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Abstract The maximum diversity problem consists in finding a subset of elements
which have maximum diversity between each other. It is a very important problem due
to its general aspect, that implies many practical applications such as facility location,
genetics, and product design. We propose a method based on evolution strategies with
local search and self-adaptation of the parameters. For all time limits from 1 to 300 s
as well as for time to converge to the best solutions known, this method leads to better
results when compared to other state-of-the-art algorithms.

Keywords Maximum diversity problem · Metaheuristics · Memetic self-adaptive
evolution strategies · Evolutionary algorithms

1 Introduction

The maximum diversity problem (MDP) consists in finding a subset of elements that
have maximum diversity according to a function that defines the diversity between any
two elements in a set. An example of this problem might be to find a subset of students
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in a classroom that have maximum diversity among themselves. The diversity between
any two students might be stored in a matrix and defined according to parameters such
as gender, age, grades and nationality (Sect. 2).

The contributions of this paper are (i) a Memetic self-adaptive evolution strategy
(MSES) (Sect. 3), (ii) an analysis of the benchmark instances and the problem difficulty
(Sect. 4), (iii) a comparison of results between the MSES and the best methods available
in the literature (Sect. 5). In Sect. 6, we draw conclusions from the comparison of the
algorithms.

2 Maximum diversity problem

The MDP consists in finding a subset M (|M | = m) from a set N (|N | = n) in a way
that the sum of diversities amongst the m elements is maximized. Many relations of
diversity can be used to define diversity values di j according to the practical application
of the MDP. The problem is concisely described [11] by formulation (1), where xi = 1
if element i is in the subset M .

Maximize
n−1∑

i=1

n∑

j=i+1

di j xi x j , subject to
n∑

i=1

xi = m

where xi ∈ {0, 1} ∀i = 1, . . . , n (1)

Applications of the MDP [14] are location of facilities, environmental systems, med-
ical treatments, genetics and design. The clique problem can be reduced to the MDP
[11], justifying the interest on metaheuristics for obtaining solutions in reasonable
time. Methods for the problem include Greedy Randomized Adaptive Search Pro-
cedures (GRASP) [8,16,18,19], Variable Neighborhood Search (VNS) [3,6,9,18],
Simulated Annealing [1], Lotfi-Cerveny-Weitz heuristic [22], Tabu Search [7,15,20],
Iterated Greedy Algorithm [12], branch-and-bound [2,13], Hopfield Networks [21],
and Scatter Search [17].

In an extensive comparison with methods for the MDP [14], even simple heuristics
achieved good results. However, for high level solutions, a VNS [6] and an ITS [15]
were the best methods for the benchmark instances. In a more recent paper, a Learnable
Tabu Search (LTS) [20] appears as the best approach.

3 Memetic self-adaptive evolution strategies

Evolution strategies (ES) are a class of evolutionary algorithms primarily dependent
on mutation [4]. The notation ES(μ, λ) stands for an ES with μ parents and λ children,
being each of those individuals a candidate solution to the problem.

The algorithm is based on generations that repeat until a halting criteria is reached.
In a generation, μ parents are mutated to produce λ children. Afterwards, the best μ

new individuals become the current parents. A common adaptation to ES is to include
a step size or mutation strength variable σi associated with each individual i [4]. This
variable is often adjusted through self-adaptation, that is, by also applying secondary
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Fig. 1 Memetic self-adaptive evolution strategy- MSES(μ + λ)

mutation operators on the associated σi values and expecting the best configurations
to survive over time. This adjustment of the algorithm composes the self-adaptive ES.

We propose a memetic self-adaptive evolution strategy (MSES) presented in Fig. 1
that includes local searches [15,20], self-adaptation of the σi mutation parameter
[4,6,15] and a low probability crossover operator. The source code of the algorithm is
available online from the authors1 and the next paragraphs explain all details of this
pseudocode, adaptable to other problems.

In order to save computational cost in line 1, indices mark which individuals are
the parents and which ones are the children. Thus, when new μ individuals are defined
as parents, only the indices need to change. In line 2, the crossover probability cp, the
number of parents per crossover ρ, is defined to 2 and the range of perturbation in the
strong local search α are initialized.

1 All additional information mentioned in this paper, such as source codes and results, is available from
the authors on www.alandefreitas.com/downloads/problem-instances/maximum-diversity-problem.php.
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The initial μ parent individuals are generated in line 3 as uniformly distributed
random solutions. Each individual represents a solution to the problem as a vector of
n elements xi where

∑n
i=1 xi = m, as in Eq. 1. All initial individuals already undergo

a weak local search in line 4. Given that we can get to a neighbor of a solution by
exchanging one element from M to N\M , the weak local search is a first-improvement
local search [10] that tests all neighbors in random order and moves to any neighbor
that improves the current solution until no neighbor is able to improve the current
solution.

For a more efficient local search, only the benefit � of each neighbor over the
current solution is analyzed [15]. The �qr of removing the element q and including
the element r is dr. − dq. − dqr , where dx . = ∑n

i=1 dxi for all i ∈ M . The values di.

of all elements can be calculated only once every iteration.
The initial solutions i receive their σi in line 5. The range of possible σ values

is from σmin = 1 to σmax = min(m, n − m), but all individuals have σmin at this
point. Those values are later self-adapted to determine the mutation strength. Iterative
evolution begins in line 6 until certain halting criteria are met. In this work, the only
criterion considered is elapsed time.

At each generation beginning in line 7, a second loop generates each of the new λ

children. In line 8, it defines if the new child is going to be created from only a mutation
applied to a parent, with probability 1 − cp, or a crossover of ρ parents followed by
mutation, with probability cp. If the new child will be produced through crossover we
have a new process from line 9: ρ = 2 parents are randomly chosen with uniform
distribution and their indices are stored in z. The child i is then generated through
crossover on the ρ parents in z.

In the crossover operator, given that each parent j represents a subset M j , the child’s
Mi is initially formed by the intersection ∩Mρ of all M j for which j ∈ z. At this point,
if | ∩ Mρ | = |Mi | = m, the child is returned. Otherwise, if | ∩ Mρ | = |Mi | < m, the
operator selects m − |Mi | random elements from ∪Mρ\∩ Mρ to include in Mi , being
∪Mρ the union of all M j for which j ∈ z.

After the application of crossover to the individuals, the σi of the new child i is
also inherited from the σ of its parents in line 12. The new σi is the mean σ of the
parents rounded to the closest integer. On the other hand, if only mutation is used to
generate the new individual, a different process begins in line 14: only one individual
z is chosen as parent of the child i , which will be a copy of the parent z. The σi will
also be a simple copy of σz .

Independently of the application of crossover, all generated individuals undergo
mutation in line 18. The mutation operator consists of randomly exchanging σi ele-
ments in Mi for elements in Ni\Mi . Each generated individual undergoes the weak
local search in line 19. The weak local search avoids underestimating the poten-
tial of solutions mutated with high σ . From this point, the σ values also have to be
adjusted. If crossover was applied and the child is better than any of its parents, its
σi returns to the minimum value σmin in line 22. If crossover was applied and there
was no improvement, nothing happens and σi is left as it was with the mean σ of its
parents.

On the other hand, if only mutation was applied and the child is better than its
parent, its σi also returns to σmin in line 26. However, if there is no improvement over
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the parent, as in line 28, σi is adjusted to σi + 1 in the next generation, or returned to
σmin if σi was already equal to σmax.

In any case, a child that improves the best solution known undergoes the fast strong
local search [20] in line 31. The strong local search used at this point is a Tabu Search,
a local search algorithm that accepts movements to worse solutions as long as they
are not in the Tabu list, differently from the search used as weak local search in line
19. This Tabu Search includes or removes only one element in M to find neighbor
solutions also based on � values. The contribution � j of each neighbor j in this
algorithm is � j = ∑n

i=1 d ji for all i ∈ M if j /∈ M or � j = −∑n
i=1 d ji for all

i ∈ M if j ∈ M .
This Tabu Search has tenure t = √

m. This means that once a movement to a
neighbor is applied, this movement is marked as Tabu for t iterations and cannot be
performed unless it has better objective value than the best feasible solution known
so far. The algorithm has the limit of n iterations. At every iteration one movement
towards the best neighbor is performed. If the current solution has less than m elements
in M , only neighbors with more elements are considered. If the current solution has
more than m elements in M , only neighbors with less elements are considered. If the
current solution has m elements in M , the solution is feasible and all neighbors are
considered.

After generating all children, the indices of the parents become the μ best unique
individuals in line 33. In lines 34–36, a randomly chosen parent is perturbed and
undergoes an intensive strong local search [15]. The perturbation alters α elements
in the solution. At every iteration, each of those α elements is chosen from a list of
the best 5 neighbor candidates. The neighbor structure and their measure of � are the
same as in the weak local search.

Afterwards, this perturbed solution undergoes a second strong local search in
line 36. This strong local search is a Tabu Search with the halting criterion of
max(10,000, 1,000n) tested neighbors and tenure t = n/4. It uses the same neighbor
structure and calculation of � as the weak local search. The neighbors are explored in
random order and every time a better solution is found, it becomes the current solution
and the algorithm goes to the next iteration. Solutions in the Tabu list are only con-
sidered if they improve the best solution known. If the best solution known has been
improved by the end of the iteration, the new current solution undergoes the weak local
search with a best-improvement approach instead of the ordinary first-improvement
algorithm.

4 MDP instances

The 315 instances from the MDPLib [14] were used to test the proposed algorithm.
The maintenance of the MDPLib is a valuable contribution from OPTSICOM.2 A
contingency table with the configuration of all the instances in the MDPLib is available
online from the authors.

2 http://www.optsicom.es/mdp.
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The instances in the MDPLib have 10 < n < 3,000; 0.08 < n/m < 0.8; and
values di j not defined as a function of n or m, which can make instances with a high
value of n become easier as di j become small in relation to the problem, similarly to
what happens to other optimization problems [5]. To demonstrate this, Fig. 2 shows the
average gaps between the objective function values found by the constructive heuristic
KLD [19] and the best values known for the 20 instances from the library SOM-b [14].
We see that the greater n is and the closer m/n is to 1/2, the smaller the gap we obtain
for those instances.

Increasing the value of n, however, does not necessarily mean that the probability
of finding the optimal solution is higher. The number of solutions in the search space is
Cn

m = n!
m!(n−m)! . Thus, the number of possible solutions increases when n increases or

m gets closer to n/2 so it does not make sense to define the complexity of the problem
only in terms of n.

As for all instances in the MDPLib, the values di j are not defined as a function of n
or m. Given that the search space increases with n and decreases with |m − n/2|, the
most complex instances in the MDPLib are the ones with n = 3,000; m/n = 0.2, n =
2,000; m/n = 0.1, and n = 500; m/n = 0.4, which represent 46 (14%) of the 315
instances. All other instances have either smaller n or a m/n (or m) more distant from
0.5 (or n/2).
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Fig. 2 Performance of the algorithms
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Thus, an increase in n may lead to higher probability of getting a solution with
a small gap from the optimum. However, in the search space, it is more difficult to
achieve the global optimum. Thus, simple algorithms are likely to have good results
if the objective gap is used as reference, as shown in Fig. 2. However, even when it is
easy to find solutions with quality similar to the optimal, the size of the search space is
always the same Cn

m , and the difficulty to find the global optimum does not necessarily
change.

5 Experiments

In an extensive comparison among the best methods for the MDP [14], VNS [6] had
the best results for the problem except for the largest instances, where the ITS [15] is
the method with the best rank. The LTS [20] is a more recent approach that showed
better results on 50 instances with size 2,000 < n < 5,000.

LTS [20]: An evolutionary strategy involving a k-means clustering algorithm for
probability vectors identifies points likely to be good initial solutions for a Tabu
Search. At each iteration, the Tabu Search updates an individual in the population
and the probability vectors are also updated.
VNS [6]: Perturbations on the best solution generate new solutions. Those new
solutions undergo a local search and are compared to the best solution. Perturbation
strength increases when better solutions are found.
ITS [15]: A Tabu search is applied to an initial solution until the limit of evaluated
neighbors is reached. Then, the current solution undergoes a change operator of
random intensity and the Tabu Search restarts.

Three versions of MSES with minor adjustments are considered in the comparison.
Having the algorithm in Fig. 1 as reference, MSES1 has the intensive strong local of
lines 34–36 removed, MSES2 is exactly the same as described in Fig. 1, and MSES3
has a supplementary fast strong local search, such as the one in line 31, applied to the
parent resultant from intensive strong local search in line 36 if it improves the best
solution known.

In order to have relevant results, the performance of all the mentioned algorithms
is compared for all the 300 time limits possible from 1 to 300 s and all MDPLib
instances. Besides, in order to remove any factor that could influence the performance
of the algorithms’ concepts themselves, (i) the order of all replicates of all experiments
were randomized, (ii) the tests were run in computers with the same configurations
for the 300 different time limits, and (iii) all the algorithms were implemented in the
same language.

The computers used were Intel� Core i5-650 / 4M Cache / 3.20 GHz / 4GB
1333Mhz DDR3 / 500GB (7200 RPM) SATA 3.0Gb/s HD with 16MB DataBurst
Cache running Windows� 7 SP1 Professional (32Bit OS). For fair comparison of the
algorithms, all of them were implemented in MATLAB and the source codes were
made available from our website.

Combinations of MSES(μ+λ) with μ = 1, 10, 30, 50 and λ/μ = 1, 2, 5, 10 were
tested for time limits of 1, 2, 3 . . . 300 seconds. For each time limit, the efficiency
of the algorithms on the MDPLib is compared with a Friedman test, appropriate to
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compare different treatments (16 combinations for each MSES + 3 algorithms from the
literature) on blocks (315 instances) by ranking data within blocks. In this, p-values
close to 0 indicate that the treatments do not have the same performance and the ranks
indicate the performance of each method. As usual, we declare a result significant if
the p-value < 0.05.

For all time limits, the maximum p-value obtained is 7.02 × 10−108 < 0.05,
indicating with confidence that the algorithms do not have the same perfor-
mance for any time limit. The configurations of MSES with best rank for most
time limits are MSES1(1 + 1), MSES1(10 + 20), MSES2(10 + 100), MSES2(30 + 150),
MSES2(30 + 300), MSES3(10 + 100), MSES3(30, 150). Figures with the comparison
of the MSES were made available online by the authors. Figure 2 shows the perfor-
mance of each algorithm measured by their mean rank in the Friedman test for all time
limits from 1 to 300 s.

The two lines with best rank for all time limits are MSES1(1 + 1) when the time
limit is less than 154 s and MSES1(10 + 20) when the time limit is greater than 153 s.
The other version of MSES are represented in dotted lines. The best ranks among the
other algorithms belong to VNS, LTS, and ITS, respectively. The range of possible
mean ranks in this graph goes from 10.91 to 34.80 and the confidence intervals, which
keep the p-values < 0.05, between the methods are in the range from 12.61 to 14.55.

We also use the data to analyze the methods in relation to goals. That is, for a given
goal, which algorithm takes less time to achieve it. In this case, in each Friedman test,
the treatments are the algorithms and the blocks are the time spent to achieve a certain
goal. Figure 2c shows the mean ranks of the algorithms for each goal. The lower the
mean rank, the less time was spent to achieve the goal. Most methods have similar
performance for goals lower than 70 %. For goals under 95 %, MSES2(10 + 100) has
the best performance. For goals over 95 %, LTS becomes the best algorithm. However,
for goals closest to the best values known, MSES1(1 + 1) is again the best algorithm.

In addition to those comparisons in terms of goal achievements and absolute perfor-
mance, Fig. 2d shows the gap between the solutions found by the algorithms and the
best solutions known. Each line represents a method and each column represents an
instance. The figure shows the how most solutions are close to the best solutions and it
also demonstrates the importance of using ranks to cognitively perceive the difference
between the algorithms. As supplementary material, comparisons of the algorithms
for different subsets, the absolute results of all tests, the best solutions known, and
the gap between the best solutions and the results on the instances are also available
online.

6 Conclusion and future work

All the heuristics considered in previous works [14,20], VNS, LTS, and ITS, are smart
approaches that consider specificities of the MDP. Based on their results, we propose
here an MSES algorithm for the MDP with three variations in relation to its local
search and variation of the parameters μ and λ.

MSES1(1 + 1) and MSES1(10 + 20) have the best results for time limits below 154
and above 153 s, respectively. MSES1(1 + 1) presented the best time to achieve the best
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results known. For easier goals, LTS and MSES2(10+ 100) have the best results. The
fact that the best algorithms for easier goals do not have good results in the first test
can be explained by the discussion in Sect. 4, where we show how simple heuristics
may be preferred for the MDP when the goal is not to achieve the optimal results.

For the extension of this work, we propose (i) comparing other instances in which
di j is defined in function of n and m is closer to n/2, making the problems in fact
more difficult; (ii) more tests on the adjustment of λ and μ; (iii) testing MSES(μ, λ),
where all parents would be replaced by their children (as opposed to MSES(μ + λ));
and (iv) taking advantage of the population-based algorithm to evolve the individuals
in parallel and accelerate convergence.
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