − Fni (xni )) − x∗〉 ≥ 0,

which implies

〈eni (xni , 1) − Fni (xni ), xni − x∗ − eni (xni , 1)〉 ≥ 0,

which implies

〈xni − x∗, eni (xni , 1)〉 ≥ ‖eni (xni , 1)‖2 − 〈Fni (xni ), eni (xni , 1)〉
+〈Fni (xni ), xni − x∗〉 (33)

From (5), it follows

〈Fni (xni ) − Fni (x∗), xni −x∗〉 = 〈A∗(I − PQni
)Axni −A∗(I − PQni

)Ax∗, xni − x∗〉
= 〈(I − PQni

)Axni − (I − PQni
)Ax∗, Axni − Ax∗〉

≥ ‖(I − PQni
)Axni − (I − PQni

)Ax∗‖2

= ‖(I − PQni
)Axni ‖2 (34)

Combining (33) and (34), we have

〈xni − x∗, eni (xni , 1)〉 ≥ ‖eni (xni , 1)‖2 − 〈Fni (xni ), eni (xni , 1)〉
+‖(I − PQni

)Axni ‖2. (35)
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Since

‖Fni (xni )‖ = ‖Fni (xni ) − Fni (x∗)‖ ≤ L‖xni − x∗‖, ∀i = 1, 2, . . . ,

and {xni } is bounded, the sequence {Fni (xni )} is also bounded. Therefore, from (32)
and (35), we get

lim
ni →∞ ‖PQni

(Axni ) − Axni ‖ = 0.

By PQni
(Axni ) ∈ Qni , we have

q(Axni ) + 〈ηni , PQni
(Axni ) − Axni 〉 ≤ 0.

Hence,

q(Axni ) ≤ −〈ηni , PQni
(Axni ) − Axni 〉 ≤ η‖PQni

(Axni ) − Axni ‖ → 0.

By the weak lower semicontinuity of q and the fact that Axn j → Ax̂ weakly, we
arrive at the conclusion

q(Ax̂) ≤ lim inf
j→∞ q(Axn j ) ≤ 0.

Namely, Ax̂ ∈ Q.

Therefore, x̂ ∈ �. Now we can apply Lemma2.5 to K := � to get that the full
sequence {xn} converges weakly to a point in �.

5 Numerical results

In this section, we will present the results of numerical tests for a problem (see [15]).
We consider the following problem:

(P) Let C = {x ∈ R10|c(x) ≤ 0} where c(x) = −x1 + x2
2 + · · · + x2

10 and
Q = {y ∈ R20|q(y) ≤ 0} where q(x) = y1 + y2

2 + · · · + y2
20 − 1. Note that C is

the set above the function x1 = x2
2 + · · · + x2

10 and Q is the set below the function
y1 = −y2

2 − · · · − y2
20 + 1. A ∈ R20×10 is a random matrix where every element of A

is in (0, 1) satisfying A(C) ∩ Q �= ∅. Let x0 be a random vector in R10 where every
element of x0 is in (0, 1).

The terminal condition is that ‖xn − x∗‖ ≤ ε, where x∗ is a solution of (P). Let
αn = 1/n2, n = 0, 1, . . . , in the Algorithms 3.1 and 4.1 In the tables, ε denotes the
tolerance of the solution point of the problem, ’Iter.’ and ’InIt’ denote the terminating
iterative numbers and the number of total iterations of finding suitable βn in (23),
respectively. C(x) and Q(Ax) denote the value of c(x) and q(Ax) at the terminal
point, respectively.

We compare the algorithms 3.1 and 4.1 with the relaxed CQ algorithm in [13] and
the variable-step CQ algorithm in [14], respectively.
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Table 1 MRCQ and RCQ applied for (P)

ε MRCQ RCQ

Iter. C(x) Q(Ax) Iter. C(x) Q(Ax)

0.01 28 3.71E−01 2.10E−02 34 4.52E−02 2.204−02

0.01 5 2.41E−04 −0.114535 5 1.12E−04 −0.486864

0.01 11 −0.439145 1.65E−02 7 2.30E−06 1.36E−02

0.01 48 −2.48E−01 2.00E−02 38 −2.06E−02 2.04E−02

0.001 4 −6.62E−02 −0.282846 5 5.05E−07 −0.579155

0.001 5 5.83E−05 −0.193581 5 1.32E−05 −0.542675

0.001 14 −0.232628 1.43E−03 10 2.05E−08 1.12E−03

0.001 49 −0.125805 2.43E−03 18 1.34E−08 2.34E−03

0.0001 4 −0.223021 −0.171751 5 2.37E−06 −0.344674

0.0001 5 9.28E−05 −0.256516 5 9.44E−06 −0.664877

0.0001 11 −8.69E−03 1.26E−04 7 3.59E−010 −8.06E−7

0.0001 44 −9.44E−02 2.27E−04 36 −4.55E−05 2.14E−04

Table 2 MRCQ applied to (P) with different stepsizes

Time of test γ ε Iter. C(x) Q(Ax)

1 0.5M 0.0001 198 −0.295319 2.25E−04

1 0.7M 0.0001 142 −0.295280 2.24E−04

1 0.99M 0.0001 101 −0.295296 2.25E−04

2 0.5M 0.0001 11 −2.88E−02 1.80E−04

2 0.7M 0.0001 6 −2.37E−02 −3.85E−04

2 0.99M 0.0001 4 −1.64E−02 −0.370022

3 0.5M 0.0001 120 −0.462144 2.21E−04

3 0.7M 0.0001 94 −0.460538 2.34E−04

3 0.99M 0.0001 80 −0.457319 2.17E−04

4 0.5M 0.0001 39 −0.267348 2.31E−04

4 0.7M 0.0001 28 −0.265630 2.22E−04

4 0.99M 0.0001 20 −0.262080 2.22E−04

Firstly, we compare the modified relaxed projection algorithm 3.1 (MRCQ) with
relaxed CQ algorithm (RCQ) in [13] applied to (P). Let γ = 0.99M where M =
min{2/‖A‖2,

√
2/‖A‖}. In Table 1 we display the iteration history when using three

different values of ε and for each ε four different start vectors (chosen at random). We
see from Table 1 that none of the two tested algorithms come out as the best. We next
use three different values of the stepsize γ . For each test the same start vector was
used. The results, Table 2, show that ’Iter.’ decreases slowly as the stepsize approaches
M .

Secondly, we compare the modified variable-step relaxed projection 4.1 (MVRCQ)
with variable-step CQ algorithm (VRCQ) in [14] applied to (P). Let γ = 0.5, l =
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Table 3 MVRCQ and VRCQ applied for (P)

ε MVRCQ VRCQ

Iter. InIt. C(x) Q(Ax) Iter. InIt. C(x) Q(Ax)

0.01 617 5057 −0.116069 2.22E−02 618 5066 −0.118461 2.24E−02

0.01 552 4407 −0.144963 2.09E−02 555 4432 −0.150549 2.08E−02

0.01 812 6805 −0.585519 2.53E−02 814 6821 −0.591187 2.50E−02

0.01 677 5581 −0.174444 2.36E−02 679 5599 −0.177482 2.34E−02

0.001 553 4506 −0.300212 1.99E−03 554 4515 −0.302575 2.00E−03

0.001 1036 8723 −0.301105 2.11E−03 1038 8740 −0.304699 2.12E−03

0.001 637 4866 −4.47E−02 2.04E−03 643 4920 −4.95E−02 2.03E−03

0.001 1000 8322 −0.172833 2.18E−03 1002 8340 −0.175848 2.19E−03

0.0001 999 7984 −0.239796 2.17E−04 1001 8000 −0.242994 2.17E−04

0.0001 1187 10133 −0.111612 2.05E−04 1188 10141 −0.114309 2.06E−04

0.0001 1030 8281 −0.425143 2.25E−04 1031 8287 −0.427735 2.27E−04

0.0001 928 7344 −0.191356 1.97E−04 931 7369 −0.194958 1.97E−04

0.4, μ = 0.7. From Table 3, we first note that ’Iter.’ and ’InIt.’ are slightly smaller for
(MVRCQ) than that of (VRCQ); secondly we see that the iteration is not sensitive to
the tolerance. It is also observed that the numbers of steps needed in Table 3 are larger
than that of Table 2. This phenomenon might be caused by the choice of βn in (23)
which maybe be much smaller than M . This issue is left for future studies.

6 Concluding remarks

In this paper, a modified relaxed projection algorithm and a modified variable-step
relaxed projection algorithm with Armijo-like searches for solving the split feasibility
problem have been presented. For the two algorithms, the orthogonal projections can
be calculated directly. The algorithm 4.1 does not need to compute or estimate the norm
of the matrix and the stepsize can be computed using a number of steps of the power
method. Moreover, the objective function can decrease significantly at each iteration
in these algorithms. In the feasible case of the SFP, the corresponding convergence
properties have been established. We perform some numerical experiments, which
have confirmed the theoretical results obtained.

Acknowledgments The authors express their thanks to the reviewers, whose constructive suggestions led
to improvements in the presentation of the results.
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