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Abstract The double row layout problem is how to allocate a given set of n machines
on both sides of a straight line corridor so that the total cost of transporting materials
between machines is minimized. This is a very difficult combinatorial optimization
problem with important applications in industry. We formulate the problem as a mixed-
integer program. Computational tests show that the proposed formulation presents a
far superior performance than that of a previously published model.

Keywords Double row layout problem · Machine layout problem ·
Facility layout · Integer programming

1 Introduction

The double row layout problem (DRLP) is a very difficult combinatorial optimiza-
tion problem. It occurs in automated manufacturing environments, where a material-
handling device transports materials among machines arranged in a double-row layout,
i.e. a layout in which the machines are located on both sides of a straight line corridor
(see, for example, [15,17]). An application of the DRLP within a fabrication line that
produces liquid crystal display (LCD) was described by Chung and Tanchoco [8].

Facility layout problems are generally NP-hard, which means that their exact solu-
tion within reasonable computer times is a very difficult task (e.g. for the two-dimen-
sional facility layout problems considered by Sherali et al. [24], the largest instance
size that could be solved to optimality has 9 machines).
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The DRLP is NP-hard and is closely related with another NP-hard problem: the sin-
gle-row facility layout problem (SRFLP). The SRFLP assigns all of the machines to the
same side of a corridor and has wide-ranging applications such as room arrangement in
office buildings [25], the arrangement of books on a shelf [21], and flexible manufac-
turing system design [17]. A number of solution methods have been proposed for the
SRFLP, either exact (e.g. [1–4,6,20,21,25,26]) or heuristic [10,16,18,19,22,23,27].
Also, lower bounds for the SRFLP are presented by Anjos et al. [5], Amaral and
Letchford [4], and by Anjos and Yen [7].

Our earliest reference to double row layouts in the literature dates from more than
20 years ago (i.e. [17]). Even though, the only published exact method for the DRLP
is the Mixed Integer Programming (MIP) model of Chung and Tanchoco [8]. This
motivates the present paper.

Chung and Tanchoco [8] exactly solved DRLPs with up to about ten machines
using CPLEX 10.2. However, their computational tests showed that DRLP instances
with more than ten machines exceeded reasonable computational time. In this paper,
we propose a new MIP model that presents a much improved performance in regards
to Chung and Tanchoco’s [8] model, particularly on the largest instances that we
tested.

2 The double row layout problem

In the DRLP we consider the following notation:

n number of machines
N = {1, 2, . . . , n} set of machines
R = {lower row, upper row} set of rows
ci j amount of flow between machines i and j
�i length of machine i ∈ N
L := ∑n

i=1 �i sum of all machine lengths

Assumptions:

(i) The corridor is situated with its length along the x-axis on the interval [0, L].
(ii) The width of the corridor is negligible.

(iii) The distance between two machines is taken as the x-distance between their
centers.

Then, the DRLP is how to assign the n machines to locations on both sides of the cor-
ridor so that the total cost of transporting materials between machines is minimized.
A mathematical formulation for the DRLP is given by:

min
ϕ∈�n

∑

1≤i< j≤n

ci j d
ϕ
i j (1)

where �n is the set of all double row layouts on the set N ; and dϕ
i j is the distance

between machines i and j with reference to a layout ϕ ∈ �n .
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3 The proposed mixed-integer programming model

Consider the vector α = (αi j )1≤i, j≤n;i �= j ∈ {0, 1}n(n−1)such that αi j = 1, if machine
i is to the left of machine j and both i and j are at the same row; αi j = 0, otherwise. The
convex hull of all α-incidence vectors representing a partition of the set of n machines
into two linear orders of the machines yields a polytope which we will denote byPn .
Since a complete description of Pn may not be achievable, we shall devote our atten-
tion to classes of inequalities that are valid for the convex hull of points defined byPn .
These might be helpful when solving the DRLP with integer programming using a
formulation based on the α-incidence vectors.

The polytope Pn is closely related to other polytopes in the literature such as
the clique partitioning polytope [13,14] and the linear ordering polytope [11,12].
Recently, Coll et al. [9] studied the partitioning of a complete digraph D (on n vertices)
into subgraphs such that each subgraph is a linear ordering of its vertices. They defined
the polytope of partitions into linear orderings, denoted by PP L O(D), as the convex
hull of any partition into linear orders of the vertices of D. ClearlyPn ⊆ PP L O(D). In
what follows, we discuss a partial description of Pn .

Proposition 1 The following inequalities are valid forPn:

− αi j + αik + α jk − α j i + αki + αk j ≤ 1, (i, j, k ∈ N ; i < j; k �= i, k �= j)

(2)

−αi j + αik − α jk + α j i − αki + αk j ≤ 1, (i, j, k ∈ N ; i < j; k < j; i �= k)

(3)

Proof Inequalities (2) and (3) are valid for PP L O(D) (see, [9]) and sincePn ⊆
PP L O(D), these inequalities are also valid for Pn . ��
Proposition 2 The following inequality is valid for Pn:

αi j + αik + α jk + α j i + αki + αk j ≥ 1, (1 ≤ i < j < k ≤ n) (4)

Proof Consider a set {i, j, k} ⊆ N , 1 ≤ i < j < k ≤ n. In any feasible DRLP
solution, at least two machines of {i, j, k} have to be at the same row and since this is
ensured by Inequality (4), it follows that Inequality (4) must be valid for Pn . ��
The following trivial inequalities are also valid for Pn :

0 ≤ αi j , αi j ≤ 1, (1 ≤ i, j ≤ n; i �= j) (5)

In the sequel we shall consider the polytope Qn(⊇ Pn) defined by:

Qn = {α ∈ Rn(n−1) : (2), (3), (4), and (5)}.

Remark 1 The integral points in Qn are precisely the α-incidence vectors, which
means that Pn ≡ conv(α ∈ Qn : α is integral).
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Now, consider the following continuous variables:
xi abscissa of the center of machine i(1 ≤ i ≤ n) in the x-axis
di j x-distance between (the centers of) machines i and j (1 ≤ i < j ≤ n).

Our proposed mixed-integer programming formulation of the DRLP is given by:

Minimize
n−1∑

i=1

n∑

j=i+1

ci j di j (6)

di j ≥ xi − x j (1 ≤ i < j ≤ n) (7a)

di j ≥ x j − xi (1 ≤ i < j ≤ n) (7b)

di j −
(

�i + � j

2

)

αi j −
(

�i + � j

2

)

α j i ≥ 0, (1 ≤ i < j ≤ n), (8)

xi +
(

�i + � j

2

)

≤ x j + L(1 − αi j ), (1 ≤ i, j ≤ n; i �= j). (9)

xi∗ ≤ x j∗, (i∗, j∗) = arg min
1≤i< j≤n

ci j (10)

α ∈ Qn (11)

αi j ∈ {0, 1}, (1 ≤ i, j ≤ n; i �= j) (12)

�i

2
≤ xi ≤ L − �i

2
, (1 ≤ i ≤ n) (13)

The objective function (6) minimizes the total cost of transporting materials between
machines; Constraints (7) compute the distance between each pair of machines. Con-
straint (8) ensures that if machine i is placed at the same row as machine j , the distance
between their centers is at least (�i +� j )/2. Constraint (9) ensures that machines do not
overlap. Constraint (10) aims to eliminate symmetric solutions. The facilities (i∗, j∗)

with the least amount of flow between them tend to have their centers positioned at
different abscissas. Then, there is an optimal solution with xi∗ > x j∗ and a symmetric
one with xi∗ < x j∗; and we chose the latter optimal solution. If xi∗ = x j∗ in an optimal
solution, Constraint (10) is redundant. A similar constraint has been used by Sherali
et al. [24] for their type of layout problem. Constraints (11) and (12) characterize the
α-incidence vectors.

In the model of Chung and Tanchoco [8] the number of constraints is 5
2 n(n−1)+3n,

the number of continuous variables is n(n−1)+2n and the number of binary variables
is n(n−1)+2n. In the proposed model the number of constraints is n

2 (2n2−n−1)+1,
the number of continuous variables is n

2 (n −1)+n and the number of binary variables
is n(n − 1). Thus, the proposed model has a smaller number of binary variables, and
a smaller number of continuous variables. It has a larger number of constraints, but
most of these are valid inequalities that strengthen the proposed model contributing
for its improved performance relatively to the model of Chung and Tanchoco [8].
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4 Computational experiments

The MIP models MCT of Chung and Tanchoco [8] and the new MIP model (denoted
by M1) were solved using CPLEX 12.1.0 on an Intel Core Duo, 1.73 GHz PC with 1
GB of RAM and with the Windows XP operating system.

We consider the four largest instances introduced by Simmons [25] (of size n ≤ 11),
and two larger instances of size n = 12 (data for these instances is available from the
author). A time limit of three hours was imposed, after which the CPLEX solver is to
be aborted.

The results obtained are displayed in Table 1. For each problem instance, the first
three columns present: the reference to the problem instance data, the name of the
problem, the number n of machines, and the optimal value obtained for the instance.
The next columns display for each model: the amount of computational time spent (in
seconds), the number of branch-and-bound nodes consumed, and the CPLEX opti-
mality gap attained.

Recall that when the CPLEX solver terminates with a proved optimal solution, the
solver reports an optimality gap of zero. The larger the optimality gap, the more distant
the solver is to proving optimality.

Table 1 shows that M1 performs far better than model MCT in terms of compu-
tational times and branch-and-bound nodes. The computational times increase very
rapidly with the size n of the instance. With model MCT , the instance with n = 10,
requires almost 2 h of computational time. However, with model M1 the same instance
requires 183.5 s. With model MCT , for the instances with n > 10, the specified time
limit of 3 h is exceeded with large gaps being reported by CPLEX, while with model
M1 any of these instances are solved in less than 1 h.

Table 1 Performance of mixed integer programming models of the DRLP

Reference Problem n Optimal value Model Gap (%) Number of nodes Time (s)

Simmons [25] S9 9 1,179.0 M1 0 38,604 60.7

MCT 0 201,588 858.5

S9H 9 2,293.0 M1 0 543,646 334.3

MCT 0 2,497,460 5,877.8

S10 10 1,351.0 M1 0 85,319 183.5

MCT 0 2,887,550 7,141.0

S11 11 3,424.5 M1 0 1,007,600 2,417.2

MCT 44.24 2,250,499 12,987.28a

This paper 12a 12 1,493.0 M1 0 1,011,089 2,940.0

MCT 79.76 853,451 12,987.6a

12b 12 1,606.5 M1 0 788,428 3,244.6

MCT 54.21 1,291,880 11,687.5a

a Aborted after exceeding an imposed time limit of 3 h
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5 Conclusions

We considered the DRLP, which is the problem of arranging n machines on both
sides of a central corridor so as to minimize a weighted sum of the distances between
machines. We proposed a mixed-integer programming formulation for the problem.
Computational results showed that for larger instances the new formulation leads to
much faster optimal solutions than those obtained with a previously published linear
mixed-integer programming model.

The formulation introduced here is very interesting from a theoretical perspective.
Future research should consider a thorough study of valid inequalities that are useful
for the proposed model. After identifying the most useful valid inequalities, one can
incorporate them in a branch-and-cut framework, which might further improve the
results presented here.
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