
Optim Lett (2013) 7:1481–1502
DOI 10.1007/s11590-012-0540-2

ORIGINAL PAPER

A column generation-based heuristic algorithm
for an inventory routing problem with perishable goods

Tung Le · Ali Diabat · Jean-Philippe Richard ·
Yuehwern Yih

Received: 29 April 2011 / Accepted: 7 August 2012 / Published online: 4 September 2012
© Springer-Verlag 2012

Abstract An inventory routing problem is a variation of the vehicle routing problem
in which inventory and routing decisions are determined simultaneously over a given
time horizon. The objective is to minimize the sum of transportation and inventory
costs. In this paper, we study a specific inventory routing problem in which goods are
perishable (PIRP). We develop a mathematical model for PIRP and exploit its structure
to develop a column generation-based solution approach. Cutting planes are added to
improve the formulation. We present computational experiments to demonstrate that
our methodology is effective, and that the integration of routing and inventory can
yield significant cost savings.
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1 Introduction

In many distribution systems, suppliers must determine when and how much to deliver
to their customers over a finite planning horizon. Representative examples are the deliv-
eries of goods to customers in Vendor Managed Inventory (VMI) systems [12] and the
deliveries of air products [5]. In such examples, replenishment quantities of goods,
delivery consolidations and days to visit customers must be determined concurrently.
Industrial gas companies pioneered the use of the IRP model in their delivery problems
and have benefited greatly from the integration of inventory and routing decisions [7].
Such practical applications have motivated the development of the inventory routing
problem (IRP) along with its variants.

IRPs are a generalization of the classical vehicle routing problem (VRP) [26]. While
VRPs deal only with routing decisions, IRPs combine routing and inventory decisions
in a single model. In a classical VRP, customers place orders on a given day and
the delivery company assigns the orders to routes for its fleet, whereas in a classical
IRP, there are no customer orders—instead the delivery company decides the delivery
quantity and timing for each customer over a planning horizon [7].

IRP is known to be a difficult combinatorial optimization problem. The cost savings
from IRP models comes at the expense of an increase in the complexity of the solution
approach. The main challenge resides in the inventory balance constraints, which link
routing decisions and quantities of goods shipped to customers over a given planning
horizon.

In this research, we consider a deterministic multi-period IRP for perishable goods
(PIRP) in which customer demands for each time period are given. The objective of
PIRP is to determine: (1) when to deliver to each customer; (2) how much to deliver to
each customer in each time period; and (3) how to route vehicles such that the sum of
transportation and inventory costs is minimized while still meeting customer demands
and perishability constraints. In our model, perishable goods are assumed to have
a fixed shelf-life, and will be discarded at the end of their shelf-life. Consequently,
quantities of goods delivered to customers at any given time are limited not only by
the holding capacity at the customer’s site but also by the shelf-life of the goods.
A detailed description of the PIRP model used in our research is given in Sect. 3.

This work was motivated by operational problems in food distribution in the Aca-
demic Model for the Prevention and Treatment of HIV (AMPATH) program, a part-
nership between the medical school of Indian University and Moi University in Kenya.
The AMPATH nutrition program currently provides food support for more than 30,000
HIV-infected patients, and the main function of the food distribution system is to trans-
port fresh foods from production farms and dry foods from warehouses to distribution
sites [22].

Our research explores modeling issues and solution approaches for IRP models
with perishable goods. The main contributions of this research are:

1. We formulate the path flow formulation for the multi-period IRP with perish-
ability constraints. In order to solve the LP relaxation of the formulation by the
column generation approach, we introduce a method to derive the associated
pricing problem.
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2. We show that the lower bound from the linear relaxation of PIRP is not as strong
as that obtained in the column generation literature for vehicle routing problems.

3. We derive three valid inequalities to strengthen the PIRP formulation, and apply
these valid inequalities in our column generation approach. Computational exper-
iments show that good solutions to PIRP are obtained in reasonable time. As a
result of solving the LP relaxation by column generation, we obtain a strong lower
bound on the optimal solution to PIRP.

The remainder of this paper is organized as follows. Section 3 formulates PIRP for
perishable good deliveries. In Sect. 4, a reduced dual model is presented, and a column
generation based algorithm is designed from this reduced model. Numerical experi-
ments are provided in Sect. 5, and concluding remarks follow in Sect. 6.

2 Literature review

Bell et al. [5] were among the first to apply IRP to a gas distribution problem; their
paper won the first Franz Edelman Award. They developed real-time computerized
software to determine routing schedules based on a multi-period, combined inven-
tory control/vehicle scheduling model. The software is capable of handling problems
with up to 800,000 variables and 200,000 constraints, and uses a lagrangian relaxation
algorithm to solve these large scale problems to proven near optimality as explained in
Fisher [15]. Their software has been utilized by several companies and has reportedly
achieved cost savings of between 6 and 10 % of operational costs. Gaur and Fisher
[16] have developed a multi-period IRP model for Albert Heijn, a leading supermar-
ket chain in the Netherlands, and have claimed a 4 % savings in distribution costs in
the first year and a potential savings of 12–20 % in the following years. Beyond its
application to inventory routing for land vehicles, IRP has been used to schedule large
volume vessel shipments in marine transportation, where it is known as inventory
marine routing [8,9,24].

As IRP is a difficult problem, solution approaches in the literature are typically heu-
ristic [7]. Dror and Ball [13] were among the first to consider a heuristic approach to
solving the multi-period IRP. They managed to reduce the annual distribution problem
to a single-period problem. Using the probability of stock-outs at the customers, they
developed a set of rules to assign vehicle routes and replenishment quantities. Bertazzi
et al. [6] studied a multi-period, multi-product IRP with deterministic demand and an
order-up-to-level policy. They proposed a two-stage heuristic algorithm to solve this
problem based on constructive customer allocation and customer exchange heuris-
tics. Archetti et al. [2] introduced an exact algorithm for IRP. They proposed an arc
flow formulation for the problem and developed a branch and cut algorithm to solve it.
However, their algorithm is limited to the case of a single vehicle and order-up-to-max-
imum inventory level policies. A detailed literature review of the solution approaches
for IRP can be found in [1].

Column generation approaches have successfully been used to solve many large
scale hard integer programming problems such as VRP with time windows [11]. How-
ever, to the best of our knowledge, research on column generation approaches for IRPs
is very limited. Gronhaug et al. [19] implemented a column generation approach for the
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marine inventory routing problem. However, since their formulation and constraints
are customized for the marine transportation, their approach is not applicable to the
multi-period IRP for perishable goods.

The literature on the delivery of perishable goods with the consideration of inventory
costs is scant. Federgruen et al. [14] were among the first to integrate transportation
and inventory models for perishable goods. The model they proposed is formulated
as a complex, nonlinear, mixed integer program with the objective of minimizing the
sum of transportation, shortage and out-of-date costs. To solve this model, they intro-
duced a heuristic algorithm based on interchanges. However, as they only considered
a single period problem, this study does not apply to situations in which a delivery
covers multiple-period demands.

In another line of research, some studies have proposed extensions of the economic
order quantity (EOQ) policy for inventory models with perishable goods. Giri and
Chaudhuri [18] presented an extended EOQ inventory model for a perishable prod-
uct in which the demand rate is a function of the on-hand inventory and the holding
cost is a non-linear stock dependent function for an infinite planning horizon. Panda
et al. [23] presented a single-item order level inventory model for a seasonal product
over a finite planning horizon in which the demand rate was modeled as a ramp-type
time dependent function. Tarantilis and Kiranoudis [25] modeled a fresh milk distri-
bution system in Greece as a heterogeneous fixed fleet vehicle routing problem and
proposed a threshold-based algorithm to solve it. Hsu et al. [20] has extended the con-
ventional vehicle routing problem with time windows to incorporate the randomness
of food spoilage during the delivery process. However, neither EOQ models nor VRP
approaches support the combination of inventory and transportation components.

3 An inventory routing problem with perishable goods

We consider a distribution problem involving a depot, a set of customers and a homo-
geneous fleet of capacitated vehicles. Perishable goods are transported from the depot
to customers in such a way that out-of-stock situations never occur. In this problem,
customer demands in each time period are deterministic, but may vary from one period
to the next. Inventory holding costs are incurred when goods are stored at customer’s
sites. Like other multi-period inventory problems, PIRP assumes deliveries arrive at
customers at the beginning of time periods.

Our research focuses on perishable goods with a fixed lifetime, for example goods
with expiration dates such as medications. Such goods have a value that stays essen-
tially constant for a fixed amount of time and then drops to zero. In our study, perish-
able goods have a fixed shelf-life that corresponds to the number of time periods over
which goods can stay in good condition at the customers’ sites. When unused goods
have exceeded their shelf-life, they will be discarded. Although our model is designed
for perishable goods with a fixed lifetime, it can be extended to perishable goods that
decrease their value gradually throughout their lifetime. In this case, the cost of quality
loss of goods over a time period can be included in the model like inventory costs.

Our PIRP model is similar to standard IRP. The largest difference between PIRP
and standard IRP is the way in which the upper bound inventory levels of customers
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at the end of each time period are defined. While the upper bound inventory levels in
standard IRP depend only on the physical storage capacity at the customer’s site, the
upper bound is restricted by both perishability and the physical storage capacity in
PIRP. In our research, perishability is assumed to dominate the physical storage capac-
ity. As a result, the upper bound inventory levels of customers in PIRP are determined
only by the perishability constraints.

We define a direct route in PIRP as a route in which a vehicle starts from the depot,
visits one customer and then returns to the depot. In case the demand of a customer in
any time period is greater than the vehicle capacity, we transform the demand so that
it is less than the vehicle capacity by using full-truckload direct routes and modifying
the demand dit to the remaining partial load (=(dit − C�dit/C�)). Consequently, we
only consider situations in which the customer demand per time period is less than
the vehicle capacity. Also, we make two additional assumptions: (1) Vehicles travel
at most one route in any time period; (2) Customers have at most one delivery per
time period. The first assumption is very common in other transportation problems
such as VRP, while the second assumption does not allow split deliveries in any time
period.

We now propose a mathematical model for PIRP using the concept of a feasible
route. A feasible route is a route that starts from the depot, visits a subset of customers
at most one time and then returns to the depot. Note that this is different from the
popular notion of a feasible route in VRP, where a feasible route is defined as a sub-
tour for which the sum of demands of customers on the route are less than the vehicle
capacity.

We introduce the following notation
N Set of customers N = 1, . . . , |N |.
V Set of nodes V = {0} ∪ N , where node 0 represents the depot.
T Set of time periods T = 1, . . . , |T |.
K Set of homogeneous vehicles K = 1, . . . , |K |.
C Vehicle capacity.
R Set of all feasible routes.
R

′
Set of feasible routes in Restricted Master Problem (RMP).

τmax Maximum shelf-life.
dit Demand of customer i ∈ N in time period t = 1, . . . , T, . . . , T + τmax −1.
uit Upper bound inventory level at customer i ∈ N in time period t ∈ T,

uit =
(∑

t<τ
τ≤t+τmax

diτ

)
.

dmax
it Maximum quantity delivered to customer i ∈ N in time period t ∈ T ,

dmax
it = uit + dit .

di
tl Demand of customer i ∈ N from time period t to l.

hit Inventory holding cost of customer i ∈ N in time period t .
Ii0 Inventory level at customer i ∈ N at the beginning of time period t = 1.

αir =
{

1 if route r ∈ R visits customer i ∈ N

0 otherwise
ci j Transportation cost from node i ∈ V to node j ∈ V .
cr Transportation cost of route r ∈ R.
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The decision variables of the model are defined as follows:
Ii t = Inventory level of customer i ∈ N at the end of time period t ∈ T .

θr t =
{

1 if route r is selected in time period t ∈ T

0 otherwise

airt = Quantity delivered to customer i ∈ N by route r ∈ R in time period t ∈ T .

The optimal solution of PIRP is obtained by solving the following mixed integer
programming model:

Z∗ = min
∑
t∈T

(∑
r∈R

crθr t +
∑
i∈N

hit Ii t

)
(1)

Subject to ∑
r∈R

αirθr t ≤ 1 ∀i ∈ N , t ∈ T (ϕ) (2)

∑
i∈N

αir air t ≤ Cθr t ∀r ∈ R, t ∈ T (μ) (3)

Ii t−1 +
∑
r∈R

αir air t = dit + Ii t ∀i ∈ N , t ∈ T (π) (4)

Ii t ≤ uit ∀i ∈ N , t ∈ T (ω) (5)∑
r∈R

θr t ≤ |K | ∀t ∈ T (υ) (6)

θr t ∈ {0, 1} ∀r ∈ R, t ∈ T (7)

airt , Ii t ≥ 0 ∀i ∈ N , r ∈ R, t ∈ T (8)

The objective function (1) represents the minimization of the sum of transportation
cost and inventory cost. The first term in the objective function represents the trans-
portation cost while the second term represents inventory holding cost. Constraints (2)
ensure that a customer is visited at most once per time period. Constraints (3) require
that the vehicle capacity be respected. Constraints (4) are inventory balance equa-
tions that relate customer demands, incoming deliveries and inventories. Constraints
(5) guarantee that a customer never has an inventory level that is greater than the
total demands in the next (τmax − 1) consecutive time periods. This, in turn, imposes
the constraint that perishable goods will never be discarded. Constraints (6) require
the maximum number of different routes selected in a time period to be less than the
number of vehicles. Lastly, Constraints (7) require the variables θr t to be binary and
Constraints (8) require that inventory levels and quantities of goods delivered to cus-
tomers be non-negative. In our model, non-negative inventory levels guarantee that no
stock-outs occur at any customer during the planning time horizon.

The PIRP formulation above represents a very large integer programming prob-
lem, since the number of feasible routes increases exponentially with the number of
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customers. Therefore, it becomes difficult to solve optimally even in the case of rela-
tively small problems. However, the advantage of the PIRP formulation is that its LP
relaxation typically provides a good lower bound on the optimal value of the problem,
so that we can often use the optimal solution of its LP relaxation to find a good integer
solution.

4 Algorithm

In this section, we propose a heuristic algorithm which can obtain a good solution for
PIRP. Since the column generation method is an important component of this algo-
rithm, we call it the column generation-based heuristic algorithm. By relaxing the
binary variables in the PIRP formulation to continuous variables between 0 and 1, we
obtain its LP relaxation, denoted as L P(P I R P). Because Constraints (2) of the PIRP
formulation indirectly specify that θr t ≤ 1, it is not necessary to include θr t ≤ 1 in
L P(P I R P).

4.1 Column generation approach

The main difficulty with solving L P(P I R P) is that its size is very large. To over-
come this, we use the column generation method. The general idea of this method is to
solve L P(P I R P) with a small but meaningful subset of the feasible routes, forming
a so-called Restricted Master Problem (RMP). The optimal dual values of RMP are
used to determine whether there exist other feasible routes that can reduce the objec-
tive value. If potentially improving routes exist, we add them to RMP and re-solve
L P(P I R P). This process is repeated until the optimal solution of L P(P I R P) is
found [11].

In order to formulate the pricing problem used to generate the potentially improving
routes in the column generation process, we study the dual problem of L P(P I R P).
The dual is as follows:

(D) max
∑
i∈N

∑
t∈T

(ditπi t − ϕi t − uitωi t ) − |K |
∑
t∈T

υt −
∑
i∈N

Ii0πi1 (9)

Subject to

Cμr t −
∑
i∈N

αirϕi t − υt ≤ cr ∀r ∈ R, t ∈ T (10)

αirπi t − αirμr t ≤ 0 ∀r ∈ R, i ∈ N , t ∈ T (11)

−πi t + πi t+1 − ωi t ≤ hit ∀i ∈ N , t < |T | − 1

−πi t − ωi t ≤ hit ∀i ∈ N , t = |T | (12)

μr t , ϕi t , ωi t , υt ≥ 0 ∀i ∈ N , t ∈ T, r ∈ R (13)

In the above linear programming problem, Constraints (10), (11) and (12) cor-
respond to the primal variables θr t , airt and Ii t , respectively. The dual problem (D)
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specifies that when a route is added to RMP, new variables and new constraints must be
added to RMP. Consequently, setting up the pricing problem for the PIRP formulation
is not straightforward. In general, combining column generation and row generation
is a complicated process. Fortunately, in this situation, the dual problem can be sim-
plified so that variables μr t are not included, a step that makes solving L P(P I R P)

by column generation much easier. In particular, we claim that the following reduced
dual problem is equivalent to (D).

(RD) max
∑
i∈N

∑
t∈T

(ditπi t − ϕi t − uitωi t ) − |K |
∑
t∈T

υt −
∑
i∈N

Ii0πi1 (14)

Subject to

C max
i∈r

(0, πi t ) −
∑
i∈N

αirϕi t − υt ≤ cr ∀r ∈ R, t ∈ T (15)

−πi t + πi t+1 − ωi t ≤ hit ∀i ∈ N , t = 1, . . . , |T | − 1

−πi t − ωi t ≤ hit ∀i ∈ N , t = |T | (16)

ϕi t , ωi t , υt ≥ 0 ∀i ∈ N , t ∈ T (17)

In (RD), the constraints involving variables μr t are eliminated. This projection
step introduces Constraints (15), which are a combination of Constraints (10) and (11)
in (D).

Proposition 1 (RD) has the following properties:

1. If (ϕ∗, π∗, ω∗, υ∗) is an optimal solution of (RD), then there exists μ∗ such that
(ϕ∗, π∗, ω∗, υ∗, μ∗) is an optimal solution of (D).

2. If (ϕ∗, π∗, ω∗, υ∗, μ∗) is an optimal solution of (D), then (ϕ∗, π∗, ω∗, υ∗) is
an optimal solution of (RD).

3. Z∗
D = Z∗

R D where Z∗
D, Z∗

R D are the optimal objective values of (D) and (RD),
respectively.

Proof In the system of the linear inequalities of (D), we have the following inequali-
ties:

0 ≤ μr t ∀ r, t

πi t ≤ μr t ∀ i, r, t if αir = 1∑
i∈N

αirϕi t + υt + cr

C
≥ μr t ∀ r, t

As a result of Fourier–Motzkin elimination, the above system of inequalities are

equivalent to inequalities max
i∈r

{0, πi t } ≤
∑

i∈N αir ϕi t +υt +cr
C ∀r, t . This implies that

the linear inequalities of (D) and (RD) are equivalent. Since (D) and (RD) have the
same objective function, we obtain Proposition 1.1 and 1.2. Proposition 1.3 is a direct
result of Propositions 1.1 and 1.2.
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Proposition 1 implies that (RD) and (D) are equivalent. Because constraints are
added in (RD) only when a new route r is introduced into RMP, we exploit (RD) to
construct the pricing problem. In particular, let

(
ϕ̂, μ̂, π̂ , ω̂, υ̂

)
denote a dual optimal

solution of RMP. If
(
ϕ̂, μ̂, π̂ , ω̂, υ̂

)
satisfies Constraints (15), (16) and (17), solving

RMP provides an optimal solution of L P(P I R P). Otherwise, there must exists one
route r and one time period t ∈ T such that C max

i∈r

(
0, π̂i t

) − ∑
i∈r ϕ̂i t − υ̂t > cr .

The pricing problem is to find one route r in one time period t ∈ T that achieves the
optimal value of the following:

c∗ = min
r∈R, t∈T

{
cr +

∑
i∈r

ϕ̂i t − C max
i∈r

(
0, π̂i t

) + υ̂t

}
(18)

Next, we show in Proposition 2 that the lower bound of the PIRP formulation
obtained by solving L P(P I R P) is not as strong as that which appears in the column
generation literature for VRP. This lower bound is obtained as the optimal objective
value of RMP over the set of direct routes.

Proposition 2 When transportation costs satisfy the triangle inequality, solving RMP
with the set of all direct routes gives us an optimal solution of L P(P I R P).

Proof Let DR = {(0, i, 0) : i ∈ N } denote the set of all direct routes, where node 0
represents the depot. We claim that c∗ ≥ 0 where c∗ is the optimal objective value of
the pricing problem (18) when the subset of feasible routes R̄ of RMP is equal to DR.

Consider a fixed time t . Given a route r ∈ R, we define k = argmax
i∈r

(π̂i t ) and

consider rk to be a direct route from the depot to customer k. Since cr ≥ crk by
the triangle inequality, ϕi t ≥ 0, and max

i∈r

(
0, π̂i t

) = max
(
0, π̂kt

)
by definition, we

obtain that cr + ∑
i∈r ϕ̂i t − C max

i∈r

(
0, π̂i t

) + υ̂t ≥ crk + ϕ̂kt − C max
(
0, π̂kt

) + υ̂t .

Thus if rk ∈ R̄, we conclude that crk + ϕ̂kt − C max
(
0, π̂kt

) + υ̂t ≥ 0 and therefore
cr + ∑

i∈r ϕ̂i t − C max
i∈r

(
0, π̂i t

) + υ̂t ≥ 0 ∀r ∈ R. This implies that c∗ ≥ 0. We

conclude that RMP yields an optimal solution of L P(P I R P) when R̄ = DR.

4.2 Strengthening the PIRP formulation

We now introduce the following notation:

xit : Number of visits to customer i ∈ N in time period t ∈ T, xit = ∑
r∈R αirθr t .

yit : Quantity to deliver to customer i ∈ N in time period t ∈ T, yit = ∑
r∈R αir air t .

Proposition 2 implies that we must strengthen the PIRP formulation to yield a better
lower bound. Naturally, we can tighten the PIRP formulation by using the following
valid inequalities:

1. There must be at least one delivery to a customer during τmax time periods.
Therefore, the following inequalities are valid for the PIRP formulation:∑

t≤τ<t+τmax

xiτ ≥ 1 ∀i ∈ N , t ≤ |T | − τmax + 1 (19)
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2. It is impossible for a vehicle to deliver more than the total demand of the custom-
ers it visits during τmax consecutive time periods. Therefore, Constraints (3) can
be strengthened as follows:

∑
i∈N

αir air t ≤ min

{
C,

∑
i∈N

αir dmax
it

}
θr t ∀r ∈ R, t ∈ T (20)

Next, we derive three families of valid inequalities for the PIRP formulation and
show that valid inequalities (19) and (20) are dominated by these families.

Proposition 3 The inequalities

ditθr t + Ii t ≥ αir air t ∀r ∈ R , i ∈ N , t ∈ T (21)

are valid for the PIRP formulation.

Proof We know that Ii t ≥ 0 ∀i ∈ N and ∀t ∈ T . If θr t = 0, then airt = 0 ∀i ∈ r .
Therefore, ditθr t + Ii t ≥ airt ∀r ∈ R , i ∈ r, t ∈ T . If θr t = 1, then ditθr t + Ii t =
dit + Ii t = ∑

r∈R αir air t + Ii t−1 ≥ ∑
r∈R αir air t ≥ αir air t .

Since ditθr t + Ii t ≤ dit +uit = dmax
it , we obtain airt ≤ dmax

it ∀i ∈ N , ∀r ∈ R, ∀t ∈
T and

∑
i∈N αir air t ≤ ∑

i∈N dmax
it . Therefore, it follows that valid inequalities (21)

and Constraints (3) dominate inequalities (20).

Proposition 4 For any l ∈ T, L = {1, . . . , l}, S ⊆ L, the inequalities∑
t∈S

yit ≤
∑
t∈S

di
tl xi t + Ii t (22)

are valid for the PIRP formulation.

Proof Inequalities (22) are derived directly from (l, S) inequality [4] when the PIRP
formulation is relaxed to the uncapacitated lot sizing problem.

Observing that upper inventory levels at the customer sites are limited by the perish-
ability constraints, we develop the third family of valid inequalities in Proposition 5.
It is easy to verify that valid inequalities (23) are stronger than inequalities (20).

Proposition 5 The inequalities

Iik−1 +
∑
t∈S

yit ≤ uik−1 +
∑
t∈S

min
{

di
kt + uit − uik−1, di

kl − uik−1, di
tl

}
xit

+ Ii t∀ k, l ∈ T, l ≥ k + τmax − 2, S ⊆ [k, l], i ∈ N (23)

are valid for the PIRP formulation.
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Proof Inequalities (23) are derived from the valid inequalities of the lot sizing prob-
lem with inventory bounds [3] when the PIRP formulation is relaxed to the lot sizing
problem with inventory bounds.

A result similar to Proposition 1 can be proved when introducing Constraints (22) and
(23) to the PIRP formulation. However, the coefficients of pricing problem (18) are
changed to reflect the addition of new dual variables associated with such constraints.
The general form of the pricing problem that results when these valid inequalities are
added is as follows:

c∗ = min
r∈R, t∈T

{
cr −

∑
i∈r

	i t − max
i∈r

(0,
i t ) + ϒt

}
(24)

where 	i t ,
i t and ϒt are functions of the optimal dual variables of L P(P I R P)

(See Appendix A). This form of the pricing problem is equivalent to the following
minimization problem:

c∗ = min
t∈T

{
c∗

t + ϒt
}

where c∗
t = min

r∈R,t∈T

{
cr −

∑
i∈r

	i t − max
i∈r

(0,
i t )

}

The problem of finding c∗
t reduces to a profitable tour problem (PTP) with profit

	i t at customer i when 
i t = 0 for all i ∈ r [10]. Therefore, pricing problem (24)
is at least as difficult as PTP. In addition, since PTP is a generalization of TSP, the
general form of the pricing problem is an NP-hard problem.

Now we discuss separation algorithms to find the inequalities (21), (22) and (23)
that violate a fractional optimal solution of L P(P I R P). Because constraints (21) are
satisfied whenever θr t = 0, the associated separation problem is equivalent to finding
violated constraints with θr t > 0. Since the number of routes with θr t > 0 is small,
the separation algorithm can be based on an enumeration procedure. For constraints
(22) and (23), we adopt the polynomial-time separation algorithms in [4] and [3].

4.3 Implementation

The column generation-based heuristic algorithm consists of two steps. In the first
step, L P(P I R P) with valid inequalities (22) and (23) is solved optimally by the col-
umn generation method. The valid inequalities (21) are only added to L P(P I R P)

when we do no use the column generation method to solve LP relaxation. The valid
inequalities that cut off the current fractional optimal solution of L P(P I R P) are
added repeatedly in the LP relaxation until no violated inequalities are found. The
second step tries to find a good solution (upper bound) for PIRP by using CPLEX to
solve the PIRP formulation with R̄, where R̄ is a subset of feasible routes in RMP.
Because the number of routes in R̄ is small, the computational workload is typically
tractable. The heuristic algorithm described above was implemented in C++ using
ILOG Concert 2 and the CPLEX 10.1 solver [21].
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In this implementation, we consider two strategies for the addition of new col-
umns to RMP: (1) adding a route with the most negative reduced cost to R̄ as in
Dantzig’s rule; (2) adding the most negative route in each time period to R̄. Our
preliminary computational experiments showed that under option (2) RMP converges
to an optimal solution of L P(P I R P) faster. Therefore, option (2) was selected in our
algorithm.

The initial subset of feasible routes of RMP should be able to produce a feasi-
ble solution for PIRP. Otherwise, the valid inequalities added to PIRP may cause
L P(P I R P) to be infeasible. In order to avoid this problem, we must develop a heu-
ristic algorithm to generate a feasible solution for PIRP and employ this solution
to initialize R̄. The details of the heuristic algorithm are presented in Appendix B.
Note that the main focus of the heuristic algorithm is to find a feasible solution
quickly. We observe that while the objective value of the initial feasible solu-
tion provided by this algorithm is far from the optimal objective value of PIRP,
this does not cause a problem because the initial solution does not have much
impact on the final result produced by the column generation-based heuristic
algorithm.

5 Computational experiments

In this section, we perform a numerical evaluation of the column generation-based
heuristic algorithm. The data used in our computational experiments is generated sim-
ilarly to that in [6]. However, we have to introduce or modify some parameters to fit
PIRP. In particular, the data was generated as follows:

– Number of customers: 8, 30, 40 and 50.
– Demand of a customer per time period: random integer in the interval [10, 100].
– Transportation cost per distance unit p: random number in the interval [0.1, 0.2].
– Location (Xi , Yi ) of customer i : random integer numbers in the interval [0, 500].
– Transportation cost: ci j = p

(√(
Xi − X j

)2 + (
Yi − Y j

)2
)

.

– Inventory cost for customer i : random number in the interval [4.6, 5].
– Capacity of the fleet of vehicles: 110 % of total demand of customers, which is∑

i∈N , t∈T dit .

– Number of vehicles:
⌈ 1.1

C

{∑
i∈N , t∈T dit

}⌉
.

– Beginning inventory Ii0: random integer in the interval [0, di1 + di2].
– Number of time periods: 5.

In all situations, the random data was generated in accordance to a uniform distribu-
tion. Ten datasets were generated randomly for the cases of 8 customers, 30 customers,
40 customers and 50 customers, resulting in 40 datasets overall. These datasets were
combined with the following parameters, resulting in a total of 320 instances for
experimental studies.

– Shelf-life τmax : 2 or 3.
– Vehicle capacity C : dmax or 1.5dmax where dmax = max {dit : t ∈ T, i ∈ N }.
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– Objective function of PIRP: (1) Both transportation cost and inventory cost or (2)
Transportation cost only.

In the AMPATH project, goods are delivered weekly. Therefore, we use five work-
ing days as a planning time horizon. Other problems may require a planning time
horizon that is either longer or shorter than this.

5.1 The effectiveness of valid inequalities

Regarding the effectiveness of the three valid inequalities when adding them to the
algorithms, we observe an improvement in the integrality gaps due to each valid
inequality for problems with 8 customers. A summary of these experiments is reported
in Tables 1 and 2. In the third column of these tables, we report the integrality gaps
when no valid inequalities have been added to the LP relaxation, which is 100 ×(
Z∗ − Z L B

)
/Z∗ where Z∗ is the objective value of the best integer solution and

Z L B is the objective value of the original LP relaxation (L P (P I R P)). In the fourth
column, we present the improvement of the integrality gaps when strengthening the

Table 1 Computational results for problems with 8 customers and shelf-life = 2

Dataset C L PGap (%) Gap improvement Number of cuts

Fal1 Fal2 Fal3 AllFals Fal1 Fal2 Fal3 AllFals

1 dmax 12.66 2.86 1.54 3.40 3.61 502 52 93 647
1.5dmax 18.97 2.77 1.76 3.64 3.75 501 74 131 706

2 dmax 12.66 4.06 1.86 4.04 4.63 280 54 87 421

1.5dmax 20.01 3.79 1.84 5.27 5.35 505 77 162 744

3 dmax 13.97 3.08 1.54 4.90 6.03 503 57 102 662

1.5dmax 22.26 2.53 1.55 4.48 5.16 505 76 163 744

4 dmax 21.97 4.95 1.99 5.79 7.82 501 61 115 677

1.5dmax 37.80 3.55 2.02 6.21 6.79 505 84 156 744

5 dmax 13.54 3.28 1.49 3.66 3.78 501 56 97 654

1.5dmax 22.82 3.58 1.73 5.23 5.82 505 83 161 749

6 dmax 15.22 3.09 1.43 4.36 4.80 502 53 85 640

1.5dmax 23.21 2.98 1.61 6.10 6.98 505 75 164 744

7 dmax 18.39 3.82 1.74 3.92 3.84 451 51 85 587

1.5dmax 24.81 4.98 2.12 6.43 6.49 505 75 162 742

8 dmax 16.37 3.55 1.78 3.69 4.26 276 53 91 420

1.5dmax 22.24 4.31 1.95 5.05 5.10 502 81 160 743

9 dmax 17.34 3.88 1.71 4.83 5.54 502 52 98 652

1.5dmax 24.21 3.14 1.90 4.27 4.57 505 83 172 760

10 dmax 20.36 4.18 1.86 5.06 5.81 502 58 116 676

1.5dmax 28.17 3.20 2.04 6.31 6.94 505 89 163 757

Fal1 Family 1, Fal2 Family 2, Fal3 Family 3, AllFals all Families
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Table 2 Computational results for problems with 8 customers and shelf-life = 3

Dataset C L PGap (%) Gap improvement Number of cuts

Fal1 Fal2 Fal3 AllFals Fal1 Fal2 Fal3 AllFals

1 dmax 13.31 3.52 1.65 2.55 4.08 305 52 51 408

1.5dmax 21.32 3.03 1.75 3.07 3.93 501 74 83 658

2 dmax 14.10 4.55 1.90 2.58 5.07 505 54 49 608

1.5dmax 24.10 4.17 2.04 2.93 4.82 505 77 85 667

3 dmax 14.73 2.96 1.59 2.40 3.67 503 56 56 615

1.5dmax 22.41 3.81 1.76 1.15 6.26 505 76 80 661

4 dmax 24.69 4.27 2.04 2.73 4.95 481 61 57 599

1.5dmax 38.26 4.06 2.20 4.28 7.56 485 84 82 651

5 dmax 13.77 3.60 1.53 2.30 4.03 503 56 51 610

1.5dmax 24.50 3.63 1.70 3.05 4.83 505 84 86 675

6 dmax 15.08 3.84 1.46 3.47 5.52 503 52 46 601

1.5dmax 24.97 3.65 1.61 5.48 8.66 505 76 82 663

7 dmax 20.32 4.11 1.78 2.62 4.40 451 51 43 545

1.5dmax 29.41 5.88 2.26 3.98 6.66 455 75 77 607

8 dmax 19.41 4.32 1.86 2.83 5.10 249 53 46 348

1.5dmax 29.75 4.97 2.07 3.63 5.93 501 81 84 666

9 dmax 17.81 3.89 1.65 2.61 4.65 501 52 98 651

1.5dmax 27.92 4.09 1.91 3.37 4.85 505 83 87 675

10 dmax 22.78 4.19 1.86 3.14 5.99 501 58 116 675

1.5dmax 34.30 3.79 1.95 4.73 6.43 505 89 94 688

Fal1 Family 1, Fal2 Family 2, Fal3 Family 3, AllFals all Families

LP relaxation by inequalities (21), which is
(
Z∗ − Z L B

)
/
(

Z∗ − Z L B
f amily1

)
where

Z L B
f amily1 is the objective value of the LP relaxation with valid inequalities (21). Sim-

ilarly, we report the improvement of the integrality gaps when including inequalities
(22) (Family 2), inequalities (23) (Family 3) and all inequalities of the three families
in the LP relaxation in the fifth, sixth, seventh column, respectively. Columns 8–10
show the number of valid inequalities added to the LP relaxation for valid inequalities
of Family 1, 2 and 3, respectively. Column 11 reports the number of valid inequalities
added to the LP relaxation when we apply the valid inequalities of all families to the
PIRP formulation.

In Tables 1 and 2, we observe that the integrality gaps in Column 3 increase with
the shelf-life. These gaps are also higher with the vehicle capacity = 1.5dmax . The
computational results show that the valid inequalities improve substantially the lower
bounds on the optimal objective value of PIRP, especially when the vehicle capacity
is 1.5dmax .

A comparison of the effectiveness of the three families of valid inequalities shows
that the largest improvement in the integrality gaps for shelf-life = 2 is made by valid
inequalities (23). However, for shelf-life = 3, valid inequalities (21) play the most
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Table 3 Computational results for problems with 8 customers

Dataset C Objective with inv. cost Objective without inv. cost

Shelf-life = 2 Shelf-life = 3 Shelf-life = 2 Shelf-life = 3

Zcol−L B
Zcol

Zcol−Z∗
Zcol

Zcol−L B
Zcol

Zcol−Z∗
Zcol

Zcol−L B
Zcol

Zcol−Z∗
Zcol

Zcol−L B
Zcol

Zcol−Z∗
Z∗

(%) (%) (%) (%) (%) (%) (%) (%)

1 dmax 3.52 0.28 3.90 0.02 6.34 0.88 5.80 1.14

1.5dmax 4.97 2.13 4.99 2.10 4.04 3.27 3.85 2.08

2 dmax 8.58 0.00 6.57 0.01 11.73 0.53 9.74 0.00

1.5dmax 8.46 0.64 8.77 1.01 10.55 3.67 9.52 3.51

3 dmax 4.57 1.19 5.11 0.00 4.60 1.79 4.81 0.03

1.5dmax 6.27 1.80 6.46 1.98 5.93 3.42 4.86 3.00

4 dmax 7.15 3.76 7.49 0.00 10.14 1.42 11.09 0.01

1.5dmax 6.34 3.81 5.12 1.36 3.44 3.05 5.86 3.70

5 dmax 6.87 1.83 4.16 1.55 8.12 2.16 2.39 0.00

1.5dmax 5.00 0.16 5.26 0.55 7.88 3.39 5.34 2.77

important role in reducing the integrality gap. In all situations, the impact of valid
inequalities (22) on strengthening the lower bounds is the least significant.

We also observe that when adding all three families of valid inequalities to the
PIRP formulation concurrently, the LBs are stronger but the degree of improvement
depends on the specific testing problem. In general, the gap between this LB and Z∗
is improved a little when compared with the best one among columns 4, 5 and 6.
However, for some special cases such as datasets 3, 4 or 6 in Table 2, a significant
improvement is noted when valid inequalities of all three families are included in the
PIRP formulation.

5.2 Algorithm performance for small problems

We first examine the quality of the best feasible solution Zcol obtained through our
heuristic by comparing it with the optimal solution Z∗ for the datasets with 8 custom-
ers. Although the number of feasible routes in the case of 8 customers is only 255,
the time for CPLEX to solve PIRP to optimality is long for some of the instances.
In the tables below, Z∗ represents the solution obtained by the CPLEX Solver within
6,000 s.

Table 3 shows the relative gaps between L B and Zcol and the relative gaps be-
tween Zcol and Z∗ for the datasets with 8 customers. In this table, L B represents
the lower bound on the optimal objective value of PIRP, which is the optimal solu-
tion of L P (P I R P) with valid inequalities (22) and (23). These results indicate that
the gaps between Zcol and Z∗ are very small for almost all instances. This suggests
that the gaps between L B and Zcol are caused mainly by the difference between L B
and Z∗.
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5.3 Algorithm performance for large problems

The pricing problem is a hard combinatorial problem because it contains a travel-
ing salesman component. Therefore, solving the pricing problem optimally is com-
putationally expensive. The column generation method does not require finding an
optimal solution to the pricing problem at each iteration. As long as a route with a
negative pricing value is found, the corresponding column can be added to R̄. There-
fore, we first try to obtain a good solution to the pricing problem heuristically. In
practice, it is common to consider only feasible routes whose distance is smaller than
a given threshold or that visit a small number of customers. In our study, based on
the AMPATH project, we never have a delivery route with more than five customers.
Therefore, in order to reduce the number of feasible routes that are generated, we con-
sider feasible routes with no more than five customers in the PIRP formulation. Even
with this restriction, the number of feasible routes is still quite large. For instance,
in problems with 50 customers, the number of feasible routes under consideration is
2,369,935.

The details of this heuristic algorithm are presented in Appendix C. In case the
heuristic fails to find an appropriate route, an enumeration procedure is used to find
an optimal solution to the pricing problem. Note that we may extend the heuristic
algorithm to find routes with more than 5 customers. By doing this, we allow more
general routes to be included in our model.

In the column generation approach, a large amount of time is spent on L P(P I R P),
because it has to be solved at each iteration. The size of L P(P I R P) is very large even
with a small number of feasible routes. For instance, if PIRP has 50 customers, 5 time
periods and 100 routes in R̄, the number of variables in L P(P I R P) is approximately
26,000. In order to reduce the computational time of solving L P(P I R P), we imple-
ment the following two features in the algorithm. Firstly, instead of solving the primal
problem L P(P I R P), we solve its dual problem (RD) and evaluate the pricing prob-
lem using the optimal solution of (RD). Secondly, we keep track of inactive routes,
which are defined as routes with θr t = 0 at an optimal solution of L P(P I R P). After
a certain number of iterations, if an inactive route in R̄ has not become active, it will
be removed from RMP.

As mentioned in the implementation section, the heuristic solution is found by
solving PIRP over the set of feasible routes R̄. In our computational experiments, the
amount of time to obtain Zcol by CPLEX was restricted to at most 2 h, except for
problems involving 50 customers, in which case the computation time was restricted
to at most 3 h.

Table 4 shows the results for the heuristic algorithm when the objective function
includes inventory cost, while Table 5 shows the results for the heuristic algorithm
when the objective function does not include inventory cost. Comparing the results in
these tables, it is evident that when the objective function does not include inventory
cost, the gaps between L B and Zcol are usually smaller. It is also evident that the
heuristic algorithm tends to obtain a better solution when the shelf-life is 3. In addi-
tion, the results indicate that when the customer demand per time period is small in
comparison to the vehicle capacity, the algorithm generates more cuts and takes more
time to obtain LB. At the same time, the integrality gaps of these problems are higher.
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This suggests that PIRP becomes harder when the customer demand per time period
is small in comparison to the vehicle capacity.

6 Conclusions and future research

This paper introduces an inventory routing problem for perishable goods that integrates
inventory and routing decisions in a optimization model, and proposes a column gen-
eration-based heuristic algorithm to solve it. Computational results demonstrate that
our heuristic algorithm is effective. We believe that our solution approach can be used
for other inventory routing problems.

This research is a first step toward developing a branch-and-cut-and-price algo-
rithm for this challenging problem. In the future, we will focus on developing more
effective families of cuts and finding an adequate branching strategy. We believe that a
branch-and-cut-and-price algorithm could work very effectively for problems of small
or medium size. For large problems, heuristic algorithms would probably have to be
developed. Therefore, another line of future research is to develop effective heuristic
algorithms for PIRP that are capable of solving large problems.

Appendix A: The general form of the pricing problem

Let β, σ be the dual variables associated with valid inequalities (22), (23), respectively.
Then 	i t ,
i t , ϒt in Eq. (24) are calculated as follows:

	i t = −ϕi t +
∑
l∈T

∑
s∈[1,l]

∑
t∈s

∑
i∈N

di
tlβils

+
∑
l∈T

∑
k∈T,k≥l+τmax −1

∑
s∈[l,k]

∑
t∈s

∑
i∈N

min
{

di
kt + uit − uik−1, di

kl − uik−1, di
tl

}
σilks


i t = min

{
C,

∑
i∈r

dmax
it

}

×
⎧⎨
⎩πi t −

∑
l∈T

∑
s∈[1,l]

∑
t∈s

∑
i∈N

βils −
∑
l∈T

∑
k∈T,k≥l+τmax −1

∑
s∈[l,k]

∑
t∈s

∑
i∈N

σilks

⎫⎬
⎭

ϒt = υt

Appendix B: Procedure to obtain a feasible solution

The main purpose of the heuristic is to create a feasible solution to initialize set R
′
.

The algorithm is described as follows:

Step 1: Initialization: Set t = 0 and α = 0.8.
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Step 2: If t > |T |, stop algorithm; Otherwise, set delmin
it = max {0, dit − Ii t };

delmax
it = max

{
0, dmax

it − Ii t
}
; S0 = {

i ∈ N : delmin
it = 0

}
: set of custom-

ers who have to deliver in time period t ; S1 = N\S0: set of customers who
do not have to deliver in time period t .

Step 3: Open new route r = {0, 0}; Set Clef t = C ;
Loop 1: If Cle f t = 0 or S0 is empty, exit Loop 1; Otherwise, without

loss of generality, assume that delmin
i1t < delmin

i2t if i1 ≤ i2 Set

i∗ = {
max i : delmin

it ≤ Clef t
}
; If such an i∗ does not exist, exit

Loop 1; Set yit = min
{
max

{
αdelmax

it , delmin
it

}
, Cle f t

}
, S0 =

S0\i, Clef t = Clef t − yit ; Insert customer i in route r If the
number of customers in route r is greater than 5, go to Step 3.
Otherwise, go to Loop 1.

Loop 2: If Clef t = 0 or S1 is empty, exit Loop 2; Otherwise, select
i randomly from S1; Set yit = min

{
Clef t , delmax

it

}
, S1 =

S1\i, Clef t = Clef t − yit ; Insert customer i in route r ; If the
number of customers in route r is greater than 5, go to Step 3.
Otherwise, go to Loop 2. Attempt to determine a short tour by
applying GENIUS to r . Repeat Step 3 until number of routes is
greater than |K | or S1 is empty.

Step 4: If S0 is not empty, go back to Step 1 and reduce α by 20 %. Otherwise, Set
Ii t = yit − dit + Ii t−1; Set t = t + 1; Go to Step 2.

Appendix C: Heuristic algorithm for pricing problem

Since the pricing problem is time-consuming to solve optimally, we propose a heuris-

tic algorithm to solve the pricing problem min
r∈R

{
cr − ∑

i∈r 	i − max
i∈r

(0,
i )

}
. The

details of the algorithm are given below.

Step 1 (Route initiation): Set r = {0, 0};
Find i ∈ N such that {c0i + ci0 − 	i − max (0,
i )} is minimized; Update
r = {0, i, 0}.

Step 2 (Insert): Set 
max = max
i∈r

(0,
i );

For customer i ∈ N\r , let ei = min
l, k

(cli + cik − clk) where l and k are

two consecutive customers in route r . Find i ∈ N\r such that pi ={
ei − 	i − [
i − 
max ]+

}
is minimized. If pi < 0, insert customer i in

route r and apply GENIUS [17] to find the shortest tour. Otherwise, go to
Step 3. If the number of customers in route r is greater than 5, go to Step 3.
Otherwise, repeat Step 2.

Step 3 (Delete): Find i ∈ r such that

di = {
cik + cil − ckl − 	i − [
i − 
max ]+

}
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is maximized where 
max = max
j∈r, j �=i

{

 j

}
; l and k are two customers before

and after customer i in route r . If di > 0, then remove i from route r and
apply GENIUS. Go to Step 2. Otherwise, the heuristic is stopped.
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