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Abstract In this paper, we introduce and study a new class of extended general
nonlinear mixed variational inequalities and a new class of extended general resolvent
equations and establish the equivalence between the extended general nonlinear mixed
variational inequalities and implicit fixed point problems as well as the extended gen-
eral resolvent equations. Then by using this equivalent formulation, we discuss the
existence and uniqueness of solution of the problem of extended general nonlinear
mixed variational inequalities. Applying the aforesaid equivalent alternative formula-
tion and a nearly uniformly Lipschitzian mapping S, we construct some new resolvent
iterative algorithms for finding an element of set of the fixed points of nearly uniformly
Lipschitzian mapping S which is the unique solution of the problem of extended gen-
eral nonlinear mixed variational inequalities. We study convergence analysis of the
suggested iterative schemes under some suitable conditions. We also suggest and
analyze a class of extended general resolvent dynamical systems associated with the
extended general nonlinear mixed variational inequalities and show that the trajec-
tory of the solution of the extended general resolvent dynamical system converges
globally exponentially to the unique solution of the extended general nonlinear mixed
variational inequalities. The results presented in this paper extend and improve some
known results in the literature.
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1 Introduction

Variational inequalities theory, which was introduced by Stampacchia [53], arise in
various models for a large number of mathematical, physical, regional, social, engi-
neering and other problems. The ideas and techniques of the variational inequal-
ities are being applied in a variety of diverse areas of sciences and proved to be
productive and innovative. It has been shown that this theory provides a simple,
natural and unified framework for a general treatment of unrelated problems. In
recent years, considerable interest has been shown in developing various extensions
and generalizations of variational inequalities, both for their own sake and for their
applications. Variational inequalities have been generalized and extended in different
directions using the novel and innovative techniques. An important and useful gener-
alization is called the mixed variational inequality, or the variational inequality of the
second kind, involving the nonlinear term. For the application and numerical meth-
ods, see [1,3,4,6–9,11,14,19,20,22,27,40–42,48,55] and references therein. In recent
years, much attention has been given to develop efficient and implementable numeri-
cal methods including projection method and its variant forms, Wiener–Hopf (normal)
equations, linear approximation, auxiliary principle and descent framework for solv-
ing equilibrium problems, variational inequalities and related optimization problems
(see, for example, [10,12,13,60–62]). It is well known that the projection methods,
its variant forms and Wiener–Hopf equations technique cannot be used to suggest and
analyze iterative methods for solving mixed variational inequalities due to the pres-
ence of the nonlinear term. These facts motivated us to use the technique of resolvent
operators, the origin of which can be traced back to Martinet [25] and Brézis [4]. In
this technique, the given operator is decomposed into the sum of two (or more) max-
imal monotone operators, whose resolvent are easier to evaluate than the resolvent of
the original operator. Such a method is known as the operator splitting method. This
can lead to development of very efficient methods, since one can treat each part of the
original operator independently. The operator splitting methods and related techniques
have been analyzed and studied by many authors including Peaceman and Rachford
[49], Lions and Mercier [23], Glowinski and Tallec [17], and Tseng [54]. For an excel-
lent account of the alternating direction implicit (splitting) methods, see [2]. In the
context of the mixed variational inequalities, Noor [37,40,47] has used the resolvent
operator technique to suggest some splitting type methods. A useful feature of the
forward–backward splitting method for solving the mixed variational inequalities is
that the resolvent step involves the subdifferential of the proper, convex and lower
semicontinuous part only and the other part facilitates the problem decomposition.

Equally important is the area of mathematical sciences known as the resolvent equa-
tions, which was introduced by Noor [30]. Noor [30] has established the equivalence
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between the mixed variational inequalities and the resolvent equations using essentially
the resolvent operator technique. The resolvent equations are being used to develop
powerful and efficient numerical methods for solving the mixed variational inequali-
ties and related optimization problems, see [40,46,47] and the references therein. It is
worth mentioning that if the nonlinear term involving the mixed variational inequali-
ties is the indicator function of a closed convex set in a Hilbert space, then the resolvent
operator is equal to the projection operator.

Also, in recent years, much attention has been given to consider and analyze the pro-
jected dynamical systems associated with variational inequalities and nonlinear pro-
gramming problems, in which the right-hand side of the ordinary differential equation
is a projection operator. Such types of the projected dynamical systems were introduced
and studied by Dupuis and Nagurney [15]. Projected dynamical systems are character-
ized by a discontinuous right-hand side. The discontinuity arises from the constraint
governing the question. The innovative and novel feature of a projected dynamical
system is that its set of stationary points corresponds to the set of solutions of the
corresponding variational inequality problems. Hence, the equilibrium and nonlinear
problems arising in various branches of pure and applied sciences, which can be formu-
lated in the setting of variational inequalities, can now be studied in the more general
setting of the projected dynamical systems. It has been shown in [14–16,27,58,59,63]
that the dynamical systems are useful in developing efficient and powerful numeri-
cal technique for solving variational inequalities and related optimization problems.
Xia and Wang [58,59], Zhang and Nagurney [63] and Nagurney and Zhang [27] have
studied the globally asymptotic stability of these projected dynamical systems. Noor
[28,37,47] has also suggested and analyzed similar resolvent dynamical systems for
mixed variational inequalities by extending and modifying their techniques.

On the other hand, related to the variational inequalities, we have the problem of
finding the fixed points of the nonexpansive mappings, which is the subject of current
interest in functional analysis. It is natural to consider a unified approach to these two
different problems. Motivated and inspired by the research going in this direction,
Noor and Huang [44] considered the problem of finding the common element of the
set of the solutions of variational inequalities and the set of the fixed points of the
nonexpansive mappings. Noor [32] suggested and analyzed some three-step iterative
algorithms for finding the common elements of the set of the solutions of the Noor
variational inequalities and the set of the fixed points of nonexpansive mappings. He
also proved the convergence analysis of the suggested iterative algorithms under some
suitable conditions.

It is well known that every nonexpansive mapping is a Lipschitzian mapping.
Lipschitzian mappings have been generalized by various authors. Sahu [51] intro-
duced and investigated nearly uniformly Lipschitzian mappings as a generalization of
Lipschitzian mappings.

Motivated by recent works going in this direction, in this paper, we introduce and
study a new class of the extended general nonlinear mixed variational inequalities and
a new class of the extended general resolvent equations. We prove the equivalence
between the extended general nonlinear mixed variational inequalities and the fixed
point problems as well as the extended general resolvent equations. Then by using
this equivalent formulation, we discuss the existence and uniqueness of solution of
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the problem of extended general nonlinear mixed variational inequalities. Applying
the equivalent alternative formulation and a nearly uniformly Lipschitzian mapping
S, we construct some new resolvent iterative algorithms for finding an element of set
of the fixed points of nearly uniformly Lipschitzian mapping S which is the unique
solution of the problem of extended general nonlinear mixed variational inequalities.
The convergence analysis of the suggested iterative methods under some suitable con-
ditions are proved. We also suggest and analyze a class of extended general resolvent
dynamical systems associated with the extended general nonlinear mixed variational
inequalities and show that the trajectory of the solution of the extended general resol-
vent dynamical system converges globally exponentially to the unique solution of the
extended general nonlinear mixed variational inequalities. Our results improve and
extend the corresponding results of [36,47] and many other recent works.

2 Formulations and basic facts

Throughout this article, we will let H be a real Hilbert space which is equipped with
an inner product 〈., .〉 and corresponding norm ‖.‖. Let T, g, h : H → H be three
nonlinear single-valued operators and let ∂ϕ denote the subdifferential of function ϕ,
where ϕ : H → R ∪ {+∞} is a proper convex lower semicontinuous function on H.
For any given constant ρ > 0, we consider the problem of finding u ∈ H such that

〈ρT (u)+ h(u)− g(u), g(v)− h(u)〉 ≥ ρϕ(u)− ρϕ(g(v)), ∀v ∈ H, (2.1)

which is called the extended general nonlinear mixed variational inequality involving
three different nonlinear operators (EGNMVID).

If h ≡ I , the identity operator, then the problem (2.1) reduces to the problem of
finding u ∈ H such that

〈ρT (u)+ u − g(u), g(v)− u〉 ≥ ρϕ(u)− ρϕ(g(v)), ∀v ∈ H. (2.2)

The problem (2.2) is called the general nonlinear mixed variational inequality and
has been introduced and studied by Noor et al. [47].

Some special cases of the problem (2.1) are introduced and studied by Noor
[30,31,33,36], Noor et al. [47] and Stampacchia [53].

Definition 2.1 A set-valued operator T : H � H is said to be monotone if, for any
x, y ∈ H

〈u − v, x − y〉 ≥ 0, ∀u ∈ T (x), v ∈ T (y).

A monotone set-valued operator T is called maximal if its graph, Gph(T ) :=
{(x, y) ∈ H × H : y ∈ T (x)}, is not properly contained in the graph of any other
monotone operator. It is well-known that T is a maximal monotone operator if and
only if (I + λT )(H) = H, for all λ > 0, where I denotes the identity operator on H.
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Definition 2.2 [4] For any maximal monotone operator T , the resolvent operator
associated with T of parameter λ is defined as follows:

JλT (u) = (I + λT )−1(u), ∀u ∈ H.

It is single-valued and nonexpansive, that is,

‖JλT (u)− JλT (v)‖ ≤ ‖u − v‖, ∀u, v ∈ H.

If ϕ is a proper, convex and lower-semicontinuous function, then its subdifferential
∂ϕ is a maximal monotone operator. In this case, we can define the resolvent operator
associated with the subdifferential ∂ϕ of parameter λ as follows:

Jλϕ (u) = (I + λ∂ϕ)−1(u), ∀u ∈ H.

The resolvent operator Jλϕ has the following useful characterization.

Lemma 2.3 For any z ∈ H, x ∈ H satisfies the inequality

〈x − z, y − x〉 + λϕ(y)− λϕ(x) ≥ 0, ∀y ∈ H,

if and only if x = Jλϕ (z), where Jλϕ is the resolvent operator associated with ∂ϕ of
parameter λ > 0.

It is well known that Jλϕ is nonexpansive, that is,

‖Jλϕ (u)− Jλϕ (v)‖ ≤ ‖u − v‖, ∀u, v ∈ H.

Definition 2.4 A single-valued operator T : H → H is called:

(a) monotone if

〈T (x)− T (y), x − y〉 ≥ 0, ∀x, y ∈ H;

(b) r-strongly monotone if there exists a constant r > 0 such that

〈T (x)− T (y), x − y〉 ≥ r‖x − y‖2, ∀x, y ∈ H;

(c) k-strongly monotone with respect to g if there exists a constant k > 0 such that

〈T (x)− T (y), g(x)− g(y)〉 ≥ k‖x − y‖2, ∀x, y ∈ H;

(d) γ -Lipschitz continuous if there exists a constant γ > 0 such that

‖T (x)− T (y)‖ ≤ γ ‖x − y‖, ∀x, y ∈ H.
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3 Existence of solution and uniqueness

This section is concerned with the establish of the existence and uniqueness theorem
for solution of the extended general nonlinear mixed variational inequality (2.1). For
this end, we need the following lemma in which the equivalence between the extended
general nonlinear mixed variational inequality (2.1) and fixed point problem is stated.

Lemma 3.1 Let T, g, h and ρ > 0 be the same as in the problem (2.1). Then u ∈ H
is a solution of the problem (2.1) if and only if

h(u) = Jρϕ (g(u)− ρT (u)), (3.1)

where Jρϕ is the resolvent operator associated with ∂ϕ of parameter ρ.

In view of Lemma 3.1, the extended general mixed variational inequality (2.1) and
the fixed point problem (3.1) are equivalent. This equivalent formulation is very useful
from numerical and theoretical points of view. In the next theorem, by using this alter-
native fixed point formulation, we discuss the existence and uniqueness of solution of
the extended general mixed variational inequality (2.1).

Theorem 3.2 Let T, g, h and ρ be the same as in the problem (2.1) and suppose
further that T is κ-strongly monotone with respect to g and ξ -Lipschitz continuous,
h is π -strongly monotone and 
-Lipschitz continuous and g is θ -Lipschitz continuous.
If the constant ρ > 0 satisfies the following condition:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|ρ − κ
ξ2 | <

√
κ2−ξ2(θ2−(1−μ)2)

ξ2 ,

κ > ξ
√
θ2 − (1 − μ)2,

μ = √
1 − (2π − 
2) < 1,

2π < 1 + 
2, θ + μ > 1,

(3.2)

then the problem (2.1) admits a unique solution.

Proof Define the mapping F : H → H by

F(x) = x − h(x)+ Jρϕ (g(x)− ρT (x)), ∀x ∈ H. (3.3)

Now, we establish that the mapping F is a contraction. For this end, let x, x ′ ∈ H
be given. By using (3.3), since the resolvent operator Jρϕ is nonexpansive, we get

‖F(x)− F(x ′)‖
≤ ‖x − x ′ − (h(x)− h(x ′))‖ + ‖Jρϕ (g(x)− ρT (x))− Jρϕ (g(x

′)− ρT (x ′))‖
≤ ‖x − x ′ − (h(x)− h(x ′))‖ + ‖g(x)− g(x ′)− ρ(T (x)− T (x ′))‖. (3.4)
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It follows from π -strongly monotonicity and 
-Lipschtz continuity of h that

‖x − x ′ − (h(x)− h(x ′))‖2

= ‖x − x ′‖2 − 2〈h(x)− h(x ′), x − x ′〉 + ‖h(x)− h(x ′‖2

≤ (1 − 2π)‖x − x ′‖2 + ‖h(x)− h(x ′)‖2

≤ (1 − 2π + 
2)‖x − x ′‖2. (3.5)

Since T is κ-strongly monotone with respect to g and ξ -Lipschitz continuous and
g is θ -Lipschitz continuous, we have

‖g(x)− g(x ′)− ρ(T (x)− T (x ′))‖2

= ‖g(x)− g(x ′)‖2 − 2ρ〈T (x)− T (x ′), g(x)− g(x ′)〉 + ρ2‖T (x)− T (x ′)‖2

≤ (θ2 − 2ρκ + ρ2ξ2)‖x − x ′‖2. (3.6)

Combining (3.4)–(3.6), we obtain

‖F(x)− F(x ′)‖ ≤ ψ‖x − x ′‖, (3.7)

where

ψ =
√

1 − 2π + 
2 +
√
θ2 − 2ρκ + ρ2ξ2. (3.8)

Using the condition (3.2), we note that 0 ≤ ψ < 1 and so the inequality (3.7)
implies that the mapping F is contraction. By Banach’s fixed point theorem, F has a
unique fixed point in H, that is, there exists a unique point u ∈ H such that F(u) = u.
From (3.3), it follows that h(u) = Jρϕ (g(u) − ρT (u)). Now, Lemma 3.1 guarantees
that u ∈ H is a unique solution of the problem (2.1). This completes the proof.

4 Nearly uniformly Lipschitzian mappings and resolvent iterative schemes

In recent years, the nonexpansive mappings have been generalized and investigated
by various authors. One of these generalizations is class of the nearly uniformly Lips-
chitzian mappings. In this section, we first recall some generalizations of the nonex-
pansive mappings which have been introduced in recent years and present some new
and interesting examples to show relations between these mappings. Then, we use a
nearly uniformly Lipschitzian mapping S and the equivalent alternative formulation
(2.1) to suggest and analyze some new resolvent iterative algorithms for finding an
element of the set of the fixed points S which is the unique solution of the problem of
extended general nonlinear mixed variational inequality (2.1). In two next definitions,
some generalizations of the nonexpansive mappings are stated.

Definition 4.1 A nonlinear mapping T : H → H is called

(a) nonexpansive if ‖T x − T y‖ ≤ ‖x − y‖, for all x, y ∈ H;
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(b) L-Lipschitzian if there exists a constant L > 0 such that

‖T x − T y‖ ≤ L‖x − y‖, ∀x, y ∈ H;

(c) generalized Lipschitzian if there exists a constant L > 0 such that

‖T x − T y‖ ≤ L(‖x − y‖ + 1), ∀x, y ∈ H;

(d) generalized (L ,M)-Lipschitzian [51] if there exist two constants L ,M > 0 such
that

‖T x − T y‖ ≤ L(‖x − y‖ + M), ∀x, y ∈ H;

(e) asymptotically nonexpansive [18] if there exists a sequence {kn} ⊆ [1,∞) with
limn→∞ kn = 1 such that for each n ∈ N,

‖T n x − T n y‖ ≤ kn‖x − y‖, ∀x, y ∈ H;

(f) pointwise asymptotically nonexpansive [21] if, for each integer n ≥ 1,

‖T n x − T n y‖ ≤ αn(x)‖x − y‖, x, y ∈ H,

where αn → 1 pointwise on X ;
(g) uniformly L-Lipschitzian if there exists a constant L > 0 such that for each

n ∈ N,

‖T n x − T n y‖ ≤ L‖x − y‖, ∀x, y ∈ H.

Definition 4.2 [51] A nonlinear mapping T : H → H is said to be:

(a) nearly Lipschitzian with respect to the sequence {an} if, for each n ∈ N, there
exists a constant kn > 0 such that

‖T n x − T n y‖ ≤ kn(‖x − y‖ + an), ∀x, y ∈ H, (4.1)

where {an} is a fix sequence in [0,∞) with an → 0 as n → ∞.
For an arbitrary, but fixed n ∈ N, the infimum of constants kn in (4.1) is called
nearly Lipschitz constant and it is denoted by η(T n). Notice that

η(T n) = sup

{‖T n x − T n y‖
‖x − y‖ + an

: x, y ∈ H, x �= y

}

.

A nearly Lipschitzian mapping T with the sequence {(an, η(T n))} is said to be:
(b) nearly nonexpansive if η(T n) = 1 for all n ∈ N, that is,

‖T n x − T n y‖ ≤ ‖x − y‖ + an, ∀x, y ∈ H;
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(c) nearly asymptotically nonexpansive if η(T n) ≥ 1 for all n ∈ N and
limn→∞ η(T n) = 1, in other words, kn ≥ 1 for all n ∈ N with limn→∞ kn = 1;

(d) nearly uniformly L-Lipschitzian if η(T n) ≤ L for all n ∈ N, in other words,
kn = L for all n ∈ N.

Remark 4.3 It should be pointed that

(1) Every nonexpansive mapping is a asymptotically nonexpansive mapping and
every asymptotically nonexpansive mapping is a pointwise asymptotically non-
expansive mapping. Also, the class of Lipschitzian mappings properly includes
the class of pointwise asymptotically nonexpansive mappings.

(2) It is obvious that every Lipschitzian mapping is a generalized Lipschitzian
mapping. Furthermore, every mapping with a bounded range is a generalized
Lipschitzian mapping. It is easy to see that the class of generalized (L ,M)-Lips-
chitzian mappings is more general than the class of generalized Lipschitzian
mappings.

(3) Clearly, the class of nearly uniformly L-Lipschitzian mappings properly includes
the class of generalized (L ,M)-Lipschitzian mappings and that of uniformly
L-Lipschitzian mappings. Note that every nearly asymptotically nonexpansive
mapping is nearly uniformly L-Lipschitzian.

Now, we present some new examples to investigate relations between these
mappings.

Example 4.4 Let H = R and define T : H → H as follow:

T (x) =
{

1
γ

x ∈ [0, γ ],
0 x ∈ (−∞, 0) ∪ (γ,∞),

where γ > 1 is a constant real number. Evidently, the mapping T is discontinuous at
the points x = 0, γ . Since every Lipschitzian mapping is continuous, it follows that
T is not Lipschitzian. For each n ∈ N, take an = 1

γ n . Then

|T x − T y| ≤ |x − y| + 1

γ
= |x − y| + a1, ∀x, y ∈ R.

Since T nz = 1
γ

for all z ∈ R and n ≥ 2, it follows that, for all x, y ∈ R and n ≥ 2,

|T n x − T n y| ≤ |x − y| + 1

γ n
= |x − y| + an .

Hence T is a nearly nonexpansive mapping with respect to the sequence {an} =
{ 1
γ n }.

The following example shows that the nearly uniformly L-Lipschitzian mappings
are not necessarily continuous.
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Example 4.5 Let H = [0, b], where b ∈ (0, 1] is an arbitrary constant real number
and let the self-mapping T of H be defined as follows:

T (x) =
{
γ x x ∈ [0, b),

0 x = b,

where γ ∈ (0, 1) is also an arbitrary constant real number. It is plain that the mapping
T is discontinuous in the point b. Hence, T is not a Lipschitzian mapping. For each
n ∈ N, take an = γ n−1. Then, for all n ∈ N and x, y ∈ [0, b), we have

|T n x − T n y| = |γ n x − γ n y| = γ n|x − y| ≤ γ n|x − y| + γ n

≤ γ |x − y| + γ n = γ (|x − y| + an).

If x ∈ [0, b) and y = b, then, for each n ∈ N, we have T n x = γ n x and T n y = 0.
Since 0 < |x − y| ≤ b ≤ 1, it follows that, for all n ∈ N,

|T n x − T n y| = |γ n x − 0| = γ n x ≤ γ nb ≤ γ n < γ n|x − y| + γ n

≤ γ |x − y| + γ n = γ (|x − y| + an).

Hence T is a nearly uniformly γ -Lipschitzian mapping with respect to the sequence
{an} = {γ n−1}.

Obviously, every nearly nonexpansive mapping is a nearly uniformly Lipschitz-
ian mapping. In the following example, we show that the class of nearly uniformly
Lipschitzian mappings properly includes the class of nearly nonexpansive mappings.

Example 4.6 Let H = R and the self-mapping T of H be defined as follows:

T (x) =
⎧
⎨

⎩

1
2 x ∈ [0, 1) ∪ {2},
2 x = 1,
0 x ∈ (−∞, 0) ∪ (1, 2) ∪ (2,+∞).

Evidently, the mapping T is discontinuous in the points x = 0, 1, 2. Hence T is
not a Lipschitzian mapping. For each n ∈ N, take an = 1

2n . Then T is not a nearly
nonexpansive mapping with respect to the sequence { 1

2n } since, taking x = 1 and
y = 1

2 , we have T x = 2, T y = 1
2 and

|T x − T y| > |x − y| + 1

2
= |x − y| + a1.

However, it follows that

|T x − T y| ≤ 4

(

|x − y| + 1

2

)

= 4(|x − y| + a1), ∀x, y ∈ R,
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and, for all n ≥ 2,

|T n x − T n y| ≤ 4

(

|x − y| + 1

2n

)

= 4(|x − y| + an), ∀x, y ∈ R,

since T nz = 1
2 for all z ∈ R and n ≥ 2. Hence, for each L ≥ 4, T is a nearly uniformly

L-Lipschitzian mapping with respect to the sequence { 1
2n }.

It is clear that every uniformly L-Lipschitzian mapping is a nearly uniformly
L-Lipschitzian mapping. In the next example, we show that the class nearly uniformly
L-Lipschitzian mappings properly includes the class of uniformly L-Lipschitzian
mappings.

Example 4.7 Let H = R and the self-mapping T of H be defined the same as in Exam-
ple 4.6. Then T is not a uniformly 4-Lipschitzian mapping. If x = 1 and y ∈ (1, 3

2 ),
then we have |T x − T y| > 4|x − y| since 0 < |x − y| < 1

2 . But, in view of Example
4.6, T is a nearly uniformly 4-Lipschitzian mapping.

The following example shows that the class of generalized Lipschitzian map-
pings properly includes the class of Lipschitzian mappings and that of mappings with
bounded range.

Example 4.8 [5] Let H = R and T : H → H be defined by

T (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x − 1 x ∈ (−∞,−1),
x − √

1 − (x + 1)2 x ∈ [−1, 0),
x + √

1 − (x − 1)2 x ∈ [0, 1],
x + 1 x ∈ (1,∞).

Then T is a generalized Lipschitzian mapping which is not Lipschitzian and its
range is not bounded.

Let S : H → H be a nearly uniformly Lipschitzian mapping. We denote the set
of all the fixed points of S by Fix(S) and the set of all the solutions of the problem
(2.1) by EGNMVID(H, T, g, h). We now characterize the problem. If u ∈ Fix(S) ∩
EGNMVID(H, T, g, h), then it follows from Lemma 3.1 that, for each n ≥ 0,

u = Snu = u − h(u)+ Jρϕ (g(u)− ρT (u))

= Sn{u − h(u)+ Jρϕ (g(u)− ρT (u))}. (4.2)

The fixed point formulation (4.2) enables us to define the following resolvent itera-
tive algorithms for finding a common element of two different sets of solutions of the
fixed points of the nearly uniformly Lipschitzian mapping S and the extended general
nonlinear mixed variational inequality (2.1).
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Algorithm 4.9 Let T, g, h and ρ be the same as in the problem (2.1). For arbitrary
chosen initial point u0 ∈ H, compute the iterative sequence {un}∞n=0 by the iterative
process

un+1 = (1 − αn)un + αn Sn{un − h(un)+ Jρϕ (g(un)− ρT (un))}, (4.3)

where S : H → H is a nearly uniformly Lipschitzian mapping and {αn}∞n=0 is a
sequence in the interval [0, 1] with

∑∞
n=0 αn = ∞.

If S ≡ I , then Algorithm 4.9 reduces to the following algorithm.

Algorithm 4.10 Assume that T, g, h and ρ are the same as in the problem (2.1). For
arbitrary chosen initial point u0 ∈ H, compute the iterative sequence {un}∞n=0 by the
iterative process

un+1 = (1 − αn)un + αn{un − h(un)+ Jρϕ (g(un)− ρT (un))},

where the sequence {αn}∞n=0 is the same as in Algorithm 4.9.

If h ≡ I , then Algorithm 4.9 collapses to the following algorithm.

Algorithm 4.11 Suppose that T, g and ρ are the same as in the problem (2.2). For
arbitrary chosen initial point u0 ∈ H, compute the iterative sequence {un}∞n=0 by the
iterative process

un+1 = (1 − αn)un + αn Sn Jρϕ (g(un)− ρT (un)),

where the mapping S and the sequence {αn}∞n=0 are the same as in Algorithm 4.9.

If S ≡ I , then Algorithm 4.11 reduces to the following algorithm.

Algorithm 4.12 Let T, g and ρ be the same as in the problem (2.2). For arbitrary
chosen initial point u0 ∈ H, compute the iterative sequence {un}∞n=0 by the iterative
process

un+1 = (1 − αn)un + αn Jρϕ (g(un)− ρT (un)),

where the sequence {αn}∞n=0 is the same as in Algorithm 4.9.

If ϕ(x) = δK (x) for all x ∈ K , where δK is the indicator function of a nonempty
closed convex set K in H defined by

δK (y) =
{

0 y ∈ K ,
∞ y /∈ K ,

(4.4)

then Jρϕ ≡ PK , the projection of H onto K . Accordingly, Algorithm 4.9 reduces to
the following algorithm.
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Algorithm 4.13 Suppose that T, g, h and ρ are the same as in the problem (2.1). For
arbitrary chosen initial point u0 ∈ H, compute the iterative sequence {un}∞n=0 by the
iterative process

un+1 = (1 − αn)un + αn Sn{un − h(un)+ PK (g(un)− ρT (un))},

where the mapping S and the sequence {αn}∞n=0 are the same as in Algorithm 4.9.

Remark 4.14 Algorithms 3.1 and 3.2 in [36] and Algorithms 3.1–3.3 in [47] are spe-
cial cases of Algorithms 4.9–4.13. In brief, for a suitable and appropriate choice of
the operators T, g, h, S and the constant ρ > 0, one can obtain a number of new
and previously known iterative schemes, see for example the introduced algorithms
in [31,35,43]. This clearly shows that Algorithms 4.9–4.13 are quite general and
unifying.

5 Convergence analysis

In this section, we verify the convergence analysis of the suggested iterative Algorithm
4.9 under some suitable conditions. For this end, we need the following lemma.

Lemma 5.1 [56] Let {an} be a nonnegative real sequence and {bn} be a real sequence
in [0, 1] such that

∑∞
n=0 bn = ∞. If there exists a positive integer n0 such that

an+1 ≤ (1 − bn)an + bncn, ∀n ≥ n0,

where cn ≥ 0 for all n ≥ 0 and limn→∞ cn = 0, then limn→0 an = 0.

Theorem 5.2 Let T, g, h and ρ be the same as in Theorem 3.2 and suppose that all
the conditions Theorem 3.2 hold. Suppose that S : H → H is a nearly uniformly
L-Lipschitzian mapping with the sequence {bn}∞n=0 such that Fix(S) ∩ EGNMVID
(H, T, g, h) �= ∅. Further, let Lψ < 1, where ψ is the same as in (3.8). Then the
iterative sequence {un}∞n=0 generated by Algorithm 4.9 converges strongly to the only
element u∗ of Fix(S) ∩ EGNMVID(H, T, g, h).

Proof In view of Theorem 3.2, the problem (2.1) has a unique solution u∗ ∈ H. Hence,
from Lemma 3.1, it follows that h(u∗)= Jρϕ (g(u∗)−ρT (u∗)). Since EGNMVID(H, T,
g, h) is a singleton set, it follows from Fix(S) ∩ EGNMVID(H, T, g, h) �= ∅ that
u∗ ∈ Fix(S). Therefore, for each n ≥ 0, we can write

u∗ = (1 − αn)u∗ + αn Sn{u∗ − h(u∗)+ Jρϕ (g(u∗)− ρT (u∗))}, (5.1)
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where the sequences {αn}∞n=0 is the same as in Algorithm 4.9. Applying (4.3) and
(5.1), since the resolvent operator Jρϕ is nonexpansive, we have

‖un+1 − u∗‖ ≤ (1 − αn)‖un − u∗‖ + αn‖Sn{un − h(un)+ Jρϕ (g(un)− ρT (un))}
− Sn{u∗ − h(u∗)+ Jρϕ (g(u

∗)− ρT (u∗))}‖
≤ (1 − αn)‖un − u∗‖ + αn L(‖un − u∗ − (h(un)− h(u∗))‖

+‖Jρϕ (g(un)− ρT (un))− Jρϕ (g(u
∗)− ρT (u∗))‖ + bn)

≤ (1 − αn)‖un − u∗‖ + αn L(‖un − u∗ − (h(un)− h(u∗))‖
+‖g(un)− g(u∗)− ρ(T (un)− T (u∗))‖ + bn). (5.2)

Since T is κ-strongly monotone with respect to g and ξ -Lipschitz continuous, g is
θ -Lipschitz continuous, h is π -strongly monotone and 
-Lipschitz continuous, like in
the proofs of (3.5) and (3.6), we have

‖un − u∗ − (h(un)− h(u∗))‖ ≤
√

1 − 2π + 
2‖un − u∗‖ (5.3)

and

‖g(un)− g(u∗)− ρ(T (un)− T (u∗))‖ ≤
√
θ2 − 2ρκ + ρ2ξ2‖un − u∗‖. (5.4)

Substituting (5.3) and (5.4) in (5.2), it follows that

‖un+1 − u∗‖ ≤ (1 − αn)‖un − u∗‖ + αn Lψ‖un − u∗‖ + αn Lbn

= (1 − αn(1 − Lψ))‖un − u∗‖ + αn(1 − Lψ)
Lbn

1 − Lψ
, (5.5)

where ψ is the same as in (3.8). Since Lψ < 1 and limn→∞ bn = 0, we note that all
the conditions of Lemma 5.1 are satisfied and so, from Lemma 5.1 and (5.5), it follows
that un → u∗, as n → ∞. Hence the sequence {un}∞n=0 generated by Algorithm 4.9
converges strongly to the unique solution u∗ of the problem (2.1), that is, the only
element u∗ of Fix(S) ∩ EGNMVID(H, T, g, h). This completes the proof.

Theorem 5.3 Suppose that T, g, h and ρ are the same as in Theorem 3.2 and all the
conditions of Theorem 3.2 hold. Then the iterative sequence {un}∞n=0 generated by
Algorithm 4.10 converges strongly to the unique solution of the problem (2.1).

Like in the proof of Theorem 5.2, one can prove the convergence of iterative
sequences generated by Algorithms 4.11–4.13.

6 Resolvent equation technique and iterative algorithms

This section is concerned with the introduce of a new class of extended general resol-
vent equations and the establish of equivalence between the aforesaid class and the
class of extended general nonlinear mixed variational inequalities (2.1). Also, by using
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the obtained equivalence, some new perturbed resolvent iterative algorithms for solv-
ing the problem (2.1) are suggested and analyzed.

Let T, g, h and ρ be the same as in the problem (2.1) and suppose that the inverse
of the operator h exists. Associated with the problem (2.1), the problem of finding
z ∈ H such that

T h−1 Jρϕ z + ρ−1 Rϕz = 0, (6.1)

where Rϕ = I − gh−1 Jρϕ with I the identity operator is considered.
The problem (6.1) is called the extended general resolvent equation (EGRE) asso-

ciated with the problem of extended general nonlinear mixed variational inequality
(2.1). Forward, we denote by EGRE(H, T, g, h) the set of all the solutions of the
extended general resolvent equation (6.1).

Now, we state some special cases of the problem (6.1).
If h ≡ I , then the problem (6.1) reduces to the problem of finding z ∈ H such that

T Jρϕ z + ρ−1 Rϕz = 0, (6.2)

where Rϕ = I − g Jρϕ and it is called the general resolvent equation associated with
the problem of general nonlinear mixed variational inequality (2.2). The problem (6.2)
is introduced and studied by Noor et al. [47].

If g ≡ I , then the problem (6.2) is equivalent to finding z ∈ H such that

T Jρϕ z + ρ−1 Rϕz = 0, (6.3)

where Rϕ = I − Jρϕ . The Eq. (6.3) is the original resolvent equation mainly due to
Noor [42].

If ϕ(x) = δK (x) for all x ∈ K , where δK is the indicator function of a nonempty
closed convex set K in H defined as (4.4), then Jρϕ ≡ PK , that is, the projection of
H onto K . Then the problem (6.1) changes into that of finding z ∈ H such that

T h−1 PK z + ρ−1 QK z = 0, (6.4)

where QK = I − gh−1 PK . The equations of the type (6.4), which are called the
extended general Wiener–Hopf equations, were introduced and studied by Noor
[36,39].

Some special cases of the problem (6.4) have been introduced and studied by Noor
[33,43] and Shi [52].

Remark 6.1 It has been shown that the resolvent equations and the Wiener–Hopf
equations have played an important and significant role in developing several numer-
ical techniques for solving mixed variational inequalities/variational inequalities and
related optimizations problems (see, for example, [23,24,28,29,33–39,41,42,45,47,
50,52] and references therein).

In the next lemma, the equivalence between the extended general nonlinear mixed
variational inequality (2.1) and the extended general resolvent equation (6.1) is proved.
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Lemma 6.2 Suppose that T, g, h and ρ are the same as in the problem (2.1) and let
the inverse of the operator h exists. Then u ∈ H is a solution of the problem (2.1) if and
only if the extended general resolvent equation (6.1) has a solution z ∈ H satisfying

h(u) = Jρϕ z, z = g(u)− ρT (u).

Proof Let u ∈ H be a solution of the problem (2.1). Then Lemma 3.1 guarantees that

h(u) = Jρϕ (g(u)− ρT (u)). (6.5)

Taking z = g(u)− ρT (u), in (6.5), we have h(u) = Jρϕ z, which leads to

u = h−1 Jρϕ z. (6.6)

By using (6.6) and this fact that z = g(u)− ρT (u), we have

z = gh−1 Jρϕ z − ρT h−1 Jρϕ z. (6.7)

It is obvious that the equality (6.7) is equivalent to

T h−1 Jρϕ z + ρ−1 Rϕz = 0, (6.8)

where Rϕ is the same as in Eq. (6.1). Now, (6.8) guarantees that z ∈ H is a solution
of the extended general resolvent equation (6.1).

Conversely, if z ∈ H is a solution of the problem (6.1) satisfying

h(u) = Jρϕ z, z = g(u)− ρT (u),

then it follows from Lemma 3.1 that u ∈ H is a solution of the problem (2.1). This
completes the proof.

Now, by using the problem (6.1) and Lemma 6.2, we obtain some fixed point formu-
lations for constructing a number of the new perturbed resolvent iterative algorithms
for solving the problem (2.1).

(I) Applying (6.1) and Lemma 6.2, we obtain

T h−1 Jρϕ z + ρ−1 Rϕz = 0 ⇔ ρT h−1 Jρϕ z + Rϕz = 0

⇔ ρT h−1 Jρϕ z + z − gh−1 Jρϕ z = 0

⇔ z = gh−1 Jρϕ z − ρT h−1 Jρϕ z

⇔ z = g(u)− ρT (u).

This fixed point formulation enables us to construct the following resolvent iterative
algorithm for solving the problem (2.1).
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Algorithm 6.3 Let T, g, h and ρ be the same as in the problem (2.1) such that h is
an onto mapping. For arbitrary chosen initial point z0 ∈ H, compute the iterative
sequence {zn}∞n=0 in the following way:

{
h(un) = Sn Jρϕ zn,

zn+1 = (1 − αn)zn + αn(g(un)− ρT (un)),
(6.9)

where the mapping S and the sequence {αn}∞n=0 are the same as in Algorithm 4.9.

(II) By using (6.1) and Lemma 6.2, we have

T h−1 Jρϕ z + ρ−1 Rϕz = 0 ⇔ Rϕz = Rϕz − T h−1 Jρϕ z − ρ−1 Rϕz

⇔ Rϕz = −T h−1 Jρϕ z + (1 − ρ−1)Rϕz

⇔ z = gh−1 Jρϕ z − T h−1 Jρϕ z + (1 − ρ−1)Rϕz

⇔ z = g(u)− T (u)+ (1 − ρ−1)Rϕz.

Using this fixed point formulation, we can define the following resolvent iterative
algorithm for solving the problem (2.1).

Algorithm 6.4 Assume that T, g, h and ρ are the same as in Algorithm 6.3. For
arbitrary chosen initial point z0 ∈ H, compute the iterative sequence {zn}∞n=0 in the
following way:

{
h(un) = Sn Jρϕ zn,

zn+1 = (1 − αn)zn + αn(g(un)− T (un)+ (1 − ρ−1)Rϕzn),

where the mapping S and the sequence {αn}∞n=0 are the same as in Algorithm 4.9.

(III) Let the operators T and h be linear and suppose that the inverses of T and h,
that is, T −1 and h−1 exists. Then (6.1) can be written in the following way:

T h−1 Jρϕ z + ρ−1 Rϕz = 0 ⇔ T (h−1(z − Rϕz))+ ρ−1 Rϕz = 0

⇔ h−1(z − Rϕz) = T −1(−ρ−1 Rϕz)

⇔ z − Rϕz = h(−ρ−1T −1 Rϕz)

⇔ z = Rϕz − ρ−1hT −1 Rϕz

⇔ z = (I − ρ−1hT −1)Rϕz.

This fixed point formulation allows us to construct the following projection iterative
algorithm for solving the problem (2.1).

Algorithm 6.5 Suppose that T, g, h and ρ are the same as in Algorithm 6.3. For arbi-
trary chosen initial point z0 ∈ H, define the iterative sequence {zn}∞n=0 by the iterative
process
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zn+1 = (1 − αn)zn + αn(I − ρ−1hT −1)Rϕzn,

where the sequence {αn}∞n=0 is the same as in Algorithm 4.9.

If ϕ(x) = δK (x) for all x ∈ K , where δK is defined by (4.4), then Jρϕ ≡ PK . Then
Algorithms 6.3–6.5 reduce to the following projection iterative algorithms.

Algorithm 6.6 Let T, g, h and ρ be the same as in Algorithm (6.3). For arbitrary
chosen initial point z0 ∈ H, compute the iterative sequence {zn}∞n=0 in the following
way:

{
h(un) = Sn PK zn,

zn+1 = (1 − αn)zn + αn(g(un)− ρT (un)),

where the mapping S and the sequence {αn}∞n=0 are the same as in Algorithm 4.9.

Algorithm 6.7 Suppose that T, g, h and ρ are the same as in Algorithm 6.3. For
arbitrary chosen initial point z0 ∈ H, compute the iterative sequence {zn}∞n=0 in the
following way:

{
h(un) = Sn PK zn,

zn+1 = (1 − αn)zn + αn(g(un)− T (un)+ (1 − ρ−1)QK zn),

where the mapping S and the sequence {αn}∞n=0 are the same as in Algorithm 4.9.

Algorithm 6.8 Assume that T, g, h and ρ are the same as in Algorithm 6.3. For arbi-
trary chosen initial point z0 ∈ H, define the iterative sequence {zn}∞n=0 by the iterative
process

zn+1 = (1 − αn)zn + αn(I − ρ−1hT −1)QK zn,

where the sequence {αn}∞n=0 is the same as in Algorithm 4.9.

Remark 6.9 Algorithms 4.1–4.3 in [47] are special cases of Algorithms 6.3–6.5,
respectively. Also, Algorithms 4.1–4.3 in [36] are special cases of Algorithms
6.6–6.8. In brief, for a suitable and appropriate choice of the operators T, g, h, S and the
constant ρ, one can obtain a number of new and previously known iterative schemes.
See, for example, the suggested algorithms in [35,42]. This clearly shows that Algo-
rithms 6.3–6.8 are quite general and unifying.

7 Strongly convergence theorem

In this section, we study the convergence analysis of iterative sequence generated by
perturbed resolvent iterative Algorithm 6.3. Similarly, one can discuss the convergence
analysis of iterative sequences generated by Algorithms 6.4–6.8.
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Theorem 7.1 Let T, g, h and ρ be the same as in the problem (2.1) and suppose
that all the conditions of Theorem 3.2 hold. Assume that S : H → H is a nearly
uniformly L-Lipschitzian mapping with the sequence {bn}∞n=0 such that, for each
u ∈ EGNMVID(H, T, g, h), h(u) ∈ Fix(S). Further, assume that Lψ < 1, where ψ
is the same as in (3.8). Then there exists a unique solution u∗ of the problem (2.1) such
that the iterative sequence {zn}∞n=0 generated by Algorithm 6.3, converges strongly to
the only element z of EGRE(H, T, g, h).

Proof Theorem 3.2 guarantees the existence a unique solution u∗ ∈ H for the problem
(2.1). Accordingly, in view of Lemma 6.2, there exists a unique point z ∈ H satisfying

h(u∗) = Jρϕ z, z = g(u∗)− ρT (u∗). (7.1)

Since h(u∗) ∈ Fix(S), by using (7.1), it follows that for each n ≥ 0

h(u∗) = Sn Jρϕ z, z = g(u∗)− ρT (u∗). (7.2)

Applying (6.9), (7.2) and the assumptions, we get

‖zn+1 − z‖ ≤ (1 − αn)‖zn − z‖ + αn‖g(un)− g(u∗)− ρ(T (un)− T (u∗))‖
≤ (1 − αn)‖zn − z‖ + αn

√
θ2 − 2ρκ + ρ2ξ2‖un − u∗‖. (7.3)

To obtain an estimation for ‖un − u∗‖, using (6.9) and (7.2), we find that

‖un − u∗‖ ≤ ‖un − u∗ − (h(un)− h(u∗))‖ + ‖Sn Jρϕ zn − Sn Jρϕ z‖
≤

√

1 − 2π + 
2‖un − u∗‖ + L(‖Jρϕ zn − Jρϕ z‖ + bn)

≤
√

1 − 2π + 
2‖un − u∗‖ + L(‖zn − z‖ + bn),

which leads to

‖un − u∗‖ ≤ L

1 − √
1 − 2π + 
2

‖zn − z‖ + Lbn

1 − √
1 − 2π + 
2

. (7.4)

Applying (7.3) and (7.4), we have

‖zn+1 − z‖ ≤ (1 − αn)‖zn − z‖ + αn
L
√
θ2 − 2ρκ + ρ2ξ2

1 − √
1 − 2π + 
2

‖zn − z‖

+αn
L
√
θ2 − 2ρκ + ρ2ξ2bn

1 − √
1 − 2π + 
2

= (1 − αn)‖zn − z‖ + αn Lω‖zn − z‖ + αn Lωbn

= (1 − αn(1 − Lω))‖zn − z‖ + αn(1 − Lω)
Lωbn

1 − Lω
, (7.5)
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where ω =
√
θ2−2ρκ+ρ2ξ2

1−
√

1−2π+
2
. Since ψ < 1, where ψ is the same as in (3.8), we deduce

that ω < 1. If L ≥ 1 then from the assumption Lψ < 1 it follows that

√

1 − 2π + 
2 + L
√
θ2 − 2ρκ + ρ2ξ2 < 1,

whence we derive that Lω < 1. For the case that L < 1, it is obvious that Lω < 1.
Since all the conditions of Lemma 5.1 hold from (7.5) and Lemma 5.1 it follows that
the sequence {zn}∞n=0 generated by Algorithm 6.3 converges strongly to the unique
solution z ∈ H of the problem (6.1) and there is nothing to prove.

8 Extended general resolvent dynamical systems

In this section, we consider the dynamical system technique to study the existence and
uniqueness of solution of the extended general nonlinear mixed variational inequality
of type (2.1). Dupuis and Nagurney [15] introduced and studied the projected dynam-
ical systems associated with variational inequalities, in which the right hand side of
the ordinary differential equations is a projection operator. The novel feature of the
projected dynamical system is that the its set of stationary points corresponds of the
set of the corresponding set of the solutions of the variational inequality problem.
Thus the equilibrium and nonlinear programming problems, which can be formulated
in the setting of the variational inequalities, can now be studied in the more general
framework of the dynamical systems. It has been shown [14–16,27,58,59,63] that
these dynamical systems are useful in developing efficient and powerful numerical
techniques for solving variational inequalities. Noor [28,37,47] has also suggested
and analyzed similar resolvent dynamical systems for mixed variational inequalities
by extending and modifying the techniques of Xia and Wang [58,59]. In Sect. 3, we
have shown that the extended general nonlinear mixed variational inequalities (2.1)
are equivalent to fixed-point problems. We use this equivalent to suggest and analyze
a resolvent dynamical system associated with the extended general nonlinear mixed
variational inequality (2.1). The fixed point formulation (3.1) enables us to suggest
the following dynamical system

du

dt
= λ{Jρϕ (g(u)− ρT (u))− h(u)}, u(t0) = u0 ∈ H, (8.1)

associated with the extended general nonlinear mixed variational inequality (2.1),
where λ > 0 is a constant. The system of type (8.1) is called the extended general
resolvent dynamical system associated with the extended general nonlinear mixed
variational inequality (2.1). Here the right hand is related to the resolvent and is dis-
continuous on the boundary. It is clear from the definition that the solution to (8.1)
always stays in the constraint set. This implies that the qualitative results such as the
existence, uniqueness, and continuous dependence of the solution on the given date
(8.1) can be studied. The dynamical system describes the adjustment processes which
may produce important transient phenomena prior to the achievement of a steady state.
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If h ≡ I , then the extended general resolvent dynamical system (8.1) reduces to
the following system:

du

dt
= λ{Jρϕ (g(u)− ρT (u))− u}, u(t0) = u0 ∈ H, (8.2)

which has been introduced and studied by Noor [47].
If the function ϕ is the indicator function of a closed convex set K in H, then

Jρϕ ≡ PK is the projection of H onto K . In this case, the extended general resolvent
dynamical system (8.1) reduces to the following system:

du

dt
= λ{PK (g(u)− ρT (u))− h(u)}, u(t0) = u0 ∈ H. (8.3)

The system of type (8.3) is called the extended general projection dynamical system
associated with the extended general nonlinear variational inequality introduced by
Noor [30,36] and appears to be new one.

If h ≡ I , then the extended general projection dynamical system (8.3) collapses to
the following system:

du

dt
= λ{PK (g(u)− ρT (u))− u}, u(t0) = u0 ∈ H, (8.4)

which is introduced and studied by Noor et al. [47].
To state our results, we need the following well-known concepts.

Definition 8.1 [58] The dynamical system is said to be converge to the solution set�∗
of the problem (2.1), if, irrespective of the initial point, the trajectory of the dynamical
system satisfies

lim
t→∞ dist(u(t),�∗) = 0, (8.5)

where dist(u(t),�∗) = infv∈�∗ ‖u − v‖.

It is easy to see that, if the set �∗ has a unique point u∗, then (8.5) implies that
limt→∞ u(t) = u∗.

If the dynamical system is still stable at u∗ in the Lyapunov sense, then the dynam-
ical system is globally asymptotically stable at u∗.

Definition 8.2 [58] The dynamical system is said to be globally exponentially stable
with degree η at u∗, if, irrespective of the initial point, the trajectory of the dynamical
system satisfies

‖u(t)− u∗‖ ≤ c0‖u(t0)− u∗‖ exp(−η(t − t0)), ∀t ≥ t0,

where c0 and η are positive constants independent of the initial point. It is evident that
globally exponentially stability is necessarily globally asymptotically stable and the
dynamical system converges arbitrarily fast.
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Lemma 8.3 (Gronwall’s inequality in [26]) Let û and v̂ be real-valued nonnegative
continuous functions with domain {t : t ≥ t0} and let α(t) = α0(|t − t0|), where α0 is
a monotone increasing function. If, for all t ≥ t0,

û(t) ≤ α(t)+
t∫

t0

û(s)v̂(s)d(s),

then

û(t) ≤ α(t)+ exp

⎧
⎨

⎩

t∫

t0

v̂(s)d(s)

⎫
⎬

⎭
.

In Theorem 3.2, the existence and uniqueness of solution of the extended general
nonlinear mixed variational inequality (2.1) is proved. Now, by using Lemma 8.3 and
the assumptions of Theorem 3.2, we establish the existence and uniqueness of solution
of the extended general resolvent dynamical system of type (8.1) associated with the
extended general nonlinear mixed variational inequality (2.1).

Theorem 8.4 Let T, g, h and ρ be the same as in Theorem 3.2 and suppose that all
the conditions of Theorem 3.2 hold. Then, for each u0 ∈ H, there exists a unique con-
tinuous solution u(t) of the extended general resolvent dynamical system (8.1) with
u(t0) = u0 over [t0,∞).

Proof According to Theorem 3.2, the extended general nonlinear mixed variational
inequality (2.1) has a unique solution u∗ ∈ H. Accordingly, from Lemma 3.1 it follows
that h(u∗) = Jρϕ (g(u∗)− ρT (u∗)). Define

F(u) = λ{Jρϕ (g(u)− ρT (u))− h(u)}, ∀u ∈ H,

where λ > 0 is a constant. Then, for all u, v ∈ H, we have

‖F(u)− F(v)‖
≤ λ

(
‖Jρϕ (g(u)− ρT (u))− Jρϕ (g(v)− ρT (v))‖ + ‖h(u)− h(v)‖

)

≤ λ
(
‖u − v‖ + ‖u − v − (h(u)− h(v))‖ + ‖Jρϕ (g(u)−ρT (u))− Jρϕ (g(v)− ρT (v))‖

)

≤ λ
(
‖u − v‖ + ‖u − v − (h(u)− h(v))‖ + ‖g(u)− g(v)− ρ(T (u)− T (v))‖

)
. (8.6)

Since T is κ-strongly monotone with respect to g and ξ -Lipschitz continuous, g is
θ -Lipschitz continuous, h is π -strongly monotone and 
-Lipschitz continuous, like in
the proofs of (3.5) and (3.6), we have

‖u − v − (h(u)− h(v))‖ ≤
√

1 − 2π + 
2‖u − v‖ (8.7)
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and

‖g(u)− g(v)− ρ(T (u)− T (v))‖ ≤
√
θ2 − 2πκ + ρ2ξ2‖u − v‖. (8.8)

Substituting (8.7) and (8.8) in (8.6) deduce that

‖F(u)− F(v)‖ ≤ λ(1 + ψ)‖u − v‖,

where ψ is the same as in (3.8). Hence the operator F is locally Lipschitz continu-
ous in H. Therefore, for each u0 ∈ H, there exists a unique and continuous solution
u(t) of the extended general resolvent dynamical system (8.1) defined in a interval
t0 ≤ t < T with the initial condition u(t0) = u0. Let [t0, T ) be its maximal interval
of existence. Now, we show that T = ∞. For any u ∈ H, we have

‖F(u)‖ = λ‖Jρϕ (g(u)− ρT (u))− h(u)‖
≤ λ

(
‖Jρϕ (g(u)− ρT (u))− h(u∗)‖ + ‖h(u)− h(u∗)‖

)

≤ λ
(
‖u − u∗‖ + ‖u − u∗ − (h(u)− h(u∗))‖

+ ‖Jρϕ (g(u)− ρT (u))− Jρϕ (g(u
∗)− ρT (u∗))‖

)

≤ λ
(
‖u − u∗‖ + ‖u − u∗ − (h(u)− h(u∗))‖

+ ‖g(u)− g(u∗)− ρ(T (u)− T (u∗))‖
)

≤ λ(1 + ψ)‖u − u∗‖
≤ λ(1 + ψ)‖u∗‖ + λ(1 + ψ)‖u‖,

then

‖u(t)‖ ≤ ‖u0‖ +
t∫

t0

‖F(u(s))‖ ds

≤ (‖u0‖ + k1(t − t0))+ k2

t∫

t0

‖u(s)‖ ds,

where k1 = λ(1 +ψ)‖u∗‖ and k2 = λ(1 +ψ). Therefore, using Lemma 8.3, we have

‖u(t)‖ ≤ (‖u0‖ + k1(t − t0))e
k2(t−t0), ∀t ∈ [t0, T ).

Hence, the solution is bounded for t ∈ [t0, T ) if T is finite. Accordingly, T = ∞.
We now show that the trajectory of solution of the extended general resolvent

dynamical system (8.1) converges to a unique solution of the extended general non-
linear mixed variational inequality (2.1) by using the technique of Xia and Wang
[57,58].
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Theorem 8.5 Let T, g, h and ρ be the same as in Theorem 3.2 and suppose that all
the conditions Theorem 3.2 hold. If 1 − μ < π < θ , where μ is the same as in (3.2),
then the extended general resolvent dynamical system (8.1) converges globally expo-
nentially to the unique solution of the extended general nonlinear mixed variational
inequality (2.1).

Proof Theorem 3.2 guarantees the existence of a unique solution u∗ ∈ H for the prob-
lem (2.1). So Lemma 3.1 implies that h(u∗) = Jρϕ (g(u∗) − ρT (u∗)). On the other
hand, in view of Theorem 8.4, the extended general resolvent dynamical system (8.1)
has a unique solution u(t) over [t0, T ) for any fixed u0 ∈ H. Let u(t) = u(t, t0 : u0)

be the solution of (8.1) with u(t0) = u0. Now, we consider the Lyapunov function
L defined on H as follows:

L(u) = ‖u − u∗‖2, ∀u ∈ H. (8.9)

Then it follows from (8.1), (8.9) and π -strongly monotonicity of h that

d L

dt
= d L

du

du

dt
= 2

〈

u(t)− u∗, du

dt

〉

= 2λ〈u(t)− u∗, Jρϕ (g(u)− ρT (u))− h(u)〉
= −2λ〈u(t)− u∗, h(u)− h(u∗)〉

+ 2λ〈u(t)− u∗, Jρϕ (g(u)− ρT (u))− h(u∗)〉
≤ −2λπ‖u(t)− u∗‖2 + 2λ‖u(t)− u∗‖‖Jρϕ (g(u)− ρT (u))

− Jρϕ (g(u
∗)− ρT (u∗))‖.

(8.10)

Since T is κ-strongly monotone with respect to g and ξ -Lipschitz continuous,
g is θ -Lipschitz continuous, and the resolvent operator Jρϕ is nonexpansive, in similar
way to the proof of (3.6), we have

‖Jρϕ (g(u)− ρT (u))− Jρϕ (g(u
∗)− ρT (u∗))‖

≤ ‖g(u)− g(u∗)− ρ(T (u)− T (u∗))‖
≤

√
θ2 − 2ρκ + ρ2ξ2‖u − u∗‖. (8.11)

Substituting (8.11) in (8.10), we obtain

d

dt
‖u(t)− u∗‖2 ≤ −2λ

(
π −

√
θ2 − 2ρκ + ρ2ξ2

)
‖u(t)− u∗‖2

= −2λϑ‖u(t)− u∗‖2,

where ϑ = π − √
θ2 − 2ρκ + ρ2ξ2. Therefore, we have

‖u(t)− u∗‖ ≤ ‖u(t)− u∗‖e−λϑ(t−t0).
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The condition (3.2) and this fact that 1 −μ < π < θ guarantee that ϑ > 0. Hence
the trajectory of the solution of the extended general resolvent dynamical system
(8.1) converges globally exponentially to the unique solution of the extended general
nonlinear mixed variational inequality (2.1). This completes the proof.

Remark 8.6 Theorem 3.2 improves and extends Theorem 3.1 in [47]. Theorem 3.1
in [36] and Theorem 3.2 in [47] are special cases of Theorems 5.2 and 5.3. Also,
Theorem 7.1 generalizes and improves Theorem 4.1 in [36,45].

9 Summary and conclusion

In this paper, we have introduced and considered a new class of extended general
nonlinear mixed variational inequalities and a new class of extended general resolvent
equations involving three different nonlinear operators. We have proved the equiva-
lence between the extended general nonlinear mixed variational inequalities and the
fixed point problems as well as the extended general resolvent equations. Then by
this equivalent formulation, we have discussed the existence and uniqueness theorem
for solution of the problem of extended general nonlinear mixed variational inequal-
ities. This equivalence and a nearly uniformly Lipschitzian mapping S are used to
suggest and analyze some new perturbed resolvent iterative algorithms for finding an
element of the set of the fixed points of the nearly uniformly Lipschitzian mapping S
which is the unique solution of the problem of extended general nonlinear mixed var-
iational inequalities. We have also suggested and analyzed a class of extended general
resolvent dynamical systems associated with the extended general nonlinear mixed
variational inequalities. We have shown that the trajectory of the extended general
resolvent dynamical system converges globally exponentially to the unique solution
of the extended general nonlinear mixed variational inequalities. Several special cases
are also discussed. It is expected that the results proved in this paper may simulate
further research regarding the numerical methods and their applications in various
fields of pure and applied sciences.
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