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Abstract Strongly motivated by its possible applications in Mechanics, in our
previous work (Pitea and Postolache (Optim. Lett. doi:10.1007/s11590-010-0272-0,
2011)), we initiated an optimization theory for the second order jet bundle. We con-
sidered the problem of minimization of vectors of curvilinear functionals (well known
as mechanical work), thought as multi-time multi-objective variational problems, sub-
ject to PDE and/or PDI constraints. Within this framework, we introduced necessary
conditions. As natural continuation of our results in Pitea and Postolache (Optim.
Lett. doi:10.1007/s11590-010-0272-0, 2011), the present work introduces a study of
sufficient efficiency conditions. While the background in Sect. 2 is introductory, the
theory in Sect. 3 is new as a whole, containing our results.

Keywords Lagrange 1-form density · Multi-objective variational problem ·
Quasiinvexity · Efficiency
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1 Introduction

According to Chinchuluun and Pardalos [1], most of the optimization problems arising
in practice have several objectives which have to be optimized simultaneously. This
kind of problems, of considerable interest, includes various branches of mathemati-
cal sciences, engineering design, portfolio selection, game theory, decision problems
in management science, web access problems, query optimization in databases etc.
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Also, it is known that such kind of optimization problems arise in wide areas of
research for new technology as well. First of all, we have in mind the material sci-
ences where many times optimal estimation of material parameters is required, either
non-destructive determination of faults is needed. Next, chemistry which provides a
huge class of constrained optimization problems such as the determination of con-
tamination sources given the flow model and the variance of the source. Last, but not
least, games theory where the main study is finding optimal wining strategies. For
descriptions of the web access problem, the portfolio selection problem and capital
budgeting problem, see [1] and some references therein.

In time, several authors have been interested in the study of (sufficient) optimal-
ity conditions for vector programming in connection with generalized convexity. To
quote illustrative sources, see [2] by Hachimi and Aghezzaf, [3] by Hanson, [4] by
Kanniappan, [6] by Mititelu, [8] by Mond and Husain, [11], [12] by Pitea and collab-
orators, [14] by Preda, [17] by Wang.

Despite of all these important advances optimization theory, our multitime multi-
objective problem—imposed by practical reasons—had not been studied so far. In the
problem of our study the objective vector function is of curvilinear integral type, the
integrand depending both on velocities and accelerations, that is why we have chosen
as framework the second order jet bundle [15]. Our study is encouraged by its pos-
sible application, especially in Mechanical Engineering, where curvilinear integral
objectives are extensively used due to their physical meaning as mechanical work.
These objectives play an essential role in mathematical modeling of certain processes
in relation with Robotics, Tribology, Engines etc.

This paper aims to establish some new results on nonlinear optimization on the
second order jet bundle. It is organized as follows. Next, in Sect. 2 our framework is
introduced, while in Sect. 3 sufficient efficiency conditions for our problem are given.
Finally, we conclude the paper and suggest possible further development.

2 Our framework

Let (T, h) and (M, g) be Riemannian manifolds of dimensions p and n, respectively.
The local coordinates on T and M will be written t = (tα) and x = (xi ), respectively.
Let J 2(T,M) be the second order jet bundle associated to T and M , see [15].

Throughout this work, we use the customary relations between two vectors of the
same dimension, [11]. Having in mind the product order relation on R

p, the hyper-
parallelepiped �t0,t1 , in R

p, with the diagonal opposite points t0 = (
t1
0 , . . . , t p

0

)
and

t1 = (
t1
1 , . . . , t p

1

)
, can be written as being the interval [t0, t1]. Suppose γt0,t1 is a

piecewise C2-class curve joining the points t0 and t1.

2.1 On the second order jet bundle

To make complete our presentation, we recall a background on the second order jet
bundle, J 2(T,M). Its elements are the 2-jets j2

t φ of the local sections φ ∈ �t (�).
A 2-jet at the point t is an equivalence class which contains the sections having, at the
point t , the same value and the same partial derivatives up to the second order.
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Minimization of vectors of curvilinear functionals 1659

Let us suppose that the local sections satisfy the equality φ(t) = ψ(t). Consider
(tα, xi ) and (tα

′
, xi ′) be two adapted coordinate systems around φ(t). If the following

equalities hold

∂φi

∂tα
(t) = ∂ψ i

∂tα
(t),

∂2φi

∂tαtβ
(t) = ∂2ψ i

∂tαtβ
(t),

then the following equalities hold too

∂φi ′

∂tα′ (t) = ∂ψ i ′

∂tα′ (t),
∂2φi ′

∂tα′ tβ ′ (t) = ∂2ψ i ′

∂tα′ tβ ′ (t).

Definition 1 Two local sections φ,ψ ∈ �t (�) are called 2-equivalent at the point t if

φ(t) = ψ(t),
∂φi

∂tα
(t) = ∂ψ i

∂tα
(t),

∂2φi

∂tαtβ
(t) = ∂2ψ i

∂tαtβ
(t).

The equivalence class containing the section φ is called 2-jet of the local section φ, at
the point t , denoted by j2

t φ.

Definition 2 The set J 2(T,M) = { j2
t φ | t ∈ T, φ ∈ �t (�)} is called the second

order jet bundle.

Let (U , u), u = (tα, xi ), be an adapted coordinate system on the product manifold
T × M . The induced coordinate system, (U2, u2), on J 2(T,M), is defined as

U2 =
{

j2
t φ |φ(t) ∈ U

}
, u2 =

(
tα, xi , xi

α, xi
θσ

)
,

where

tα
(

j2
t φ

)
= tα(t), xi ( j2

t φ) = xi (φ(t)) ,

xi
α

(
j2
t φ

)
= xi

α

(
j1
t φ

)
, xi

θσ

(
j2
t φ

)
= ∂2φi

∂tθ ∂tσ
(t).

The pn functions xi
α : U2 → R and the

1

2
np(p + 1) functions xi

θσ : U2 → R are

called coordinate derivatives.

Proposition 1 On the product manifold T × M, consider (U , u) the atlas of adapted
charts. Then, the corresponding charts (U2, u2) form a finite dimensional atlas, of
C∞-class, on the second order jet bundle J 2(T,M).

Important note. To simplify the presentation, in our subsequent theory, we shall set

πx (t) = (
x, x(t), xγ (t), xθσ (t)

)
, πx◦(t) =

(
t, x◦(t), x◦

γ (t), x◦
θσ (t)

)
,

where xγ (t) = ∂x

∂tγ
(t), γ = 1, p, and xθσ (t) = ∂2x

∂tθ ∂tσ
(t), θ, σ = 1, p, are partial

velocities and partial accelerations respectively.
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2.2 Lagrange 1-forms of the 2nd order and their primitives as curvilinear integrals

A Lagrange 1-form of the 2nd order, on the jet space J 2(T,M), has the form

ω = Lα(πx (t))dtα + Mi (πx (t))dxi + Nβ
i (πx (t))dxi

β + Pαβi (πx (t))dxi
αβ.

Here Lα,Mi , Nβ
i and Pαβi are Lagrangians of the second order. This one, has the

pullback

x∗ω =
(

Lα + Mi xi
α + Nβ

i x i
βα + Pβγi x i

αβγ

)
dtα

which is a Lagrange 1-form of the third order on M . The coefficients

Lα + Mi xi
α + Nβ

i x i
βα + Pβγi x i

αβγ

are third order Lagrangians, which are linear in the third order derivatives. To the form
ω one attaches the Pfaff equation ω = 0 and the partial differential equations

Lα + Mi xi
α + Nβ

i x i
βα + Pβγi x i

αβγ = 0.

Let Lβ(πx (t))dtβ be a closed Lagrange 1-form (completely integrable), that is
DβLα = DαLβ .

A closed 1-form in a simple-connected domain is an exact one. Its primitive can be
expressed as a curvilinear integral

φ(t) =
∫

�t0,t

Lα (πx (s)) dsα, φ(t0) = 0,

or as a system of PDEs,

∂φ

∂tα
(t) = Lα (πx (t)), φ(t0) = 0.

If would exist a Lagrangian-like primitive

L(πx (t)) =
∫

�t0,t

Lα (πx (s)) dsα, L (πx (t0))) = 0

or DαL = Lα (the foregoing pullback is the given closed 1-form),

∂L

∂tβ
+ ∂L

∂xi

∂xi

∂tβ
+ ∂L

∂xi
γ

∂xi
γ

∂tβ
+ ∂L

∂xi
μν

∂xi
μν

∂tβ
= Lβ,
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Minimization of vectors of curvilinear functionals 1661

relation which can be understood as a completely integrable system of PDEs (of the
second order) with the unknown function x(t), too.

Any smooth Lagrangian L (πx (t)) , t ∈ R
m+, produces two smooth closed (com-

pletely integrable) 1-forms:
- the differential

d L = ∂L

∂tγ
dtγ + ∂L

∂xi
dxi + ∂L

∂xi
γ

dxi
γ + ∂L

∂xi
μν

dxi
μν

having the components

(
∂L
∂tγ ,

∂L
∂xi ,

∂L
∂xi
γ
, ∂L
∂xi
μν

)
, with respect to the corresponding basis

(
dtγ , dxi , dxi

γ , dxi
μν

)
;

- the restriction of d L to πx (t), that is the pullback

d L

∣∣∣∣
πx (t)

=
(
∂L

∂tβ
+ ∂L

∂xi

∂xi

∂tβ
+ ∂L

∂xi
γ

∂xi
γ

∂tβ
+ ∂L

∂xi
μν

∂xi
μν

∂tβ

)

dtβ,

of components

DβL = ∂L

∂tβ
(πx (t))+ ∂L

∂xi (πx (t))
∂xi

∂tβ
(t)+ ∂L

∂xi
γ

(πx (t))
∂xi
γ

∂tβ
(t)

+ ∂L

∂xi
μν

(πx (t))
∂xi
μν

∂tβ
(t),

with respect to the basis dtβ (for other significant ideas, see [13], by Ariana Pitea).
Now, we can continue to set our framework. In this respect, consider the closed

Lagrange 1-form densities of C∞-class

fα = ( f �α ) : J 2(T,M) → R
r , � = 1, r , α = 1, p,

which determine the following path independent functionals

F�(x(·)) =
∫

γt0,t1

f �α (πx (t)) dtα,

We accept that the Lagrange matrix densities

g = (gb
a) : J 2(T,M) → R

md , a = 1, d, b = 1,m, m < n,

of C∞-class defines the partial differential inequations (PDI) (of evolution)

g(πx (t)) � 0, t ∈ �t0,t1 , (2.1)
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and the Lagrange matrix densities

h = (hb
a) : J 2(T,M) → R

qd , a = 1, s, b = 1, q, q < n,

defines the partial differential equations (PDE) (of evolution)

h(πx (t)) = 0, t ∈ �t0,t1 . (2.2)

Let C∞(�t0,t1 ,M) be the space of all functions x : �t0,t1 → M of C∞-class, with
the norm

‖x‖ = ‖x‖∞ +
p∑

α=1

‖xα‖∞ +
p∑

θ,σ=1

‖xθσ ‖∞.

We consider the vector of functionals

F(x(·)) =
∫

γt0,t1

fα(πx (t)) dtα =
(

F1(x(·)), . . . , Fr (x(·))
)
,

and, with the constraints (2.1) and (2.2), denote by

F(�t0,t1) = {x ∈ C∞(�t0,t1 ,M) | x(t0) = x0, x(t1) = x1, g(πx (t)) � 0,

h(πx (t)) = 0, t ∈ �t0,t1}
the set of all feasible solutions of the problem (MP), introduced right now:

(MP)

{
min F(x)
subject to x(·) ∈ F(�t0,t1).

Using the terminology from analytical mechanics, in (MP) there are given a num-
ber of r sources producing mechanical work, which have to be minimized on a set of
limited resources, namely F(�t0,t1).

In our previous work [10], we found necessary conditions for the optimum of prob-
lem (MP). We wolud like to further develop these results by introducing sufficient
efficiency conditions for problem (MP) and this is the aim of the next section.

3 Main results

First we remind several definitions, then we shall introduce our new results.

Definition 3 A feasible solution x◦(·) ∈ F(�t0,t1) is called efficient for problem (MP)
if and only if for any solution x(·) ∈ F(�t0,t1), we have the implication

F(x(·)) � F(x◦(·)) ⇒ F(x(·)) = F(x◦(·)).
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Minimization of vectors of curvilinear functionals 1663

Definition 4 Let x◦(·) be an optimal solution of the problem (MP). Suppose there are
the vector λ in R

r , having all components nonnegative but at least one positive, and
the smooth matrix functions μ : �t0,t1 → R

msp and ν : �t0,t1 → R
qsp such that

< λ,
∂ f

∂x
(πx◦(t)) > + < μα(t),

∂g

∂x
(πx◦(t)) > + < να(t),

∂h

∂x
(πx◦(t)) >

−Dγ

(
< λ,

∂ f

∂xγ
(πx◦(t)) > + < μα(t),

∂g

∂xγ
(πx◦(t)) > + < να(t),

∂h

∂xγ
(πx◦(t)) >

)

+D2
θσ

(
< λ,

∂ fα
∂xθσ

(πx◦(t)) >+ < μα(t),
∂g

∂xθσ
(πx◦(t)) >

+ < να(t),
∂h

∂xθσ
(πx◦(t)) >

)

= 0, t ∈ �t0,t1 , α = 1, p (Euler–Lagrange PDEs).

Then x◦(·) is called normal optimal solution of problem (MP).

The result in Theorem 1 states necessary conditions for the efficiency of the solution
for problem (MP). For a proof, see [10].

Theorem 1 Let x◦(·) be a point from F(�t0,t1). If x◦(·) is a normal efficient solution
of problem (MP), then there exist a vector λ ∈ R

r and the smooth matrix functions
μ(t) = (μα(t)), ν(t) = (να(t)), which satisfy the following conditions

< λ,
∂ f

∂x
(πx◦(t)) > + < μα(t),

∂g

∂x
(πx◦(t)) > + < να(t),

∂h

∂x
(πx◦(t)) >

−Dγ

(
< λ,

∂ f

∂xγ
(πx◦(t)) > + < μα(t),

∂g

∂xγ
(πx◦(t)) > + < να(t),

∂h

∂xγ
(πx◦(t)) >

)

+D2
θσ

(
< λ,

∂ fα
∂xθσ

(πx◦(t)) >+ < μα(t),
∂g

∂xθσ
(πx◦(t)) >

+ < να(t),
∂h

∂xθσ
(πx◦(t)) >

)

= 0, t ∈ �t0,t1 , α = 1, p (Euler–Lagrange PDEs)

< μα(t), g(πx◦(t)) >= 0, t ∈ �t0,t1 , α = 1, p,

μα(t) � 0, t ∈ �t0,t1 , α = 1, p,

λ ≥ 0, < e, λ >= 1, e = (1, . . . , 1) ∈ R
r .

To develop our theory, we have to introduce an appropriate generalized convexity.
Let ρ be a real number, b : C∞(�t0,t1 ,M)× C∞(�t0,t1 ,M) → [0,∞) a functional,
and a = (aα), α = 1, p, a closed 1-form. To a we associate the curvilinear integral

A(x(·)) =
∫

γt0,t1

aα(πx (t))dtα.

Definition 5 The functional A is called [strictly] (ρ, b)-quasiinvex at the point x◦(·) if
there exists a vector functionη : J 2(�t0,t1 ,M)×J 2(�t0,t1 ,M) → R

n, vanishing at the
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1664 A. Pitea, M. Postolache

point (πx◦(t), πx◦(t)), and the function θ defined on C∞(�t0,t1 ,M)×C∞(�t0,t1 ,M)
to R

n, such that for any x(·) [x(·) �= x◦(·)], the following implication holds

(
A(x(·)) ≤ A(x◦(·)))

⇒
(

b(x((·), x◦(·))
∫

γt0,t1

[
< η(πx (t), πx◦(t)),

∂aα
∂x

(πx◦(t)) >

+ < Dγ η(πx (t), πx◦(t)),
∂aα
∂xγ

(πx◦(t)) >

+ < D2
θσ η(πx (t), πx◦(t)),

∂aα
∂xθσ

(πx◦(t)) >

]
dtα

[<] ≤ −ρb(x(·), x◦(·))‖θ(x(·), x◦(·))‖2
)
.

The notion of quasiinvexity is used, in appropriate forms, in recent works for stud-
ies of some multiobjective programming problems, for example, see [5] by Mititelu,
[9] by Nahak and Mohapatra.

The next theorem is the main result of this work.

Theorem 2 Let us consider the feasible solution x◦(·), the vector λ and the functions
μ(·) and ν(·) from Theorem 1.

Suppose that the following conditions are satisfied:

a) for each � = 1, r , the functional F�(x(·)) = ∫
γt0,t1

f �α (πx (t))dtα is (ρ�1, b)-quas-

iinvex at the point x◦(·) with respect to η and θ ;

b) the functional
∫
γt0,t1

< μα(t), g(πx (t)) > dtα is (ρ2, b) -quasiinvex at the point

x◦(·) with respect to η and θ ;

c) the functional
∫
γt0,t1

< να(t), h(πx (t)) > dtα is (ρ3, b)-quasiinvex at the point

x◦(·) with respect to η and θ ;

d) one of the integrals of a) - c) is (ρ�1, b), (ρ2, b) or (ρ3, b)-strictly quasiinvex at the
point x◦(·);

e) λ�ρ
�
1 + ρ2 + ρ3 ≥ 0.

Then the point x◦(·) is an efficient solution of problem (MP).

Proof Let us suppose that the point x◦(·) is not an efficient solution for problem
(MP). Then, there is a feasible solution x(·) for the problem (MP), such that for each
� = 1, r , F�(x(·)) ≤ F�(x◦(·)), the case x(·) = x◦(·) being excluded.

According to condition a), it follows

b(x(·), x◦(·))
∫

γt0 ,t1

[
< η(πx (t), πx◦ (t)),

∂ f �α
∂x

(πx◦ (t)) >

+ < Dγ η(πx (t), πx◦ (t)),
∂ f �α
∂xγ

(πx◦ (t)) >+< D2
θσ η(πx (t), πx◦ (t)),

∂ f �α
∂xθσ

(πx◦ (t)) >

]
dtα

� −ρ�1b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2, � = 1, r .
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Minimization of vectors of curvilinear functionals 1665

Multiplying each inequality by λ◦
�, � = 1, r and summing from � = 1 to r , we

obtain

b(x(·), x◦(·))
∫

γt0,t1

[
< η(πx (t), πx◦(t)),< λ◦, ∂ fα

∂x
(πx◦(t)) >>

+ < Dγ η(πx (t), πx◦(t)),< λ◦, ∂ fα
∂xγ

(πx◦(t)) >>

+ < D2
θσ η(πx (t), πx◦(t)),< λ◦, ∂ fα

∂xθσ
(πx◦(t)) >>

]
dtα

� − λ◦
�ρ
�
1b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2. (3.1)

By applying property b), the following relation
∫

γt0,t1

< μα(t), g(πx (t)) > dtα �
∫

γt0,t1

< μα(t), g(πx◦(t)) > dtα

leads us to

b(x(·), x◦(·))
∫

γt0,t1

[
< η(πx (t), πx◦(t)),< μα(t),

∂g

∂x
(πx◦(t)) >>

+ < Dγ η(πx (t), πx◦(t)),< μα(t),
∂g

∂xγ
(πx◦(t)) >>

+ < D2
θσ η(πx (t), πx◦(t)),< μα(t),

∂g

∂xθσ
(πx◦(t)) >>

]
dtα

� −ρ2b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2. (3.2)

Taking into account condition c), the equality

∫

γt0,t1

< να(t), h(πx (t)) > dtα =
∫

γt0,t1

< να(t), h(πx◦(t)) > dtα

implies

b(x(·), x◦(·))
∫

γt0,t1

[
< η(πx (t), πx◦(t)),< να(t),

∂h

∂x
(πx◦(t)) >>

+ < Dγ η(πx (t), πx◦(t)),< να(t),
∂h

∂xγ
(πx◦(t)) >>

+ < D2
θσ η(πx (t), πx◦(t)),< να(t),

∂h

∂xθσ
(πx◦(t)) >>

]
dtα

� −ρ3b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2. (3.3)
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1666 A. Pitea, M. Postolache

Summing side by side relations (3.1), (3.2), (3.3) and using condition d), it follows

b(x(·), x◦(·))
∫

γt0,t1

< η(πx (t), πx◦(t)),< λ,
∂ fα
∂x
(πx◦(t)) >

+ < μα(t),
∂g

∂x
(πx◦(t)) > + < να(t),

∂h

∂x
(πx◦(t)) >> dtα

+ b(x(·), x◦(·))
∫

γt0,t1

< Dγ η(πx (t), πx◦(t)),< λ,
∂ fα
∂xγ

(πx◦(t)) >

+ < μα(t),
∂g

∂xγ
(πx◦(t)) > + < να(t),

∂h

∂xγ
(πx◦(t)) >>

+ < D2
θσ η(πx (t), πx◦(t)),< λ,

∂ fα
∂xθσ

(πx◦(t)) >

+ < μα(t),
∂g

∂xθσ
(πx◦(t)) > + < να(t),

∂h

∂xθσ
(πx◦(t)) >> dtα

< −
(
λ�ρ

�
1 + ρ2 + ρ3

)
b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2. (3.4)

This inequality implies that b(x(·), x◦(·)) > 0, and we obtain

∫

γt0,t1

< η(πx (t), πx◦(t)),< λ,
∂ fα
∂x
(πx◦(t)) >

+ < μα(t),
∂g

∂x
(πx◦(t)) > + < να(t),

∂h

∂x
(πx◦(t)) >> dtα

+
∫

γt0,t1

< Dγ η(πx (t), πx◦(t)),< λ,
∂ fα
∂xγ

(πx◦(t)) >

+ < μα(t),
∂g

∂xγ
(πx◦(t)) > + < να(t),

∂h

∂xγ
(πx◦(t)) >> dtα

+
∫

γt0,t1

< D2
θσ η(πx (t), πx◦(t)),< λ,

∂ fα
∂xθσ

(πx◦(t)) >

+ < μα(t),
∂g

∂xθσ
(πx◦(t)) > + < να(t),

∂h

∂xθσ
(πx◦(t)) >> dtα

< −
(
λ�ρ

�
1 + ρ2 + ρ3

)
‖θ(x(·), x◦(·))‖2,

that is
∫

γt0,t1

< η(πx (t), πx◦(t)),< λ,
∂ fα
∂x
(πx◦(t)) >

+ < μα(t),
∂g

∂x
(πx◦(t)) > + < να(t),

∂h

∂x
(πx◦(t)) >> dtα
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+
∫

γt0,t1

Dγ

(
< η(πx (t), πx◦(t)),< λ,

∂ fα
∂xγ

(πx◦(t)) >

+ < μα(t),
∂g

∂xγ
(πx◦(t)) > + < να(t),

∂h

∂xγ
(πx◦(t)) >>

)
dtα

−
∫

γt0,t1

< η(πx (t), πx◦(t)), Dγ

(
< λ,

∂ fα
∂xγ

(πx◦(t)) >

+< μα(t),
∂g

∂xγ
(πx◦(t)) > + < να(t),

∂h

∂xγ
(πx◦(t)) >

)
> dtα

+
∫

γt0,t1

< η(πx (t), πx◦(t)), D2
θσ

(
< λ,

∂ fα
∂xθσ

(πx◦(t)) >

+ < μα(t),
∂g

∂xθσ
(πx◦(t)) > + < να(t),

∂h

∂xθσ
(πx◦(t)) >

)
> dtα

+
∫

γt0,t1

Dθ < Dσ η(πx (t), πx◦(t)),< λ,
∂ fα
∂xθσ

(πx◦(t)) >

+ < μα(t),
∂g

∂xθσ
(πx◦(t)) > + < να(t),

∂h

∂xθσ
(πx◦(t)) >> dtα

−
∫

γt0,t1

Dσ < η(πx (t), πx◦(t)), Dθ

(
< λ,

∂ fα
∂xθσ

(πx◦(t)) >

+ < μα(t),
∂g

∂xθσ
(πx◦(t)) > + < να(t),

∂h

∂xθσ
(πx◦(t)) >

)
> dtα

< −
(
λ�ρ

�
1 + ρ2 + ρ3

)
‖θ(x(·), x◦(·))‖2.

Taking into account the conditions in Theorem 1, the previous inequality becomes

∫

γt0,t1

Dγ

(
< η(πx (t), πx◦(t)),< λ,

∂ fα
∂xγ

(πx◦(t)) >

+ < μα(t),
∂g

∂xγ
(πx◦(t)) > + < να(t),

∂h

∂xγ
(πx◦(t)) >>

)
dtα

+
∫

γt0,t1

Dθ < Dσ η(πx (t), πx◦(t)),< λ,
∂ fα
∂xθσ

(πx◦(t)) >

+ < μα(t),
∂g

∂xθσ
(πx◦(t)) > + < να(t),

∂h

∂xθσ
(πx◦(t)) >> dtα
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−
∫

γt0,t1

Dσ < η(πx (t), πx◦(t)), Dθ

(
< λ,

∂ fα
∂xθσ

(πx◦(t)) >

+ < μα(t),
∂g

∂xθσ
(πx◦(t)) > + < να(t),

∂h

∂xθσ
(πx◦(t)) >

)
> dtα

< −
(
λ�ρ

�
1 + ρ2 + ρ3

)
‖θ(x(·), x◦(·))‖2.

According to [13], [16], a total divergence is equal to a total derivative. Therefore, the
left hand side of the previous inequality is null, and we obtain

0 < −
(
λ�ρ

�
1 + ρ2 + ρ3

)
‖θ(x(·), x◦(·))‖2.

Since ‖θ(x(·), x◦(·))‖ is positive, it follows a contradiction. Thus, the point x◦(·) is
an efficient solution for problem (MP), and this completes the proof.

By replacing the integrals from hypotheses b), c) of Theorem 2 by the integral

∫

γt0,t1

[
< μα(t), g(πx (t)) > + < να(t), h(πx (t)) >

]
dtα,

the following statement is obtained.

Corollary 1 Let us consider the vector λ, a feasible solution x◦(·) of problem (MP)
and the functions μ(·), ν(·) which satisfy the relations in Theorem 1. Suppose that the
following conditions are fulfilled:

(a) for each � = 1, r , F�(x(·)) = ∫
γt0,t1

f �α (πx (t))dtα is (ρ�1, b)-quasiinvex at the

point x◦(·) with respect to η and θ ;
(b) the functional

∫
γt0,t1

[
< μα(t), g(πx (t)) > + < να(t), h(πx (t)) >

]
dtα is

(ρ2, b)-quasiinvex at the point x◦(·) with respect to η and θ ;
(c) one of the integrals of a) or b) is strictly-quasiinvex at the point x◦(·)with respect

to η and θ ;
(d) λ�ρ

�
1 + ρ2 ≥ 0.

Then the point x◦(·) is an efficient solution of problem (MP).

4 Conclusion and further development

In our previous work [10], we initiated an optimization theory for the second order jet
bundle. We considered the problem of minimization of vectors of curvilinear function-
als (well known as mechanical work), thought as multi-time multi-objective variational
problem, subject to PDE and/or PDI constraints (limited resources). Within this frame-
work, we introduced necessary conditions. As natural continuation of our results in
[10], and strongly motivated by its possible applications in Mechanics, the present
work introduced a study of sufficient efficiency conditions for (MP).
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Since ratio programming problems with objective function of our type arise from
applied areas as decision problems in management, game theory, engineering studies
and design, we will orient our future research to these problems.

Acknowledgments The authors are deeply indebted to the anonymous referee for the careful reading and
valuable suggestions. These ones helped us to greatly improve the presentation of the paper.
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5. Mititelu, Şt.: Extensions in invexity theory. J. Adv. Math. Stud. 1(1–2), 63–70 (2008)
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