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Abstract In this paper we solve the open problem, finding the solutions for privacy-
preserving horizontally partitioned linear programs with inequality constraints, pro-
posed recently by Mangasarian (Optim Lett 2011, doi:10.1007/s11590-010-0268-9).
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1 Introduction

Consider jointly-defined linear programs where two or more parties each contribute
various components to form a whole optimization problem. The critical information to
be kept hidden is dependent on the situation but could include the constraint set (which
may contain private information about budgets financial health, production capacity,
or network layout etc.) and the objective function (which may express costs or com-
pany aims). The goal is to solve the joint-program and yet keep the private information
hidden as much as possible. This type of problem is referred to as “privacy-preserving
linear program”. Recently there has been substantial interest in privacy-preserving
linear programming problems [1–6].

An approach to privacy-preserving linear programming has been developed is trans-
formation-based method [1,4]. Bednarz et al. [6] pointed out some flaws of the these
transformations.
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Recently, Mangasarian [7,8] proposed some effective solution methods for privacy-
preserving linear programming, based on random matrix transformation. Consider the
linear program

min cT x (1)

s.t. Ax = b, x ≥ 0.

Here, the matrix A ∈ Rm×n together with the right hand side vector b ∈ Rm , that is
[A b], are divided into p horizontal blocks of m1, m2, . . . and m p, (n+1)-dimensional
rows with m1 + m2 + · · · + m p = m. Each block of rows of [A b] corresponding to
the index sets I1, I2, . . . , Ip,

⋃p
i=1 Ii = {1, 2, . . . , m}, is owned by a distinct entity

that is unwilling to make its block of data public or share it with the other entities. In
[8], a method for solving this linear program without revealing any privately held data
is proposed. Also, in [8] the following open problem is posed:

“Another interesting problem in this realm occurs when the equality constraints of
the linear program (1) are inequality constraints instead. The approach proposed here
does not work because we cannot multiply these inequality constraints by a random
matrix B ∈ Rk×m , even if B ≥ 0, and preserve the original feasible region of the
problem. Furthermore, if we convert the inequality constraints to equality constraints
by adding slack variables, multiplying the i th identity matrix coefficient matrix of
the slack variables of the i th entity by its privately held random matrix B·i would
reveal B·i . Hence, treating inequality constraints remains an open problem for future
research.”

This paper proposes a solution to this open problem. In the next section we give
the theory behind our approach. Then in Sect. 3, we describe the algorithm based on
the theory proposed in Sect. 2. An illustrative example of the proposed algorithm is
given in Sect. 4 to demonstrate our approach.

We describe our notation now. All vectors will be column vectors unless transposed
to a row vector by a superscript T. For a vector x ∈ Rn the notation x j will signify
either the j th component or j th block of components. The scalar (inner) product of
two vectors x and y in the n-dimensional real space Rn will be denoted by xT y. The
notation A ∈ Rm×n will signify a real m ×n matrix. For such a matrix, AT will denote
the transpose of A, Ai will denote the i th row or i th block of rows of A and A·, j the j th
column or the j th block of columns of A. A vector of zeros in a real space of arbitrary
dimension will be denoted by 0.

2 Privacy-preserving linear programming for horizontally partitioned data
with inequality constraints

Consider the linear program

min cT x (2)

s.t. Ax ≤ b, x ≥ 0.
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Here, the matrix A ∈ Rm×n together with the right hand side vector b ∈ Rm , that is
[A b], are divided into p horizontal blocks of m1, m2, . . . and m p, (n+1)-dimensional
rows with m1 + m2 + · · · + m p = m. Each block of rows of [A b] corresponding to
the index sets I1, I2, . . . , Ip,

⋃p
i=1 Ii = {1, 2, . . . , m}, is owned by a distinct entity

that is unwilling to make its block of data public or share it with the other entities.
We will solve this linear program without revealing any privately held data. We shall
achieve this by a transformation approach.

Each of entity i, i = 1, . . . , p, chooses its own privately held random matrix
B·Ii ∈ Rk×mi with k ≥ m, corresponding to the index set Ii . We thus have the follow-
ing decompositions

A =

⎡

⎢
⎢
⎢
⎣

AI1·
AI2·
...

AIp ·

⎤

⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎣

bI1

bI2
...

bIp

⎤

⎥
⎥
⎥
⎦

and

B = [B·I1, B·I2 , . . . , B·Ip ] ∈ Rk×m . (3)

The rank of the randomly generated matrix B ∈ Rk×m with k ≥ m is m [9]. Thus we
have

B A = [B·I1 , B·I2 , . . . , B·Ip ]

⎡

⎢
⎢
⎢
⎣

AI1·
AI2·
...

AIp ·

⎤

⎥
⎥
⎥
⎦

= B·I1 AI1· + B·I2 AI2· + · · · + B·Ip AIp · ∈ Rk×n (4)

and

Bb = [B·I1, B·I2 , . . . , B·Ip ]

⎡

⎢
⎢
⎢
⎣

bI1

bI2
...

bIp

⎤

⎥
⎥
⎥
⎦

= B·I1bI1 + B·I2 bI2 + · · · + B·Ip bIp ∈ Rk . (5)

Now if we convert the inequality constraints in (2) to equality constraints by add-
ing slack variables, multiplying the i th identity matrix coefficient matrix of the slack
variables of the i th entity by its privately held random matrix B·Ii , as pointed out in
[8], would reveal B·i . However, a simple trick can be exploited here to overcome this
difficulty. Note the fact that, in simplex algorithm for linear program, we normally
convert the inequality constraints, say, for example,
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{
2x1 − 3x2 ≤ 3
4x1 + 5x2 ≤ 7

(6)

to equality constraints as

⎧
⎨

⎩

2x1 − 3x2 + x3 = 3
4x1 + 5x2 + x4 = 7
x3 ≥ 0, x4 ≥ 0.

However, it is not necessary to do exactly in this way. The inequality constraints (6)
can also be converted to equality constraints as, e.g.,

⎧
⎨

⎩

2x1 − 3x2 + 1.73468x3 = 3,

4x1 + 5x2 + 100.7683x4 = 7
x3 ≥ 0, x4 ≥ 0.

In general, the inequality constraints (6) can be converted to equality constraints as

⎧
⎨

⎩

2x1 − 3x2 + d1x3 = 3
4x1 + 5x2 + d2x4 = 7
x3 ≥ 0, x4 ≥ 0,

(7)

where d1, d2 are arbitrarily chosen positive numbers.
Based on the discussion above, we continue as follows. Each entity i, i = 1, . . . , p,

chooses its own privately held random diagonal matrix DIi ∈ Rmi ×mi , corresponding
to the index set Ii . The elements of DIi are randomly chosen positive real numbers.
Denoted by D, the diagonal matrix D = diag(DI1, DI2 , . . . , DIp ) ∈ Rm×m and
introduce slack variables xs = (xm+1, xm+2, . . . , xm+n)T ∈ Rm , the associated linear
program in stand form is

min cT x (8)

s.t. Ax + Dxs = b, x, xs ≥ 0.

Proposition 1 If (x∗, x∗
s ) is an optimal solution to linear program (8), then x∗ is

optimal for linear program (2).

Proof Note that (x∗, x∗
s ) is optimal (and hence feasible) for linear program (8), Ax∗ +

Dx∗
s = b, x∗ ≥ 0, x∗

s ≥ 0. Thus x∗ ≥ 0 and Ax∗ = b − Dx∗
s ≤ b (since x∗

s ≥ 0
and D is a diagonal matrix with positive diagonal elements), and so x∗ is feasible for
linear program (2). To show that x∗ is actually optimal for linear program (2), let x
be any feasible solution for linear program (2), i.e., Ax ≤ b and x ≥ 0. Then x and
xs = D−1(b − Ax) are feasible for Linear program (8). Since (x∗, x∗

s ) is optimal
for linear program (8), it must be that cT x∗ ≤ cT x , and so x∗ is optimal for linear
program (2). ��

Conversely, if x∗ is an optimal solution to linear program (2), then there is a vector
x∗

s such that (x∗, x∗
s ) is optimal for linear program (8). Thus, the linear program (8)
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is also a kind of standard form associated with linear program (2). Based on these
discussions our original linear program (2) is transformed into the following secure
linear program:

min cT x (9)

s.t. B Ax + B Dxs = Bb, x, xs ≥ 0.

Note that the rank of the random matrix B of (3) is m, thus the following equivalence
is obvious:

Ax + Dxs = b ⇔ B Ax + B Dxs = Bb. (10)

Consequently the feasible region of the original linear program (8) is equivalent to the
feasible region of the secure linear program (9). Since both objective functions are the
same, it follows immediately that both problems have the same solution set. Thus, we
obtain the following result.

Proposition 2 Let k ≥ m for the random matrix B ∈ Rk×m of (3). The secure linear
program (9) is solvable if and only if the linear program (8) is solvable in which case
the solution sets of the two linear programs are identical.

In next section we describe an explicit implementation of the secure linear pro-
gramming formulation (9).

3 Formulation of the privacy-preserving algorithm

Starting with the linear program (2) that is partitioned among p entities as described
in Sect. 2, the following algorithm generates a solution to the linear program without
disclosing any of the privately held data.

Algorithm 1

Step 1. All p entities agree on a value for k ≥ m, where k is the number of rows of
the random matrix B ∈ Rk×m as defined in (3).

Step 2. Each entity generates its own privately held random matrix B·Ii ∈ Rk×mi , i =
1, . . . , p, where mi is the number of rows held by entity i which results in

B = [B·I1, B·I2 , . . . , B·Ip ] ∈ Rk×m . (11)

Step 3. Each entity generates its own privately held random matrix DIi ∈ Rmi ×mi , i =
1, . . . , p, where mi is the number of rows held by entity i which results in

D = diag(DI1, DI2 , . . . , DIp ) ∈ Rm×m (12)

Step 4. Each entity i makes public only its matrix product B·Ii AIi ·, B·Ii DIi and
B·Ii bIi . These products do not reveal either AIi ·, DIi and bIi but allow the
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public computation of the full constraint matrix needed for the secure linear
program (9):

B A = B·I1 AI1· + B·I2 AI2· + · · · + B·Ip AIp · ∈ Rk×n, (13)

B D = B·I1 DI1 + B·I2 DI2 + · · · + B·Ip DIp ∈ Rk×m (14)

and the right hand side for (9):

Bb = B·I1 bI1 + B·I2 bI2 + · · · + B·Ip bIp ∈ Rk (15)

Step 5. A public optimal solution vector (x, xs) to the secure linear program (9) is
obtained which, by Proposition 2, x solves the original linear program (2).

Remarks By algorithm, the solution vector x obtained is publicly available. However,
it is impossible to compute AIi ·, bIi without knowing B·Ii and bIi . Hence, all entities
share the publicly computed optimal solution, but without revealing their privately
held data.

4 An illustrative example

Consider the linear program

min z = −2x1 − 3x2 − 4x3

s.t. x1 + x2 + 2x3 ≤ 2

x1 + 4x2 − x3 ≤ 1 (16)

x1 + 2x2 − 4x3 ≤ 1

xi ≥ 0, i = 1, . . . , 6.

It can be shown that the optimal solution to (16) is x∗ = (0, 0.4444, 0.7778)T .
Let I1 = {1, 2}, I2 = {3}, i.e.,

AI1· =
[

1 1 2
1 4 −1

]

,

AI2· = [1 2 − 4],
bI1· =

[
2
1

]

, bI2 = [2].

Entity 1 generates its own privately held random matrixes

B·I1 =
⎡

⎣
0.4562 0.1367
0.5469 0.8739
0.5633 0.7693

⎤

⎦ ∈ R3×2,

DI1 =
[

12.4965 0
0 25.6433

]

∈ R2×2
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and makes public only its matrix product B·I1 AI1·, B·I1 DI1 and B·I1bI1 .
Entity 2 choose its own privately held random matrices

B·I2 =
⎡

⎣
0.3574
0.7763
0.6682

⎤

⎦ ∈ R3×1,

DI2 = [15.7628] ∈ R1×1.

and makes public only its matrix product B·I2 AI2·, B·I2 DI2 and B·I2 bI2 .
These products do not reveal either AIi ·, DIi and bIi , i = 1, 2 but allow the public

computation of the full constraint matrix and the right hand side needed for the secure
linear program. Thus, introducing the slack variable vector xs = (xm+1, . . . , xm+n)T

we get the secure linear program associated with the program (16) below

min z = −2x1 − 3x2 − 4x3

s.t. 0.9503x1 + 1.7178x2 − 0.6539x3 + 5.7009x4 + 3.5054x5 + 5.6336x6 =1.4065

2.1971x1+5.5951x2−2.8853x3 + 6.8343x4 + 22.4097x5 + 12.2367x6 =2.7440

2.0008x1 + 4.9769x2−2.3155x3+7.0393x4 + 19.7274x5 + x610.5327 =2.5641

xi ≥ 0, i = 1, . . . ,6.

The optimal solution to secure linear program is

x̄ = (0.0000, 0.4444, 0.7778, 0.0000, 0.0000, 0.2044)T .

The sub-vector of x̄ of the first three components is the correct optimal solution
x∗ = (0, 0.4444, 0.7778)T to the original problem. The solution vector obtained is
publicly available. On the other hand, no entity i, i = 1, 2, reveals its data matrix AIi ·
and its right hand side vector bIi .
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