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Abstract In the paper we prove that any nonconvex quadratic problem over some
set K ⊆ R

n with additional linear and binary constraints can be rewritten as a
linear problem over the cone, dual to the cone of K -semidefinite matrices. We show
that when K is defined by one quadratic constraint or by one concave quadratic con-
straint and one linear inequality, then the resulting K -semidefinite problem is actually
a semidefinite programming problem. This generalizes results obtained by Sturm and
Zhang (Math Oper Res 28:246–267, 2003). Our result also generalizes the well-known
completely positive representation result from Burer (Math Program 120:479–495,
2009), which is actually a special instance of our result with K = R

n+.

Keywords Set-positivity · Semidefinite programming · Copositive programming ·
Mixed integer programming

1 Introduction

In [2,15,17,18] several hard problems from combinatorial optimization have been
reformulated as linear programs over the cone of copositive or completely posi-
tive matrices. In [5], Burer generalized these results as follows: under rather weak
assumptions any nonconvex quadratic problem over the nonnegative orthant with
some additional linear and binary constraints can be rewritten as a linear problem over
the cone of completely positive matrices. This result has been generalized to capture
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1374 G. Eichfelder, J. Povh

the case when the nonnegative orthant is replaces by an arbitrary closed convex cone,
see e.g. [6,13].

The main contribution of this paper consists of the following result: optimization
problems with a nonconvex quadratic objective function where the feasible set consists
of all vectors from a given set K which satisfy given linear and binary constraints have
a conic linear programming formulation, i.e. the optimal value of such problems is
equal to the optimal value of a linear function over the domain of symmetric matrices
which satisfy a bunch of linear constraints and are contained in the cone, dual to the
K -semidefinite cone. We also explain the relations between the original feasible set
and the feasible set of the conic linear problem. If K is the nonnegative orthant R

n+,
than our result is essentially the same as the well-known Burer’s completely positive
representation result [5]. If K is a closed convex cone, then this result coincides with
results from [6,13].

Our result also captures and generalizes the quadratic cases from Sturm and Zhang
[19]: if K is defined by a single quadratic constraint or by one concave quadratic con-
straint and by one linear inequality, then the resulting conic linear program is actually a
semidefinite programming problem, a result that cannot be obtained straightforwardly
from the approach in [19] because we allow in the original problem linear constraints
and binary constraints. Since the set K can be arbitrary set we can handle also sets K
defined by more than one quadratic constraint. Unfortunately, in these cases the result-
ing conic linear problem is usually no longer a semidefinite programming problem.

Recently Burer and Dong [8] presented a method how to rewrite under some
assumptions a non-convex quadratic program over the product of second order cones
as a linear program over the dual of the K -semidefinite cone, denoted there as the set of
generalized completely positive matrices. This result is complementary to the results in
this paper because it is about optimization problems with quadratic constraints where
the underlaying set is the product of second order cones, while we consider linear and
binary constraints and the underlaying set can be an arbitrary set (not necessarily a
cone).

1.1 Notation

In [5] the reformulation is done over the cone of completely positive matrices

C∗
R

n+ :=
{∑

i

x i (xi )� : xi ∈ R
n+

}
(1)

which is the dual cone of the cone of copositive matrices defined by

CR
n+ :=

{
A ∈ S n : x� Ax ≥ 0 for all x ∈ R

n+
}

. (2)

Here, S n denotes the space of real symmetric n × n matrices equipped with the inner
product defined by 〈A, B〉 := trace(AB) for all A, B ∈ S n . Recall that the dual cone
of a cone C in a topological space X is in general defined by
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Set-semidefinite reformulation of nonconvex quadratic programs 1375

C∗ := {
x∗ ∈ X∗ : x∗(x) ≥ 0 for all x ∈ C

}
with X∗ denoting the topological dual space, i.e. the space of all continuous linear
maps from X to R.

Replacing R
n+ in (1) and (2) by an arbitrary nonempty set K ⊆ R

n we obtain

CK := {A ∈ S n : x� Ax ≥ 0 for all x ∈ K }

which is called the K -semidefinite (or set-semidefinite) cone. In opposition to [11,12]
we define here the K -semidefinite cone in the subspace of symmetric matrices instead
of in the whole space of linear maps mapping from the Euclidean space R

n to R
n .

The K -semidefinite cone is a convex cone and hence defines a partial ordering in the
space of symmetric matrices.

Remark 1 If K = R
n then CK and C∗

K are exactly the cone of positive semidefinite
matrices denoted by S +

n .

In this paper, cone(�) for some set � denotes the cone generated by the set, conv(�)

is the convex hull and cone conv(�) denotes the convex cone generated by the set �,
i.e. cone conv(�) = {∑i αi x i : αi ≥ 0, xi ∈ �}, and cl(�) is the closure of the set
�. Further, we assume K to be a nonempty subset of R

n .

1.2 Technical preliminaries

Under the assumptions here, i.e. K ⊆ R
n , the dual cone of the K -semidefinite cone

was given in [19, Prop. 1, Lemma 1]:

Lemma 2 Let K ⊆ R
n be a nonempty set, then

C∗
K = cl cone conv{xx� : x ∈ K }.

Since C∗
K is the closure of a convex cone generated by {xx� : x ∈ K }, using Ca-

rathéodory’s theorem we can represent the dual cone by

C∗
K = cl

⎛
⎝
⎧⎨
⎩

n(n+1)/2∑
i=1

αi x i (xi )� : αi ≥ 0, xi ∈ K , ∀i = 1, . . . ,
n(n + 1)

2

⎫⎬
⎭
⎞
⎠ .

For shortness of the representation we omit the upper limit p := n(n+1)/2 in the sum
above and write instead in the following C∗

K = cl(
{∑

i αi x i (xi )� : αi ≥0, xi ∈ K
}
).

We would like to add, that in [19, Lemma 1] it was shown that

cl cone conv{xx� : x ∈ K } = cone conv{xx� : x ∈ cl(K )}, (3)

for an arbitrary set K ⊆ R
n . We have realized that there is a mistake in the proof of

this lemma which is based on the fact that cl cone(K ) 
= cone cl(K ) for some set K
(e.g. for K = {1} × [0,∞)), see the next example.
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1376 G. Eichfelder, J. Povh

Example 3 Consider the closed set K = {1} × [0,∞) and let x > 0 be given. Then

Y ∗ :=
(

0 0
0 x2

)
∈ cl

({∑
i

αi

(
1
xi

)(
1
xi

)�
: αi ≥ 0, xi ≥ 0

})

= cl cone conv{yy� : y ∈ K }

as for all k = 1, 2, 3, . . .,

Yk := 1

k2

(
1

kx

)(
1

kx

)�
∈ cone conv{yy� : y ∈ K }

and limk→∞ Yk = Y ∗, but

Y ∗ 
∈
{∑

i

αi

(
1
xi

)(
1
xi

)�
: αi ≥ 0, xi ≥ 0

}

= cone conv{yy� : y ∈ cl K } = cone conv{yy� : y ∈ K }.

So when K ⊆ R
n is an arbitrary set then result (3) is not necessarily true. However,

if K is a cone, we retrieve the result gained in [19, Lemma 1].

Lemma 4 Let K ⊆ R
n be a nonempty set, then

C∗
K = cl cone conv{xx� : x ∈ K } = conv{xx� : x ∈ cl cone K }.

Proof First, suppose Z ∈ cl cone conv{xx� : x ∈ K }. Then Z = limk→∞ Zk with
Zk ∈ cone conv{xx� : x ∈ K } and

Zk =
∑

i

α2
k,i xk,i (xk,i )�

for nonnegative scalars αk,i and vectors xk,i ∈ K for all i ≤ n(n + 1)/2. By defining
Yk to be the matrix with columns αk,i xk,i , we can write Zk = YkY �

k . We have

lim
k→∞ ‖Yk‖2 = lim

k→∞ trace(YkY �
k ) = lim

k→∞ trace(Zk) = trace(Z)

(with the norm denoting the Frobenius norm). Thus, the sequence Yk is bounded and
has a cluster point Y ∗. Each column of Y ∗ is thus a limit for k → ∞ of a sequence of
elements αk,i xk,i of the cone generated by K . Hence, the columns of Y ∗ belong to the
closure of the cone generated by K . So, Z = Y ∗(Y ∗)� ∈ conv{xx� : x ∈ cl cone K }.

To prove the converse, we assume Z ∈ conv{xx� : x ∈ cl cone K }. Then

Z =
∑

i

αi x̄ i (x̄ i )�
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Set-semidefinite reformulation of nonconvex quadratic programs 1377

with nonnegative scalars αi , x̄ i ∈ cl cone K for all i ≤ n(n + 1)/2. Thus, there exist
sequences λi,k ≥ 0 and xi,k ∈ K with x̄ i = limk→∞ λi,k xi,k . Then

Z =
∑

i

αi

(
lim

k→∞ λi,k xi,k
)(

lim
k→∞ λi,k xi,k

)�

= lim
k→∞

∑
i

(
αiλ

2
i,k

)
xi,k(xi,k)�

and Z ∈ cl cone conv{xx� : x ∈ K }.

Corollary 5 If K ⊆ R
n is a nonempty cone, then

C∗
K = cl conv{xx� : x ∈ K } = conv{xx� : x ∈ cl(K )}.

If K is a nonempty closed cone, then the dual cone reduces to

C∗
K = conv{xx� : x ∈ K } =

{∑
i

x i (xi )� : xi ∈ K

}

and C∗
K is closed.

We call constraints X ∈ CK (or X ∈ C∗
K ) set-semidefinite constraints. Anstreicher

and Burer give in [1] for low dimensions computable representations of C∗
K in terms

of matrices that are positive semidefinite and componentwise nonnegative. For n = 5
and K = R

5+ examinations of the cone of completely positive matrices C∗
R

5+
are done

by Burer, Anstreicher and Dür in [7]. Jarre and Schmallowsky present in [14] a numer-
ical test for checking whether some matrix is an element of the cone of completely
positive matrices C∗

R
n+

. Recently, a numerical test for detecting copositivity based on

simplical partitions and several sufficient conditions has been developed by Bundfuss
and Dür, see [9,10], and Bomze and Eichfelder [3]. We are not aware of results about
separation problems for CK or C∗

K for general K .
The following lemma is the base for our main result and states that the optimal

value of a quadratic function over an arbitrary set S is equal to the optimal value of
the corresponding linear function over the convex set generated by dyadic products of
elements from this set S.

Lemma 6 Let a matrix Q ∈ S n, a vector c ∈ R
n and a nonempty set S ⊆ R

n be
given. Then the following is true

inf {x�Qx + 2c�x : x ∈ S} (4)

= inf
{
〈Q̃, Y 〉 : Y ∈ conv

{(
1
x

)(
1
x

)�
: x ∈ S

}}
, (5)
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1378 G. Eichfelder, J. Povh

where Q̃ =
(

0 c�

c Q

)
. Moreover, if the optimal value of (5) is attained then there exists

a rank one optimal solution.

Proof The “≥” part is easy. For any x ∈ S the matrix Y = (1 x�)�(1 x�) is feasi-
ble for (5) and gives the same objective value. To prove the converse let us consider

Y = ∑
i λi

(
1
xi

)(
1
xi

)�
, where λi ≥ 0,

∑
i λi = 1 and xi ∈ S, for all i . Let x̄ ∈ S

such that

〈
Q̃,

(
1
x̄

)(
1
x̄

)� 〉
= min

i

{〈
Q̃,

(
1
xi

)(
1
xi

)� 〉}
.

Then

〈Q̃, Y 〉 =
∑

i

λi (〈Q, xi (xi )�〉 + 2c�xi ) ≥
∑

i

λi (〈Q, x̄ x̄�〉 + 2c� x̄)

= 〈Q, x̄ x̄�〉 + 2c� x̄ = x̄�Qx̄ + 2c� x̄ .

It follows that the optimal value of (4) is less or equal to the optimal value of (5).
Together with the first part we have the equality. The last assertion is trivial.

2 Set-semidefinite reformulation of quadratic programs

In this section we examine the equivalence between a quadratic optimization problem
with linear constraints, a set constraint and binary variables, and the reformulation of
this problem as a linear program over the dual cone of set-semidefinite matrices. Let
Q ∈ S n be a symmetric matrix, A ∈ R

m×n, b ∈ R
m, c ∈ R

n, K ⊆ R
n a nonempty

set and B ⊆ {1, . . . , n} an index set. We study the following quadratic optimization
problem

OPTQ P := inf x�Qx + 2c�x
such that
Ax = b,

x j ∈ {0, 1} for all j ∈ B,

x ∈ K .

(QP)

We will refer to the following notation

Feas(QP) := {x : x feasible for (QP)},
Feas+(QP) := conv

{(
1
x

)(
1
x

)�
: x ∈ Feas(QP)

}
.

We follow the line of [5] and assume in the following:
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Set-semidefinite reformulation of nonconvex quadratic programs 1379

Assumption 1 If Ax = b and x ∈ K , then x j ∈ [0, 1] for all j ∈ B.

Remark 7 Assumption 1 is not very restrictive, if we are allowed to change the set K .
Suppose that it does not hold for some j ∈ B, e.g. we have Ax = b but this does not
imply x j ∈ [0, 1]. Then we can add two more equations x j + y j = 1, x j − z j = 0
and two sign constraints: y j , z j ≥ 0. Hence, by using K ′ := K ×R

2+ with constraints
{Ax = b, x j + y j = 1, x j − z j = 0}, we fulfill the assumption.

The described method is especially of interest for K a cone, as K ′ = K × R
2+

remains to be a cone and the special structure is not destroyed. Otherwise, we can of
course simply replace K by K ′ = K ∩ {x ∈ R

n : x j ∈ [0, 1] for all j ∈ B}.
However, if we can not change the set K , as is the case in (12) below, then Assump-

tion 1 is very restrictive. If the set B is empty this assumption is trivial.

If Feas(QP) is unbounded then Feas+(QP) might not be closed. Using the following
definitions,

L∞ := {d ∈ R
n+ : Ad = 0}, L+∞ := conv

{(
0
d

)(
0
d

)�
: d ∈ L∞

}
,

Bomze and Jarre [4] proved for the case K = R
n+ that cl(Feas+(QP)) = Feas+(QP)+

L+∞, under the assumption that the constraint Ax = b together with x ∈ R
n+ = K

implies that x j is bounded for all j ∈ B (this assumption is implied by Assumption 1).
We cannot extend these result to a general K since Bomze and Jarre used

polyhedron-based arguments which are true for K = R
n+ and do not hold for a

general K .

Lemma 8 Let us consider

OPTP1 = inf

{〈(
0 c�
c Q

)
, Y

〉
: Y ∈ cl(Feas+(QP))

}
.

Then OPTQ P = OPTP1.

Proof This lemma is a straightforward corollary of Lemma 6. Indeed, the infima of〈(
0 c�
c Q

)
, Y

〉
over cl(Feas+(QP)) and Feas+(QP) are the same due to linearity of

the objective function. Combining this with Lemma 6 yields the result.

We can further rewrite the feasible set cl(Feas+(QP)) as an intersection of the cone
C∗

1×K with an affine space defined by the other constraints from (QP). Here, by 1× K

we shortcut the set {1} × K . First, we point out that any matrix Y =
(

Y11 x�
x X

)
∈

Feas+(QP) is feasible for:
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1380 G. Eichfelder, J. Povh

Y11 = 1, (6)

Ax = b, (7)

Diag(AX A�) = b ◦ b := (b2
1, b2

2, . . . , b2
m)�, (8)

x j = X j j for all j ∈ B. (9)

We consider the dual cone of the 1 × K -semidefinite cone:

C∗
1×K = cl

({∑
i

λi

(
1
xi

)(
1
xi

)�
: λi ≥ 0, xi ∈ K

})
.

Note that the cone C∗
1×K is a closed convex cone. We have the following equality.

Lemma 9 Under Assumption 1 we have

cl Feas+(Q P) = C∗
1×K ∩ {Y ∈ S n+1 : Y feasible for (6) − (9)}

Proof The inclusion “⊆” follows from above since the set on the right hand side is
closed. To prove the converse inclusion let us consider

Y =
∑

i

λi

(
1
xi

)(
1
xi

)�
∈ C∗

1×K ∩ {Y ∈ S n+1 : Y feasible for (6) − (9)}, (10)

where λi > 0 and xi ∈ K . Constraints (6)–(8) imply that
∑

i λi = 1 and for every
row a j of matrix A we have

∑
i

λi a
�
j x i = b j and

∑
i

λi (a
�
j x i )2 = b2

j

It follows that

0 =
∑

i

λi (a
�
j x i )2 −

(∑
i

λi a
�
j x i

)2

=
∑

i

λi

(
a�

j x i −
∑

k

λka�
j xk

)2

≥ 0,

hence the equality is throughout. This is possible only if a�
j x i −∑

k λka�
j xk = 0 for

all i , hence a�
j x i = a�

j xk for all i, k and finally a�
j x i = b j , for all i . Constraint (9) is

equivalent to

∑
i

λi x i
j −

∑
i

λi (xi
j )

2 =
∑

i

λi x i
j (1 − xi

j ) = 0. (11)

Assumption 1 implies that xi
j ∈ [0, 1] for all j ∈ B. Then (11) is possible if and only if

xi
j ∈ {0, 1}, for all i and for all j ∈ B. Therefore xi ∈ Feas(QP) and Y ∈ Feas+(QP).

The set C∗
1×K ∩{Y ∈ S n+1 : Y feasible for (6)−(9)} is a closure of matrices which

can be decomposed as (10). Since cl Feas+(QP) is closed, the inclusion “⊇” follows.
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Set-semidefinite reformulation of nonconvex quadratic programs 1381

Lemmas 8 and 9 directly imply that

Theorem 10 Let Assumption 1 be satisfied. The optimal value OPTQ P is equal to the
optimal value of

OPTC := inf

〈(
0 c�
c Q

)
, Y

〉
such that
Y ∈ C∗

1×K ,

Y feasible for (6) − (9).

(QPC)

Note that (QPC) is a linear program over the dual cone C∗
1×K . We transformed all

nonlinearity and nonconvexity into the structure of the closed convex cone C∗
1×K .

3 Relations with some existing representation results

Theorem 10 is a generalization of the completely positive representation results by
Burer [5,6] and Eichfelder and Povh [13]. Burer presented a completely positive refor-
mulation of (QP) for the case K = R

n+. This result was independently generalized
further by Burer [6] and Eichfelder and Povh [13] to K an arbitrary closed convex
cone. Theorem 10 is therefore the most general representation result since we assumed
only that K is an arbitrary set.

In this section we show that Theorem 10 generalizes the work from Burer [5] and
from Sturm and Zhang [19].

3.1 Optimization over the nonnegative orthant

Burer [5] considered problem (QP) when K is the nonnegative orthant Rn+ and obtained
the following result

OPTQP = inf

〈(
0 c�
c Q

)
, Y

〉
such that
Y ∈ C∗

R
n+1+

,

Y feasible for (6) − (9).

where C∗
R

n+1+
is the cone of completely positive matrices. Note that the only differ-

ence between this formulation and our formulation from Theorem 10 is the constraint
C∗

R
n+1+

. We can prove

Lemma 11 C∗
R

n+1+
= C∗

1×R
+
n

.
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1382 G. Eichfelder, J. Povh

Proof The direction “⊆” is obvious. For the other direction let us consider Y ∈ C∗
R

n+1+
.

Then there are αi ≥ 0 and xi ∈ R
n+ with

Y =
∑

i

(
αi

x i

)(
αi

x i

)�
=

∑
i : αi 
=0

α2
i

(
1

1
αi

x i

)(
1

1
αi

x i

)�

︸ ︷︷ ︸
Y1

+
∑

i : αi =0

(
0
xi

)(
0
xi

)�

︸ ︷︷ ︸
Y2

∈ C∗
R

n+1+
.

Obviously Y1 ∈ C1×R
n+ . Since for all i with αi = 0

(
0
xi

)(
0
xi

)�
= lim

n→∞
1

n2

(
1

nxi

)(
1

nxi

)�

︸ ︷︷ ︸
∈C1×R

n+

,

we have Y2 ∈ C∗
1×R

n+
, too. As C1×R

n+ is a convex cone this implies Y ∈ C1×R
n+ .

Corollary 12 For the case K = R
n+ the set-semidefinite representation of (QP) from

Theorem 10 coincides with the completely positive representation from [5].

3.2 Optimization problems with one quadratic constraint

Sturm and Zhang [19] considered optimization problems with one quadratic constraint
and showed that under some assumptions they have a semidefinite programming rep-
resentation. In this subsection we study the same type of problems and prove results,
slightly more general (or at least more straightforward) as they proved.

Let us consider the case when K is a (nonconvex) nonempty set defined by one
quadratic constraint:

K = {x ∈ R
n : x� Px + 2p�x + p0 ≤ 0} (12)

where p ∈ R
n, p0 ∈ R and P ∈ S n . The dual of the 1 × K -semidefinite cone is

C∗
1×K =cl

({∑
i

λi

(
1
xi

)(
1
xi

)�
: λi ≥0,

〈 ( p0 p�
p P

)
,

(
1
xi

)(
1
xi

)� 〉
≤0

})
.

We have the following representation for C∗
1×K :

Lemma 13

C∗
1×K =

{(
Y11 x�
x X

)
∈ S +

n+1 :
〈 ( p0 p�

p P

)
,

(
Y11 x�
x X

) 〉
≤ 0

}
.
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Set-semidefinite reformulation of nonconvex quadratic programs 1383

Proof The direction “⊆” is obvious. For the converse let us consider Y ∈ S +
n+1 with

〈 ( p0 p�
p P

)
,

(
Y11 x�
x X

) 〉
≤ 0.

Lemma 2.4 from [16] (see also Proposition 3 from [19]), which is also the crucial result

for an alterative proof of the famous S-lemma, implies that there exist

(
αi

x i

)
∈ R

n+1

such that Y = ∑
i

(
αi

x i

)(
αi

x i

)�
and

〈 ( p0 p�
p P

)
,

(
αi

x i

)(
αi

x i

)� 〉
= (xi )� Pxi + 2αi p�xi + α2

i p0 ≤ 0, for all i.

Without loss of generality we may assume that αi ≥ 0. If αi > 0 then

(
αi

x i

)(
αi

x i

)�
=

α2
i

(
1

1
αi

x i

)(
1

1
αi

x i

)�
∈ C∗

1×K .The remaining of the proof deals with the caseαi = 0.

Then (xi )� Pxi ≤ 0.
If (xi )� Pxi < 0 then (xi )� Pxi + 2εp�xi + ε2 p0 ≤ 0 for ε sufficiently small,

hence

Yε =
(

ε

xi

)(
ε

xi

)�
= ε2

(
1

1
ε

xi

)(
1

1
ε

xi

)�
∈ C∗

1×K

and limε→0 Yε =
(

0
xi

)(
0
xi

)�
∈ C∗

1×K . By the same line of reasoning we prove

the case when (xi )� Pxi = 0 and p�xi 
= 0. We consider Yε =
(

ε

xi

)(
ε

xi

)�
if

p�xi < 0 and Yε =
(

ε

−xi

)(
ε

−xi

)�
if p�xi > 0.

If (xi )� Pxi = 0 and p�xi = 0 then

(
0
xi

)(
0
xi

)�
= lim

ε→0
ε2

(
1

z ± 1
ε

xi

)(
1

z ± 1
ε

xi

)�
∈ C∗

1×K

where z is an arbitrary vector from K . Note that we take the sign of 1
ε

xi such that
±(xi )� Pz ≤ 0.

As C∗
1×K is a convex cone the assertion is proven.

We point out that Lemma 13 contains essentially the same result as Theorem 1 from
[19]. However, the proof of the later result is based on Lemma 1 from [19] which we
disprove in Section 1. Instead of fixing the original rather complex proof we decided
to provide a straightforward proof here.
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1384 G. Eichfelder, J. Povh

We have the following corollary.

Corollary 14 We have the following semidefinite programming representation of (QP)
for the case when K is of the form (12):

OPTQ P = inf

〈(
0 c�
c Q

)
, Y

〉
such that

Y =
(

1 x�
x X

)
∈ S +

n+1,

Ax = b,

Diag(AX A�) = b ◦ b,〈 ( p0 p�
p P

)
,

(
1 x�
x X

) 〉
≤ 0.

We demonstrate Corollary 14 by the following example.

Example 15 Let us consider the following nonconvex quadratic problem:

inf {x2 + xy + y2 − 2x − 2y : y + x/2 = 2, x2 − y2 − 2xy + 1 ≤ 0}.

The feasible set is plotted in Fig. 1 as a bold line above the interval [− 6
7 , 2].

The optimal value is − 1
3 and is attained at x = 2

3 , y = 5
3 . Theorem 10 and Lemma

13 imply that we can reformulate this optimization problem into

inf 〈Q, Y 〉
such that

Y ∈ S +
3 , Y11 = 1, 〈A1, Y 〉 = 4, 〈A2, Y 〉 = 4, 〈A3, Y 〉 ≤ 0

Fig. 1 Feasible set of the quadratic problem of Example 15

123



Set-semidefinite reformulation of nonconvex quadratic programs 1385

where

Q =
⎛
⎝ 0 −1 −1

−1 1 0.5
−1 0.5 1

⎞
⎠ , A1 =

⎛
⎝ 0 0.5 1

0.5 0 0
1 0 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 0

0 0.25 0.5
0 0.5 1

⎞
⎠ ,

A3 =
⎛
⎝ 1 0 0

0 1 −1
0 −1 −1

⎞
⎠ .

The optimal solution is a rank one matrix yielding the optimal value −1/3:

Yopt =

⎛
⎜⎜⎜⎝

1 2
3

5
3

2
3

4
9

10
9

5
3

10
9

25
9

⎞
⎟⎟⎟⎠

Remark 16 Our approach generalizes the results from Sturm and Zhang [19] in the
following ways:

– beside one quadratic constraint of type (12) we can handle arbitrary many linear
constraints in the problem (QP).

– we can also include binary constraints provided that Assumption 1 is satisfied.

Thanks to the comment of one of the referees we have realized that the original
approach from Sturm and Zhang can also be easily extended to cover linear equality
constraints directly. Indeed, by a proper change of variables we can eliminate x and
work entirely in the affine subspace {x : Ax = b}. The set K from (12) becomes the
intersection of K and {x : Ax = b} and keeps the same structure as (12). For instance
in Example 15 we can eliminate x by x = 4−2y to obtain a quadratically constrained
quadratic problem.

The second item from above also needs additional comment. Assumption 1 is very
restrictive for this case since we want to keep K as in (12) and we currently do not
see a way how to make it hold if it is not satisfied initially.

Remark 17 Theorems 2 and 3 from [19] are true even though they rely on Lemma 1
from [19]. To prove them it is sufficient to use our version of Lemma 1, i.e. Lemma 4
from page 1376. Therefore the problem (QP) where K is defined either by a strictly
concave (or a strictly convex) quadratic equality constraint or by a concave and linear
inequality constraint also admits semidefinite programming formulations.

4 Conclusions

In the paper we present a result that nontrivially generalizes and connects two impor-
tant results from Burer [5] and Sturm and Zhang [19]. We show that any quadratic
problem where the feasible set is defined by linear and binary constraints and is a
subset of some arbitrary set K can be rewritten as a linear program over the cone
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1386 G. Eichfelder, J. Povh

dual to the K -semidefinite cone. When K is the nonnegative orthant then this result
coincides with the completely positive representation result from [5]. When K is
defined by one quadratic constraint or by one concave quadratic constraint and one
linear inequality then our result generalizes results from Sturm and Zhang [19] since
our approach enables direct inclusion of linear equality constraints and under rather
restrictive assumption also binary constraints.
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