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Abstract Several methods exist for solving the interval linear programming (ILP)
problem. In most of these methods, we can only obtain the optimal value of the objec-
tive function of the ILP problem. In this paper we determine the optimal solution set
of the ILP as the intersection of some regions, by the best and the worst case (BWC)
methods, when the feasible solution components of the best problem are positive.
First, we convert the ILP problem to the convex combination problem by coefficients
0 ≤ λ j , μi j , μi ≤ 1, for i = 1, 2, . . . , m and j = 1, 2, . . . , n. If for each i, j ,
μi j = μi = λ j = 0, then the best problem has been obtained (in case of minimization
problem). We move from the best problem towards the worst problem by tiny varia-
tions of λ j , μi j and μi from 0 to 1. Then we solve each of the obtained problems. All
of the optimal solutions form a region that we call the optimal solution set of the ILP.
Our aim is to determine this optimal solution set by the best and the worst problem
constraints. We show that some theorems to validity of this optimal solution set.

Keywords Convex combination problem · Interval linear programming ·
Interval equations system · Solution set

1 Introduction

In the real world, many problems are uncertain (interval) problems. These problems
have usually been expressed by certain numbers. A certain number can represent one
of an infinite values of an interval number. Therefore, using certain numbers to express
uncertain problems is not complete. The interval linear programming (ILP) is a method
for decision making under uncertainty.
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One of the essential points in the ILP problems is basis stability. Basic difficulty in
the ILP problem such as calculating the optimal solution set may be computationally
very expensive. However, by holding basis stability, the difficulty becomes much eas-
ier to solve and so we can obtain all of the possible solutions set and optimal values
range [5,7].

An interval number x is generally represented as [x, x] where x ≤ x . If x = x ,
then x will be degenerate.

If A and A are two matrices in R
m×n and A ≤ A, then the set of matrices

A = [A, A] = {A| A ≤ A ≤ A},

is called an interval matrix, and the matrices A and A are called its bounds. Center
and radius matrices have been defined as

Ac = 1

2
(A + A), �A = 1

2
(A − A).

A square interval matrix A is called regular if each A ∈ A is nonsingular.
A special case of an interval matrix is an interval vector which is a one-column

interval matrix

X = {X | X ≤ X ≤ X},

where X , X ∈ R
n .

Interval arithmetic is defined in [1].
A family of ILP problems is defined as follows:

min cT x

s.t. Ax ≤ (=≥)b

x ≥ 0,

where c ∈ cI ⊆ R
n , A ∈ AI ⊆ R

m×n , b ∈ bI ⊆ R
m and cI , AI and bI are interval

sets.
Many researchers have worked on several cases of linear programming problem

with interval parameters, [2–4,6,11]. Generally, in most of these methods, we obtain
the optimal value of objective function of the ILP problem. These methods do not give
any information about the optimal solutions of the ILP problem.

In this paper we determine the optimal solution set of the ILP problem by the best
and the worst cases (BWC) method, when the feasible solution components of the best
problem are positive. Here, we convert the ILP problem to the convex combination
problem by coefficients 0 ≤ λ j ≤ 1, 0 ≤ μi j ≤ 1 and 0 ≤ μi ≤ 1 for i = 1, 2, . . . , m
and j = 1, 2, . . . , n. If for each i, j , μi j = μi = λ j = 0, then the best problem has
been obtained(in case of minimization problem). We move from the best problem
towards the worst problem by tiny variations of λ j , μi j and μi from 0 to 1. Then
we solve each of the obtained problems. All of the optimal solutions form a region
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that we call the optimal solution set of the ILP. Also, we compare this method with
Enhanced-ILP model presented by Zhou et al. [12].

2 Review of ILP

In this section, we review the ILP problem and the optimal value bounds. Also, we
define basis stability and its conditions so that under these conditions we can confi-
dently determine the optimal solution set of the ILP.

2.1 Basis stability

B-stability (basis stability) of the ILP problem is important, because it describes the
set of all possible optimal solutions [7] and so we can derive the optimal value range.
Hence the optimal solution set of the ILP problem will be subset of the optimal solu-
tions generated by B-stability.

Definition 2.1 The problem min{cT x : Ax = b, x ≥ 0} where c ∈ cI ⊆ R
n ,

A ∈ AI ⊆ R
m×n and b ∈ bI ⊆ R

m , is called B-stable with basis B if B is an optimal
basis for each characteristic problem. Let B ⊆ {1, 2, . . . , n} be an index set such that
AB is non-singular, where AB denotes the restriction of A to the columns indexed by
B. Similarly, N = {1, 2, . . . , n}\B stands for non-basic variables and AN denotes the
restriction to non-basic indices. B can be computed by solving a version of ILP with
the center values.
In general, B-stability conditions have been presented in [5,7]. These conditions are
as follows [5]:

(1) (regularity) AB is regular.
(2) (feasibility) The solution set of the interval system ABxB = b is non-negative.
(3) (optimality) AB is optimal.

These conditions can be obtained from the following theorems.

Theorem 2.1 [8] If ρ(|(Ac)−1
B |�AB ) < 1, then AB is regular, that ρ(.) denotes the

spectral radius.

Theorem 2.2 [8] If max1≤i≤n(|(Ac)−1
B |�AB )i i ≥ 1, then AB is not regular.

Theorem 2.3 [9] If the interval vector r is an enclosure to the solution set of system
ABxB = b, then:

r i = min

{
−x∗

i + (xc
i + |xc

i |)Mii ,
1

2Mii − 1
(−x∗

i + (xc
i + |xc

i |)Mii )

}
,

r i = max

{
x∗

i + (xc
i − |xc

i |)Mii ,
1

2Mii − 1
(x∗

i + (xc
i − |xc

i |)Mii )

}
,

where

M = (I − |(Ac
B)−1|�AB )−1, xc = (Ac

B)−1bc, x∗ = M(|xc| + |(Ac
B)−1|�b),

and Ac
B is non-singular and ρ(|(Ac

B)−1|�A) < 1.
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Theorem 2.4 [5] Let diag(q) denotes the diagonal matrix with entries q1, . . . , qm.
If for each q ∈ {±1}m, the solution set of system

⎧⎪⎪⎨
⎪⎪⎩

((Ac
B)T − (�AB )T diag(q))y ≤ cB

−((Ac
B)T + (�AB )T diag(q))y ≤ −cB

diag(q)y ≥ 0

(2.1)

lies in the solution set of system

{
((Ac

N )T + (�AN )T diag(q))y ≤ cN

diag(q)y ≥ 0.
(2.2)

Then, optimality condition is valid.

Remark 2.1 Since there are no dependencies, the constraints Ax ≤ b, x ≥ 0 are
equivalent to Ax + I y = b, x, y ≥ 0.

2.2 ILP and convex combination problem

In this section, we define the ILP, the convex combination problems and the interval
hull.

Definition 2.2 An ILP problem is defined as

min z =
n∑

j=1

[c j , c j ]x j (2.3)

s.t.
n∑

j=1

[ai j , ai j ]x j ≤ [bi , bi ] i = 1, 2, . . . , m

x j ≥ 0 j = 1, 2, . . . , n.

We call problems (2.4) and (2.5) as characteristic version and convex combination
problem of (2.3):

min z1 =
n∑

j=1

c j x j (2.4)

s.t.
n∑

j=1

ai j x j ≤ bi i = 1, 2, . . . , m

x j ≥ 0 j = 1, 2, . . . , n,
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min z2 =
n∑

j=1

[(1 − λ j )c j + λ j c j ]x j (2.5)

s.t.
n∑

j=1

[(1 − μi j )ai j + μi j ai j ]x j ≤ (1 − μi )bi + μi bi i = 1, 2, . . . , m

x j ≥ 0 j = 1, 2, . . . , n,

where c j ∈ [c j , c j ], ai j ∈ [ai j , ai j ], bi ∈ [bi , bi ] and 0 ≤ λ j ≤ 1, 0 ≤ μi j ≤
1, 0 ≤ μi ≤ 1 for i = 1, 2, . . . , m and j = 1, 2, . . . , n.

Lemma 2.1 Two problems (2.4) and (2.5) are equivalent.

Proof Its Proof is straightforward and we omit it.

Theorem 2.5 [10] Let x j ≥ 0 for each j , then for interval inequality

n∑
j=1

[a j , a j ]x j ≤ [b, b],

∑n
j=1 a j x j ≤ b and

∑n
j=1 a j x j ≤ b are the largest and smallest feasible regions

respectively.

Theorem 2.6 [2] For the ILP problem (2.3), the best and the worst optimal values
of the objective function are obtained by solving the following problems respectively.

min z =
n∑

j=1

c j x j

s.t.
n∑

j=1

ai j x j ≤ bi i = 1, 2, . . . , m

x j ≥ 0 j = 1, 2, . . . , n,

min z =
n∑

j=1

c j x j

s.t.
n∑

j=1

ai j x j ≤ bi i = 1, 2, . . . , m

x j ≥ 0 j = 1, 2, . . . , n.

Definition 2.3 Let AI be a n × n interval matrix and bI is an interval vector. For
an interval linear system AI x ≤ bI , we define the set S as

S = {x| Ax ≤ b, A ∈ AI , b ∈ bI }.

the narrowest interval vector containing the set S is called the interval hull of S. This
set is generally not an interval vector. It is usually difficult to describe S. Because S
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is generally so complicated in shape [4, 2nd chapter], it is usually impractical to use
it. Instead, it is a common practice to seek the interval vector xI containing S that the
narrowest possible interval components. This interval vector is called the hull of the
solution set or simply the hull.

Theorem 2.7 If x◦ = (x◦
1 , x◦

2 , . . . , x◦
n)t is an optimal solution and z◦ is correspond-

ing the objective function value of the problem (2.4), then z◦ is placed on [z∗, z∗],
where z∗ and z∗ are the best and the worst optimal values of the objective function.

Proof Let x∗ = (x∗
1, x∗

2, . . . , x∗
n)t and x∗ = (x∗

1, x∗
2, . . . , x∗

n)t be optimal solutions
of the best and the worst problems respectively.

Since the feasible region of the best problem is the largest feasible region, then x◦
is a feasible solution of the best problem and furthermore x∗ is the optimal solution
of the best problem, therefore

∑n
j=1 c j x◦

j ≥ ∑n
j=1 c j x∗

j = z∗.
For all j, c j ≥ c j , therefore z◦ = ∑n

j=1 c j x◦
j ≥ ∑n

j=1 c j x◦
j , and so z◦ ≥ z∗.

Since the feasible region of the worst problem is the smallest feasible region, then
x∗ is a feasible solution of the problem (2.4) and furthermore x◦ is the optimal solution
of the problem (2.4), therefore z◦ = ∑n

j=1 c j x◦
j ≤ ∑n

j=1 c j x∗
j .

For all j, c j ≤ c j , therefore
∑n

j=1 c j x∗
j ≤ ∑n

j=1 c j x∗
j = z∗, and so z◦ ≤ z∗.

Hence z∗ ≤ z◦ ≤ z∗.

Remark 2.2 Let z◦ be an optimal value of the problem (2.4) such that z◦ ∈ [z∗, z∗]
and x◦ is corresponding optimal solution, then its possible that x◦ does not set in hull.
To show this, consider the following interval linear programming problem:

min z = [1, 5]x1 + [3, 4]x2

s.t. [1, 3]x1 + [5, 6]x2 ≥ [3, 5]
[2, 4]x1 + [1, 4]x2 ≥ [1, 4]

x1, x2 ≥ 0.

Optimal values of the best and the worst objective functions consist of z∗ = 1 and

z∗ = 11 and x∗ =
(

1
0

)
, x∗ =

( 5
3

2
3

)
, so the hull set is equal to

(
[1, 5

3 ]

[0, 2
3 ]

)
. One of the

characteristic problems is as follows:

min z = 5x1 + 4x2

s.t. x1 + 5x2 ≥ 5

2.4x1 + 1.6x2 ≥ 3.4

x1, x2 ≥ 0.

The optimal solution is equal to

(
0.8654
0.8269

)
with z∗ = 7.6346. Note that z∗ ∈

[z∗, z∗] = [1, 11], whereas x∗ �∈
(

[1, 5
3 ]

[0, 2
3 ]

)
.
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3 Optimal solution set of the ILP

In this section, we obtain the optimal solution set of the interval linear programming
problem by the best and the worst problem constraints, when the optimal solutions of
the ILP problem are positive. This assumption can be derived from solving the best
problem. If all of the feasible solution components of the best problem, which has the
largest feasible region, are positive, then the feasible solution components and hence
the optimal solution components in all of the convex combination problems and so the
ILP problem are positive. Note that positivity of the feasible solution components of
the best problem can easily be concluded by checking the infeasibility of the system
of inequalities resulted from making each variable zero each time. Firstly, we give
some definitions and theorems in which we require to introduce the optimal solution
set of the ILP.

Definition 3.1 For each 1 ≤ i ≤ m, we define Si and Ti as follows:

Si =
⎧⎨
⎩x :

n∑
j=1

ai j x j ≥ bi

⎫⎬
⎭ , Ti =

⎧⎨
⎩x :

n∑
j=1

ai j x j ≤ bi

⎫⎬
⎭ .

Note that Ti and Si are a set of x in which satisfies the best problem constraints and the
worst problem constraints with inverse sign, respectively. For specifying the optimal
solution set of the ILP, we consider two following cases and theorems.

Case 1 m = n. In this case, we can prove the following necessary and sufficient
condition, which characterize the optimal solution set of the ILP.

Theorem 3.1 Suppose all of the feasible solution components of the best problem are
positive. Then the optimal solution set of the ILP is equal to the intersection of the
region generated by the best problem constraints and the worst problem constraints
with inverse sign.

Proof Let x∗ be optimal solution of problem (2.5). Since all of the feasible solution
components of the best problem are positive and this problem has the largest feasible
region, so all of the feasible and hence optimal solution components of the convex
combination problems are positive too. In view of the fact that m = n, we conclude
that all of the convex combination problem constraints are active at x∗. So for each
i = 1, 2, . . . , m = n

n∑
j=1

[(1 − μi j )ai j + μi j ai j ]x∗
j = (1 − μi )bi + μi bi ,

therefore

n∑
j=1

ai j x∗
j ≤

n∑
j=1

[(1 − μi j )ai j + μi j ai j ]x∗
j = (1 − μi )bi + μi bi ≤ bi ,
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hence x∗ ∈ Ti . Also

n∑
j=1

ai j x∗
j ≥

n∑
j=1

[(1 − μi j )ai j + μi j ai j ]x∗
j = (1 − μi )bi + μi bi ≥ bi ,

hence x∗ ∈ Si . Therefore

x∗ ∈
m⋂

i=1

Ti , x∗ ∈
m⋂

i=1

Si ,

then

x∗ ∈
(

m⋂
i=1

Ti

)⋂ (
m⋂

i=1

Si

)
.

Conversely, suppose

x∗ ∈
(

m⋂
i=1

Ti

)⋂ (
m⋂

i=1

Si

)
,

so for each i = 1, 2, . . . , m = n, x∗ ∈ Si and x∗ ∈ Ti , therefore

n∑
j=1

ai j x∗
j ≥ bi ,

n∑
j=1

ai j x∗
j ≤ bi i = 1, 2, . . . , m.

By definition of center and radius which was introduced in the introduction, we have,

n∑
j=1

(ac
i j + �ai j )x∗

j ≥ bc
i − �bi ,

n∑
j=1

(ac
i j − �ai j )x∗

j ≤ bc
i + �bi ,

therefore

−
⎛
⎝ n∑

j=1

�ai j x∗
j + �bi

⎞
⎠ ≤

n∑
j=1

ac
i j x∗

j − bc
i ≤

n∑
j=1

�ai j x∗
j + �bi ,

then

∣∣∣∣∣∣
n∑

j=1

ac
i j x∗

j − bc
i

∣∣∣∣∣∣ ≤
n∑

j=1

�ai j x∗
j + �bi i = 1, 2, . . . , m.

123



The optimal solution set of the interval linear programming problems 1901

We define y ∈ R
m by

yi =
⎧⎨
⎩

∑n
j=1 ac

i j x∗
j −bc

i∑n
j=1 �ai j x∗

j +�bi

∑n
j=1 �ai j x∗

j + �bi > 0

1
∑n

j=1 �ai j x∗
j + �bi = 0,

for i = 1, 2, . . . , m. Then |yi | ≤ 1 and

n∑
j=1

ac
i j x∗

j − bc
i = yi

⎛
⎝ n∑

j=1

�ai j x∗
j + �bi

⎞
⎠ i = 1, 2, . . . , m,

therefore

n∑
j=1

(ac
i j − yi�ai j )x∗

j = bc
i + yi�bi i = 1, 2, . . . , m.

Since |yi | ≤ 1, so a◦
i j = ac

i j − yi�ai j ∈ [ai j , ai j ] and b◦
i = bc

i + yi�bi ∈ [bi , bi ] and
hence for each i and j , there exist μ◦

i j , μ
◦
i ∈ [0, 1] such that

n∑
j=1

[(1 − μ◦
i j )ai j + μ◦

i j ai j ]x∗
j = (1 − μ◦

i )bi + μ◦
i bi , i = 1, 2, . . . , m.

Therefore x∗ is a feasible solution of problem (2.5) such that all of the constraints of
the problem (2.5) are active at it and for each j , x∗

j > 0, then x∗ is an unique extreme
point and so there exists λ◦

j ∈ [0, 1] such that x∗ is an optimal solution.

Case 2 m > n. In this case, since the number of the constraints are more than the
variables, then maybe it will happen the different cases such as existence redundant
constraints, degenerate extreme points, alternative solutions and etc, which cause dif-
ficulty for obtaining the optimal solution set of the ILP. Therefore generally, we can
not prove a necessary and sufficient condition, but we can only prove the following
sufficient condition for obtaining the optimal solution set. The obtained set of this
sufficient condition is a subset of the optimal solution set of the ILP problem.

Theorem 3.2 Suppose all of the feasible solution components of the best problem are
positive. Let at least n constraints in the worst problem be active at x∗. Without loss of
generality, by rearranging the constraints, let the constraints 1, 2, . . . , l(n ≤ l ≤ m) in
the worst problem be active at x∗ and for i = l +1, . . . , m and j = 1, 2, . . . , n, ai j =
0. If x∗ ∈(

⋂m
i=1 Ti )

⋂
(
⋂l

i=1 Si ), then x∗ is an optimal solution of the ILP problem.

Proof Suppose x∗ ∈ (
⋂m

i=1 Ti )
⋂

(
⋂l

i=1 Si ) is arbitrary. We want to show x∗ is an
optimal solution of a convex combination problem. Since

x∗ ∈
(

m⋂
i=1

Ti

)⋂ (
l⋂

i=1

Si

)
,
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so for each i = 1, 2, . . . , m, x∗ ∈ Ti and for each i = 1, 2, . . . , l, n ≤ l ≤ m, x∗ ∈ Si ,
therefore

n∑
j=1

ai j x∗
j ≤ bi , i = 1, 2, . . . , l, l + 1, . . . , m, (3.1)

n∑
j=1

ai j x∗
j ≥ bi , i = 1, 2, . . . , l.

Similar to proof of the converse case of Theorem 3.1, for i = 1, 2, . . . , l and j =
1, 2, . . . , n, there exist μ◦

i j and μ◦
i such that

n∑
j=1

[(1 − μ◦
i j )ai j + μ◦

i j ai j ]x∗
j = (1 − μ◦

i )bi + μ◦
i bi .

Now, consider the following convex combination problem:

min
n∑

j=1

c◦
j x j

s.t.
n∑

j=1

a◦
i j x j ≤ b◦

i i = 1, 2, . . . , l, (3.2)

n∑
j=1

ai j x j ≤ bi i = l + 1, . . . , m,

x j ≥ 0 j = 1, 2, . . . , n,

where a◦
i j = (1 − μ◦

i j )ai j + μ◦
i j ai j and c◦

j = (1 − λ◦
j )c j + λ◦

j c j in which λ◦
j ∈ [0, 1]

is arbitrary, for j = 1, 2, . . . , n and i = 1, 2, . . . , l.
First, note that x∗ is a feasible solution of the problem (3.2), since for i = 1, 2, . . . , l,∑n
j=1 a◦

i j x∗
j = b◦

i and for i = l + 1, . . . , m,
∑n

j=1 ai j x∗
j ≤ ∑n

j=1 a◦
i j x∗

j ≤ b◦
i ≤ bi .

For optimality x∗, consider the dual of the problem (3.2):

max
l∑

i=1

b◦
i yi +

m∑
i=l+1

bi yi

s.t.
l∑

i=1

a◦
i j yi +

m∑
i=l+1

ai j yi ≤ c◦
j j = 1, 2, . . . , n,

yi ≤ 0 j = 1, 2, . . . , n.

According to Theorem2.5, the feasible region of the best problem is the largest feasible
region, so all of the feasible regions of the convex combination problems are subset of
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the feasible region of the best problem. By assumption all of the feasible solution com-
ponents of the best problem are positive, thus all of the feasible solution components
of the convex combination problems are positive too, therefore for j = 1, 2, . . . , n,
c◦

j = ∑l
i=1 a◦

i j yi +∑m
i=l+1 ai j yi , also by assumption, ai j = 0 for all i = l +1, . . . , m

and j = 1, 2, . . . , n, therefore for all j , c◦
j = ∑l

i=1 a◦
i j yi , and hence c◦ = ∑l

i=1 yi a◦
i ,

and so the objective function gradient c◦ has been presented as a nonpositive linear
combination of the gradients of the active constraints at x∗(i.e. a◦

1, a◦
2, . . . , a◦

l ), and
hence, in view of the Karush–Kuhn–Tucker optimality conditions, x∗ is the optimal
solution.

4 Comparison to the EILP model

In this section, we compare our method with the Enhanced-ILP model presented by
Zhou et al. [12]. In EILP method, two submodels have been introduced for obtaining
feasible decision variables space. Let the ILP problem as follows:

min cT x (4.1)

s.t. Ax ≤ b

x ≥ 0,

where c ∈ cI ⊆ R
n , A ∈ AI ⊆ R

m×n , b ∈ bI ⊆ R
m and x ∈ xI ⊆ R

n .
In the EILP model, the problem (4.1) could be transformed into two submodels as

follows [12]:

min z =
k∑

j=1

0.5(c j + c j )x j +
n∑

j=k+1

0.5(c j + c j )x j (4.2)

s.t.
k∑

j=1

|[ai j , ai j ]|+sign([ai j , ai j ])x j +
n∑

j=k+1

|[ai j , ai j ]|−sign([ai j , ai j ])x j ≤ bi

[x j , x j ] ≥ 0, j = 1, 2, . . . , n,

and

min z =
k∑

j=1

0.5(c j + c j )x j +
n∑

j=k+1

0.5(c j + c j )x j (4.3)

s.t.
k∑

j=1

|[ai j , ai j ]|−sign([ai j , ai j ])x j +
n∑

j=k+1

|[ai j , ai j ]|+sign([ai j , ai j ])x j ≤ bi

[x j , x j ] ≥ 0, j = 1, 2, . . . , n

x j ≥ x∗
j j = 1, . . . , k

x j ≤ x∗
j j = k + 1, . . . , n,
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where for j = 1, 2, . . . , k, [c j , c j ] ≥ 0 and for j = k + 1, k + 2, . . . , n, [c j , c j ] < 0
and

|[ai j , ai j ]|− =
{

ai j [ai j , ai j ] ≥ 0
−ai j [ai j , ai j ] < 0

, |[ai j , ai j ]|+ =
{

ai j [ai j , ai j ] ≥ 0
−ai j [ai j , ai j ] < 0

,

sign([ai j , ai j ]) =
{

1 [ai j , ai j ] ≥ 0
−1 [ai j , ai j ] < 0.

To ensure that optimal solution [x∗, x∗] is feasible, the following constraints could be
added to the problem (4.3).

k−p∑
j=1

(|[aδ j , aδ j ]|−x j − |[aδ j , aδ j ]|+x∗
j )

−
n−q∑

j=k+1

(|[aδ j , aδ j ]|+x j − |[aδ j , aδ j ]|−x∗
j ) ≤ 0, ∀δ (4.4)

where δ is the number of active constraints in problem (4.2) as well as its [aδ j , aδ j ] ≥ 0
for j = 1, . . . , k − p and [aδ j , aδ j ] ≤ 0 for j = k + 1, . . . , n − q.

In the EILP model, the obtained solution region of BWC method is restricted so
that a range of absolutely feasible solutions is produced. In fact, by embedding the
equation (4.4) in the problem (4.3), the final solution of the ILP has no infeasible zone,
whereas making the solution interval hull small for obtaining the absolutely feasible
solutions causes us to lose some of the optimal solutions of the ILP problem. In our
method, in case m = n, we do not lose any feasible solution and we obtain all of the
optimal solutions of the ILP problem. For more explanations see example 1. In case
m > n, we derive the sufficient condition in Theorem 3.2 for obtaining the optimal
solutions set.

5 Examples

In this section we will solve several examples by using the presented methods in the
previous sections.

Example 1 Consider the following interval linear programming problem:

min z = [1, 5]x1 + [3, 4]x2

s.t. [0.5, 1]x1 + [−2,−1]x2 ≤ [−1, 0]
[−4,−3]x1 + [0, 1]x2 ≤ [−3,−2]
x1, x2 ≥ 0.
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Fig. 1 Some of the optimal
solutions of the convex
combination problem of
Example 1

The above problem is equivalent to the following problem:

min z = [1, 5]x1 + [3, 4]x2

s.t. [0.5, 1]x1 + [−2,−1]x2 + x3 = [−1, 0]
[−4,−3]x1 + [0, 1]x2 + x4 = [−3,−2]
x1, x2, x3, x4 ≥ 0.

A candidate basis for B-stability is B = (1, 2), since its optimal for characteristic
problem with center values.

1. According to Theorem 2.1, the spectral radius is equal to 0.57, so AB is regular.

AB =
( [0.5, 1] [−2,−1]

[−4,−3] [0, 1]
)

.

2. According to Theorem 2.3, we compute an enclosure to the solution set of

ABxB = b to be xB =
( [0.5, 2]

[0.125, 3]
)

, which is non-negative.

3. According to Theorem 2.4, the solution set of the system (2.1) lies in the system
(2.2) for each q ∈ {±1}2. Thus the problem is B-stable. The best and the worst
values of the objective function is 7

8 and 22 respectively. The optimal solutions are

x∗ =
(

0.5
0.125

)
and x∗ =

(
2
3

)
. We solve the convex combination problem for

different values of λ j , μi , μi j for i, j = 1, 2 in [0, 1]. All of the optimal solution
points set solution region of the ILP which is shown in Fig. 1. Since all of the
feasible solution components of the best problem are positive and m = n = 2,
then we can use Theorem 3.1, therefore the optimal solution set of the ILP will be
as Fig. 4 that is as Fig. 1. The solution regions of the best and the worst problems
with inverse constraints sign have been shown in Figs. 2 and 3. Now, we solve the
problem by the EILP model. Two submodels are as follows:
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Fig. 2 Solution region of the
best problem of Example 1

Fig. 3 Solution region of the
worst problem with inverse
constraints sign of Example 1

Fig. 4 The optimal solution set
of the ILP problem of Example 1
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Fig. 5 Solution regions by the
BWC, EILP and our methods of
Example 1

min z = 3x1 + 3.5x2 min z = 3x1 + 3.5x2

s.t. x1 − 2x2 ≤ 0 s.t. 0.5x1 − x2 ≤ −1

− 4x1 + x2 ≤ −2 − 3x1 + 0x2 ≤ −3

x1, x2 ≥ 0 x1 ≥ 0.57143, x2 ≥ 0.28571

0.5x1 ≤ 1 × 0.57143, x1, x2 ≥ 0.

The optimal solutions are [x∗
1, x∗

1] = [0.57143, 1], [x∗
2, x∗

2] = [0.28571, 1.5] and
[z∗, z∗] = [2.71, 8.25]. The solution regions by the BWC, EILP and our meth-
ods have been shown in Fig. 5. By comparing these methods we conclude that in
the BWC solution region there are infeasible solutions and in the EILP solution
region, we lose some of the optimal solutions.

Example 2 Let the ILP problem as follows:

min z = 2x1 + 3x2

s.t. [0, 1]x1 ≤ 10

− 3x1 + 2x2 ≤ −5

[ 1

10
,

9

10
]x1 + [−2,−1]x2 ≤ −2

x1, x2 ≥ 0.

The best and the worst values of the objective function are 8.190 and 41.250. The

optimal solutions are x∗ =
(

2.414
1.121

)
and x∗ =

(
7.5

8.75

)
. We solve the above problem

for different values of μ11 and μ3 j in [0, 1], then all of the optimal solution points set
solution region of the ILP which is shown in Fig. 6. The second and third constraints
of the worst problem are active at x∗, so we can use Theorem 3.2, and we derive a
region shown in Fig. 9 which all of the its points are optimal and it is a subset of
the optimal solution set of the above ILP. The feasible regions of the best and worst
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Fig. 6 Some of the optimal
solutions of the convex
combination problem of
Example 2

Fig. 7 Solution region of the
best problem of Example 2

Fig. 8 Solution region of the
worst problem of Example 2
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Fig. 9 The subset of the optimal
solution set of Example 2
resulted from Theorem 3.2

Fig. 10 Solution regions by the
BWC, EILP and our methods of
Example 2

problems have been shown in Figs. 7 and 8. Now, we solve the problem by the EILP
model. Two submodels of the EILP method are as follows:

min z = 2x1 + 3x2 min z = 2x1 + 3x2

s.t. x1 ≤ 10 s.t. 0x1 ≤ 10

− 3x1 + 2x2 ≤ −5 − 3x1 + 2x2 ≤ −5
9

10
x1 − 2x2 ≤ −2

1

10
x1 − x2 ≤ −2

x1, x2 ≥ 0 x1 ≥ 3.333, x2 ≥ 2.5

x1 ≤ 30, x2 ≤ 2.5, x1, x2 ≥ 0.

The optimal solutions are x∗
1 = x∗

1 = 3.333, x∗
2 = x∗

2 = 2.5 and z∗ = z∗ = 14.167.
The solution region by the BWC, EILP and our method have been shown in Fig 10.
By comparing these methods we conclude that in the BWC solution region there are
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infeasible solutions and in the EILP solution region, we derive a point and we lose
some of the optimal solutions.

6 Conclusion

A method has been proposed to determine the optimal solution set of the interval linear
programming (ILP) problem. In most of the methods for solving the ILP problem, the
optimal value of the objective function of the ILP problem has been obtained. In this
paper, we proposed a method to determine the optimal solution set of the ILP problem,
by the best and the worst case (BWC) methods, when the feasible solution components
of the best problem are positive. Since, B-stability is important in obtaining the optimal
values range, then we suppose that the ILP problem is B-stable. Replacing different
values of λ j , μi j and μi in [0, 1] in the convex combination problem, their solving
and so obtaining the optimal solution set have been considered. Also, we compared
our method with the EILP model and we have shown in the EILP model we lose some
of the optimal solutions, whereas in our method, when m = n, we can obtain all of
the optimal solutions of the ILP problem and when m > n, we derive the sufficient
condition in Theorem 3.2 for obtaining the optimal solutions set.

Some of the other cases for obtaining the optimal solution set of the ILP which
can be studied in next research consists of obtaining the necessary condition in the
case m > n and determining the optimal solution set of the ILP when some of the
components in the optimal solution of the best or worst problems are zero.
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