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Abstract We present an adaption on the formulation for the vehicle routing problem
with fixed delivery and optional collections, in which the simultaneous minimization
of route costs and of collection demands not fulfilled is considered. We also propose a
multiobjective version of the iterated local search (MOILS). The performance of the
MOILS is compared with the ε-constrained (Pε) ILS, the NSGA-II and the indicator-
based multi-objective local search methods in the solution of 14 problem instances
containing between 50 and 199 customers plus the depot. The results indicate that
the MOILS outperformed the other approaches, obtaining significantly better average
values for coverage, hypervolume and cardinality.
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1 Introduction

The vehicle routing problem (VRP) is one of the most important and widely studied
within the context of combinatorial optimization. It includes many relevant issues
of transportation logistic, e.g., the pickup and delivery of materials, a problem of
particular interest for industries concerned with the efficient management of returned
goods for recycling, re-manufacturing or reuse.

In some variants of the VRP the delivery of products is mandatory, while the
collection can be postponed. Traditionally, the VRP has been defined as mono-objetive
and solved using exact methods. In [34], a single-VRP with unrestricted backhauls, in
which a profit value is associated for each satisfied collect demand, is solved with an
exact branch-and-bound algorithm. Later works [14,15] presented a branch-and-cut
algorithm to solve the same problem, and a branch-and-price algorithm to solve five
variants of the VRP with delivery and selective pickups with time windows. Recently,
mono-objective versions of the VRP have been solved using heuristics, most of them
based on local search such as simulated annealing [25] and tabu search [23,13]. These
general procedures explore the space of the solution to find good solutions with a
reasonable computational time [12].

Several practical VRPs are multiobjective by nature, due to the inherent necessity of
considering aspects other than the minimization of the total cost [28], such as customer
satisfaction, labor regulations, or other aspects of the problem [21]. There are however
few works that treat the VRP as multiobjective, in particular those problems involving
pickup and delivery services [20].

In terms of multiobjective approaches, metaheuristics such as genetic algorithms
[8,30], tabu search [9,16,26], memetic algorithms [10] and simulated annealing
[5,31,36] have been widely used to generate approximately efficient solutions for
multiobjective problems. In general, algorithms based on local search perform
well in multiobjective combinatorial problems [3,18,35] and could be applied to
VRPs.

We discuss in this work an adaption on the VRP in order to treat its multiobjective
nature with fixed deliveries and optional collections. More specifically, the objectives
are defined as the minimization of route costs and of collection demands not fulfilled.
We also propose a multiobjective version of the iterated local search (ILS) heuristic.
The MOILS approach is applied to a set of instances containing between 50 and
199 customers plus the depot, and is compared to other approaches available in the
literature [3,4,6,19].

2 Problem description

The multiobjective VRP with fixed delivery and optional collections consists in defin-
ing a set of routes that minimize the transportation cost and the number of collections
not carried out, attending all delivery demands. Each customer must be visited by one
vehicle, and partial execution of demands is not allowed.
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2.1 Mathematical formulation

The mathematical formulation is a generalization of the model proposed in [23] for
the VRP with simultaneous pickup and delivery (VRPSPD), obtained by transforming
a constraint into an objective.

Let G = (V, A) be a complete graph, with V = {0, 1, 2, . . . , n} the set of vertices
and A = {(i, j) : i, j ∈ V, i �= j} the set of edges. The vertex 0 represents the
depot and the others represent the customers. Each edge (i, j) has an associated value
ci j ≥ 0 that represents the cost for reaching vertex j from vertex i . Each customer i
has a demand di for delivery and a demand pi for collection. There are k homogeneous
vehicles available, each with capacity Q. The parameter yi j is the sum of the collected
load between the depot and the node i (included) driven to node j . The parameter
zi j is the sum of the load delivered to customers after node i (excluded) driven to
node j . We use the edge variable xk

i j , which is equal to one if edge (i, j) is traveled
by vehicle k and zero otherwise, and the choice variable � j , which is equal to one if
pickup demand of customer j is satisfied, and zero otherwise.

The objectives of this problem can be expressed as:

minimize

{ ∑k
k=1

∑n
i=0

∑n
j=0 ci j xk

i j∑n
j=1 p j (1 − � j )

(1)

Subject to:
n∑

i=0

k∑
k=1

xk
i j = 1, j = 1, . . . , n (2)

n∑
i=0

xk
i j −

n∑
i=0

xk
ji =0, j =0, . . . , n and k =0, . . . , k

(3)
n∑

j=1

xk
0 j ≤ 1, k = 1, . . . , k (4)

n∑
i=0

zi j −
n∑

i=0

z ji = d j , ∀ j �= 0 (5)

n∑
i=0

yi j −
n∑

i=0

y ji = p j� j , ∀ j �= 0 (6)

yi j + zi j ≤ Q
k∑

k=1

xk
i j , i, j = 0, . . . , n (7)

xi j , � j ∈ {0, 1}, i, j = 0, . . . , n (8)

yi j , zi j ≥ 0, i, j = 0, . . . , n (9)

The two objective functions (1) are the total cost of the routes and the collec-
tions not carried out, and have to be minimized. The constraints model the following
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requirements: each point of demand must be visited by only one vehicle (2); the same
vehicle arrives and departs from each client (3); a maximum of k vehicles can be used
(4); all delivery demands must be met (5); when variable � j is equal to one, the pickup
demand of customer j must be satisfied (6); all demands should be transported on the
arcs included in the solution (7). In addition, (8) represents the integrality restriction
and (9) a non-negativity constraint for collection and delivery demands.

2.2 Multiobjective iterated local search

The iterated local search (ILS) algorithm is based in the idea that the local search
procedure can be improved from the generation of new solutions for the starting point
by perturbing visited local optimal solutions [22].

Some heuristic approaches found in literature to solve the VRP with simultaneous
pickup and delivery indicate that the use of ILS is a good alternative [32]. Some of
its advantages are: the existence of few adjusting parameters when compared to the
evolutionary methods, simplicity, robustness, effectiveness and the ease of implemen-
tation [22].

In this section, we present an adaptation of the ILS for the solution of combina-
torial optimization multiobjective problems. This approach, called the multiobjective
iterated local search (MOILS), is presented in Algorithm 1.

First, the MOILS constructs two initial solutions (line 1) by efficient hybrid algo-
rithm based on ILS and random variable neighborhood descent (RVND), proposed in
[27]. These solutions represent the extremes of the front, one being a point of maxi-
mum transportation cost and the other a point of minimum transportation cost, where
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Multiobjective VRP with fixed delivery and optional collections 1423

no collections are performed. When all collection demands should be attended the
problem is reduced to the mono-objective VRPSPD, and when no collection demand
is attended it is reduced to the mono-objective capacitated VRP (CVRP).

The algorithm executes max I ter iterations (lines 3–15), where one non-dominated
solution, in the front set, is selected (line 4) to be exploited (lines 6–14). The selection
procedure is based on the crowding-distance [6], which allows less explored regions
to have higher selection priority. In this work, the crowding-distance is calculated in
a different manner, with the value of the extreme solutions equal to twice the distance
between this point and the nearest solution. We have proposed this modification in
order to guarantee the exploration of the two initial solutions (equivalent to the CVRP
and VRPSPD solutions) in early iterations and to give advantage to more intermediate
solutions after the iterative process starts generating more non-dominated points.

Given a selected solution, the algorithm executes maxCount iterations to explore
it. In each iteration, this solution is perturbed and local search is applied, according
to the ILS. Here, perturbation is done in two phases. In the first, the collection status
(attempt or not attempt) of some customers randomly selected is changed. When the
pickup demand ceases to be fulfilled, the respective customer can remain in the same
position of the route. Otherwise, the load stored by the vehicle that will satisfy this
demand must be verified. If its capacity is exceeded, the customer is inserted in the first
viable position found. When no viable position is found, this customer is included in a
new route. In the second phase, the algorithm applies one of the following perturbation
mechanisms randomly chosen: Multiple Swap that reallocate different customers of
the different routes randomly selected; Multiple Shift that exchanges two customers
of distinct routes; and Ejection Chain that relocates a customer from route R1 to route
R2, a customer from R2 to R3, and so on.

The local search phase explores the neighborhood of a solution with the objective
of finding other non-dominated solutions for the problem. We have used the random
variable neighborhood search (RVND) refinement method [27]. We implemented 12
types of movements to define the neighborhood, six inter-route and six intra-route. The
inter-route movements are: (1) Shift(1,0), (2) Shift(2,0), that relocate a customer or two
adjacent customers, (3) Swap(1,1), (4) Swap(2,1), (5) Swap(2,2) that interchange two
customers, or two adjacent customers with one customers or with others two adjacent
customers, and (6) Crossover that removes two arcs (i, j) and (i ′, j ′) and inserts two
new arcs (i, j ′) and (i ′, j). The intra-route movements are: (1) Or-opt, (2) Or-opt
2, (3) Or-opt 3 that relocate one customer, or two or three adjacent customers, (4)
2-opt that removes two non-consecutive arcs (i, j) and (i ′, j ′) and replaces by the
arcs (i, i ′) and ( j, j ′), (5) Exchange two customers, and (6) Reverse the direction of
the route, aimed at reducing the load of the vehicle. Figure 1 shows examples of these
operations, in which the highlighted arcs and customers indicate the changes in the
original solution.

The best improvement strategy was used in all neighborhood structures. The com-
putational complexity of each one of these moves is O(n2), except to reverse that is
O(n). After RVND executions, the algorithm verifies if it is possible to attempt the
pickup demands of some customers. The collection of one customer is carried out only
if this demand does not exceed the capacity of the vehicle and if it can remain in the
same position of the route.
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Fig. 1 Neighborhood structures

The solution generated in the perturbation and local search procedures is then
included in the front (line 9). The updating phase verifies if a specific solution s is
non-dominated by any solution, then it is inserted in the set and the solutions dominated
by it are eliminated. The variable count represents the number of iterations that one
solution is explored without generating a new non-dominated solution. If one solution
is inserted in the front then count is restarted (line 11), otherwise it is increased by
one unit (line 14).

3 Experimental results

3.1 Test problems and performance metrics

To evaluate the performance of the MOILS, an experiment was set up1 considering 14
problem instances ranging from 50 to 199 customers plus the depot [29]. The travel
cost is calculated as the Euclidean distance between the points. Problems 1–5 have
randomly placed cities in the plane, while problems 11 and 12 have cities appearing
in clusters, in which the depot is not centered.

These instances were solved using the following approaches:

1. the MOILS, as described in Sect. 2.2. After preliminary testing, the constants were
set as max I ter = 100 and maxCount = 15.

2. ε-constrained approach (Pε) [4] using the ILS as the base algorithm, in order
to compare the performance of our proposed MOILS against that of an adapted

1 The algorithm implementations, problem instances, and statistical routines used in the analysis of this
experiment are available online at the address http://www.cpdee.ufmg.br/~fcampelo/files/OPTL2012a./.
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single-objective iterated local search. Preliminary testing suggested the use of 50
as the number of iterations for this method [22];

3. non-dominated Sorting Genetic Algorithm II (NSGA-II) [6], which is a standard
evolutionary multiobjective algorithm. The implementation used crossover and
mutation operators already adapted for VRPs [19], with a population size of 500
evolving over 250 iterations;

4. indicator-Based Multi-Objective Local Search (IBMOLS) [3], a local search-based
method for multiobjective optimization included to provide a better comparison
baseline. The implementation used the epsilon binary indicator, employed the
same local search operators as the MOILS and the RM population generation
method with the mutation based on perturbation mechanism of the MOILS. Pre-
liminary testing suggested using a scale factor of 0.1, population size of 10 and
50 generation.

To evaluate the relative performance of these approaches, three performance met-
rics were considered: the hypervolume (S), standardized to the interval (0, 1) indepen-
dently for each problem; the Coverage of Two Sets [37]; and the cardinality (Card) of
the final solution set returned. Both the S and CS-metrics return values representing
percentages, while the Cardinality metric provides absolute values.

The free parameters of the algorithms used were adjusted in order to provide each
method with approximately the same run time. No significant differences were detected
in the runtime of the algorithms tested (p > 0.05).

3.2 Statistical design

We have employed statistical tests designed to detect significant differences and to
estimate their magnitude for each quality metric. The data used was composed of the
metrics calculated for the final Pareto-fronts obtained on eight independent runs of
each algorithm on each problem.

For each metric, the experiment was designed as a randomized complete block
design (RCBD) with the algorithms as levels of the experimental factor, and the prob-
lems as a blocking factor [24]. By treating the problems as blocks, it was possible to
model and remove the effects of different instances on the performance of the algo-
rithm, and obtain an overall performance difference across all test instances used. The
null hypotheses of absence of differences among the algorithms evaluated over all
problems were considered against two-sided alternatives. To avoid the assumptions of
the F test, the more versatile Gore test [11], a more robust alternative for the ANOVA,
was employed.

After testing for significance, least squares estimators of the block (instance)
effects were obtained [24] and subtracted from the samples, thus allowing a problem-
independent estimation of the effect size for each algorithm. The estimations of effect
size were calculated by means of the Hodges–Lehmann (HL) estimator of the median
of differences between two independent samples [17]. A more detailed description of
the statistical methods is available in an earlier work [1].
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Table 2 Estimated difference in average performance between the row and column algorithms for the
performance metrics

Hypervolume Coverage Cardinality

Pε NSGA-II IBMOLS Pε NSGA-II IBMOLS Pε NSGA-II IBMOLS

MOILS 0.11 0.08 0.06 0.70 0.32 0.13 2.56 4.32 6.06
Pε – −0.03 −0.05 – −0.28 −0.54 – n.s 3.50
NSGA-II – – n.s – – −0.18 – – 1.73

Only results significant at a 95 % confidence level (adjusted for multiple hypothesis testing using Dunn-
Šidák correction [7]) are shown. Positive values indicate higher average value for the algorithm in the row.
OBS:
n.s. not statistically significant

3.3 Results and discussion

The results obtained for the experimental comparison are summarized in Table 1, which
reports the mean and standard deviation values of the three metrics considered in each
problem; and Table 2, where the results of the statistical analysis are summarized and
the magnitude of the statistically significant differences are presented.

For the hypervolume, all algorithms presented a relatively solid performance in
most problems, as shown in Table 1, with the Pε returning slightly smaller values
than the other three methods. The statistical analysis reported in Table 2 confirms
this observation, showing that all algorithms presented small but statistically signifi-
cant differences, with the MOILS showing the best results (11 % superior to the Pε ,
8 % better than the NSGA-II and 6 % superior to the IBMOLS). This result indi-
cates that the proposed approach was generally able to obtain better fronts, either
by returning a well-spread set of solutions, or points that were closer to the real
Pareto-optimal front.

The average differences obtained for the cardinality metric were also relatively
modest. Table 1 shows that, for each particular problem, all algorithms returned
approximately the same mean number of solutions, with no large trends being easily
discernible. Table 2 shows that, when integrated over all problems, small but statis-
tically significant differences were observed, with the MOILS returning on average
2.56 more solutions than the Pε , 4.32 more than the NSGA-II, and 6.06 more than the
IBMOLS.

The differences in performance observed for the coverage metric were considerably
large. By examining the results in Table 2, it can be easily seen that the MOILS was able
to outperform the Pε by an average of 0.7, the NSGA-II by 0.32 and the IBMOLS by
0.13. This is a strong indicator of superiority, since it means that, on average, the fronts
found by the MOILS were able to dominate, on average, about 70 % of the ones yielded
by the Pε method, 32 % of those obtained by the NSGA-II and 13 % of the fronts
returned by the IBMOLS. To simplify the reporting of the relative coverage values,
a generalized version of the Coverage of Two Sets, called Coverage of Many Sets
[2], was employed to generate the data shown in Table 1. Instead of quantifying how
much a given algorithm covers another, this generalized metric instead measures how
much a given algorithm covers the union of the final fronts returned by all algorithms
except itself.
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Fig. 2 Typical fronts obtained by the algorithms on selected problems

Table 3 Comparison with best known single-objective results for the VRPSPD

Instances (CMT)

1X 1Y 2X 2Y 3X 3Y 4X

MOILS 466.77 466.77 688.05 693.09 721.40 723.28 857.44

Best known 466.77a 466.77a 668.77b 663.25b 721.27a 721.27a 852.46b

Error* (%) 0.00 0.00 2.88 4.50 0.02 0.28 0.58

Instances (CMT)

4Y 5X 5Y 11X 11Y 12X 12Y

MOILS 855.74 1037.25 1032.68 848.72 850.67 665.85 664.00

Best known 852.35b 1029.25b 1029.25b 833.92b 830.39b 644.70b 659.52b

Error* (%) 0.40 0.78 0.33 1.77 2.44 3.28 0.68

* Percent difference between the results obtained by MOILS and the best known
a Optimal solution obtained by Branch-and-cut [33]
b Results of the parallel ILS-RVND algorithm reported in the literature [32]

Figure 2 shows two representative examples of fronts obtained by the algorithms.
Since the true Pareto-optimal front is not known for the problems considered, it is not
possible to objectively evaluate the absolute quality of the fronts obtained. However,
the extreme point of the fronts obtained for the case in which all pickups are performed
is equivalent to the corresponding VRPSPD instance. Table 3 shows a comparison of
the extreme point of the non-dominated fronts obtained by the MOILS with the best
known results for this problem [32], showing that, at least for the extreme points, the
MOILS approach is able to find solutions that are generally very close to the best
available in the literature.

4 Conclusions

We proposed an adaptation of the mathematical formulation for the multiobjective
VRP with fixed delivery and optional collections, which takes into account the total
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cost of the solution and the number of pickups performed. A multiobjective version of
the iterated local search algorithm (MOILS) was proposed and compared on a test set
of 14 benchmark problems against the Pε , NSGA-II and IBMOLS approaches. The
results obtained show that the MOILS was able to significantly outperform the three
methods, obtaining superior values for coverage, hypervolume and cardinality across
the set of test problems used.
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