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Abstract In this study, we present a variant of the minimum cost network flow
problem where the associated graph contains several disconnected subgraphs and it
is required that the flows on arcs belonging to same arc subsets to be proportional.
This type of network is mostly observed in large supply chains of assemble-to-order
products. It is shown that any feasible solution of a reformulation of this problem has a
special characteristic. By taking into account this fact, a network simplex based primal
simplex algorithm is developed and its details are provided.

Keywords Minimum cost network flow · Proportional flow · Disconnected
subnetworks · Network simplex algorithm

1 Introduction

In contemporary supply networks, a product is generally manufactured from several
subparts, each supplied from separate networks. However if the bill-of-materials struc-
ture is taken into account, these subnetworks should be integrated so as to provide parts
in proportional amounts to build a single product. Otherwise, unnecessary component
stocks are held and transferred, or final products could not be build due to the shortage
of components [4,7]. Motivated by those practical points, a new mathematical pro-
gramming model is defined within a general framework and a solution algorithm is
proposed in this study.
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Let G (N ,A) be a directed network where N = {1, . . . , n} is the set of nodes and
A = {(i, j) : i, j ∈ N } is the set of directed arcs. Let Gk (Nk,Ak) be a subnetwork
of G where Nk = {1, . . . , nk} is the set of nodes and Ak = {(i, j) : i, j ∈ Nk} is the
set of arcs corresponding to subnetwork k ∈ K = {1, . . . , m} with the property that
Gk ∩ Gk′ = ∅ for each k �= k′ and k, k′ ∈ K, and ∪k∈KGk = G . We define uij, cij

and pij as being the flow upper bound, unit flow cost and proportionality coefficient
related to arc (i, j) ∈ A respectively. Let bi > 0 if node i ∈ N is a supply node,
and bi < 0 if node i ∈ N is a demand node. It is assumed that

∑
i∈Nk

bi = 0 for
all k ∈ K. Let A′

sk be the subset of arcs in Ak and A′
s = ∪kA′

sk be the set of all
arcs in A that should have proportional flow for requirement s respectively where
s ∈ S = {1, . . . , t}. In problem P1, which we call the minimum cost proportional
flow problem with disconnected subnetworks (MCPFD), we want to find the amount
of flows fi j on each arc (i, j) ∈ A so that

P1: min
∑

(i, j)∈A
cij fij (1)

s.t.
∑

j :(i, j)∈Ak

fij −
∑

j :( j,i)∈Ak

fji = bi i ∈ Nk, k ∈ K, (2)

fij/pij are all equal (i, j) ∈ A′
s, s ∈ S, (3)

0 � fij � uij (i, j) ∈ Ak, k ∈ K. (4)

In this problem, the objective is to minimize the total cost associated with the
flow on arcs while constraints (2) are for the flow conservation, constraints (3) are
the proportional flow constraints, and constraints (4) impose simple lower and upper
bounds on the arc flows. If the constraints (3) were not included in problem P1, then
we would get the well-known minimum cost network flow problem (MCNF). There
exist efficient algorithms to deal with MCNF such as network simplex algorithm [1,6].
However, the addition of proportionality constraints complicates the problem and the
available solution procedures developed for MCNF can not be applied directly. When
the number of nodes is at least an order of magnitude larger than the number of side
constraints, it becomes possible to exploit the special network structure [9].

Several variants of the MCNF problem with side constraints have been studied.
Based on the relaxation and decomposition techniques, Ali et al. [3] solved the equal
flow problem in which selected pairs of arcs are required to have identical flow.
Ahuja et al. [2] introduced the simple equal flow problem in which only a single set of
arcs is required to have identical flow and developed special purpose primal simplex
algorithm. Calvete [5] introduced the general equal flow problem which extends the
simple equal flow problem by allowing multiple sets of arcs to have identical flow.
This former problem corresponds to a special case of the problem P1.

Along this line of research, the manufacturing network flow (MNF) model is intro-
duced by Fang and Qi [8] where synthesis of different materials to a single product
and the distilling of one material to many different products can be realized. The
authors modified the network simplex method according to this special flow problem
and solved a simplified version of their model. Mo et al. [13] considered an integrated
manufacturing supply chain where multiple products are manufactured across multiple
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A network simplex based algorithm for MCPFD problem 1175

Fig. 1 Modelling generalized networks with linear gain/loss

manufacturing plants by distilling a unique raw material, and similar to [2,5], they pre-
sented a modified network simplex method which exploits the special structure of basis.

Later, Mo et al. [14] expanded the MNF model by incorporating certain features
of the ordinary multi-commodity network flow models. Lu et al. [11] studied a man-
ufacturing network flow model in which the assumption requiring the total flow in
and out of a node to be equal (mass balance constraint) is relaxed. Venkateshan
et al. [16] developed a network-simplex-based algorithm based on efficient data struc-
tures to solve a minimum cost flow problem formulated on such generalized networks.
More recently, Lu et al. [12] proposed an algorithmic method to obtain an initial basic
feasible solution to start the existing network simplex algorithm, and also presented a
network based approach to check the dual feasibility conditions. Wang and Lin [17]
proposed a network simplex algorithm with detailed graphical operations for solving
the minimum distribution cost problem which is indeed a specialized MNF problem
containing both distillation and common (source, sink and transhipment) nodes.

It is possible to transform an instance of the MNF problem to an instance of the
MCPFD problem, and vice versa. The necessary transformation steps are given in
the Appendix. However, when an instance of the MCPFD problem is transformed, the
methods proposed in the literature to solve the MNF problem will be not more efficient
than the method introduced in this study and that is specially designed to solve the
MCPFD problem itself. This is because when the number of disconnected subnetworks
will be high, being able to consider the disconnected network topology explicitly in
the solution algorithm becomes more attractive in terms of execution times.

Note that the generalized network models with linear gains and/or losses can be also
transformed into MCPFD as illustrated in Fig. 1. In that figure, the amount indicated
over a node corresponds to its supply or demand, μi j is the gain/loss factor associated
with arc (i, j), and node d is a dummy node.

The flow on all arcs in a proportional flow subset can also be viewed as a single deci-
sion variable. Let cs = ∑

(i, j)∈A′
s

pi j ci j and us = min(i, j)∈A′
s

ui j/pi j for all s ∈ S.
Let ai j denotes the column associated to arc (i, j) in the node-arc incidence matrix of
network G and al

i j be the l-th component of vector ai j . Let also as = ∑
(i, j)∈A′

s
pi j ai j

for all s ∈ S and al
s be the l-th component of vector as . As ai

i j = 1, a j
i j = −1, al

i j = 0
for each l �= i, j ∈ Nk and (i, j) ∈ A′

sk and all the subnetworks are disconnected, we
observe for each subnetwork k that
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∑

l∈Nk

al
s =

∑

(i, j)∈A′
sk

∑

l∈Nk

al
i j = 0 s ∈ S. (5)

Let G̃ (N , Ã) be the network with Ã = A\∪s∈SA′
s and G̃k(Nk, Ãk) be the network

with Ãk = Ak\∪t
s=1A′

sk for all k ∈ K. Then, problem P1 can be transformed into the
problem P2 as follows:

P2: min
∑

(i, j)∈Ã
cij fij +

t∑

s=1

cs fs (6)

s.t.
∑

j :(i, j)∈Ã
fij −

∑

j :( j,i)∈Ã
fji +

t∑

s=1

ai
s fs = bi i ∈ Nk, k ∈ K (7)

0 � fij � uij (i, j) ∈ Ãk, k ∈ K (8)

0 � fs � us s ∈ S (9)

After this reformulation, we need to consider only problem P2 for further analy-
sis. Without loss of generality, it is assumed that each arc can appear in at most one
proportional flow subset. Otherwise, if any arc shows up in multiple proportional flow
subsets, then the flows on all arcs in these subsets will be proportional. This further
implies that all of these arcs could be regrouped into one subset, and our assumption
will be again satisfied.

2 Structure of the basis

It must be noted that if |S| = t � n = |N |, then there will be many basic feasi-
ble solutions of P2 in (6)–(9) involving only variables { f1, . . . , ft }, and the simplex
algorithm will pivot between these basic feasible solutions. In turn, this will reduce
the efficiency of the proposed algorithm since there will be no possibility to take the
advantage of network structure. Therefore, we assume that t < n holds.

Lemma 1 The rank of the matrix A corresponding to constraints (7) is equal
to n − m.

Proof The matrix A has n rows and one column for each arc in Ã and one column for
each variable fs ,

A = [Ã a1 a2 . . . at ]

where Ã is the node-arc incidence matrix of G̃ . First, we observe that the maximum
rank of A is n − m because adding all the rows up yields the zero vector for each
disjoint subnetwork k corresponding to node set Nk . Furthermore, we assume with-
out loss of generality that each network G̃k contains at least one spanning tree since
otherwise we can add artificial arcs with sufficiently large costs. This implies that the
rank of Ã is

∑
k(nk − 1) = n − m and thus rank(A) = n − m. �	
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With Lemma 1, we have showed that basic feasible solutions of the linear problem
P2 consist of n − m basic variables whose corresponding vectors in A are linearly
independent and the rest of the variables are fixed at their lower or upper bound.
Following this fact, if none of the variables { f1, . . . , ft } are in the basis, then this
basis can be represented by an m-spanning forest in G̃ in order to get n − m line-
arly independent vectors. Otherwise, if r of these variables { f1, . . . , fr } are basic,
then we should select n − r − m variables { fi j , (i, j) ∈ Ã} whose associated vectors
in the node-arc incidence matrix Ã are linearly independent and also independent
of variables { f1, . . . , fr }. This latter case can be obtained by removing r arcs from
an m-spanning forest in G̃ , which will decompose it into r + m node-disjoint trees
T1(N T

1 ,AT
1 ), . . . ,Tr+m(N T

r+m,AT
r+m). This collection of trees will again span G̃

and thus the resulting forest is a (r + m)-spanning forest in G̃ which we will denote
as F . We will now analyze the structure of the related bases.

Let B̃ denotes the submatrix of Ã associated with the (r + m)-spanning forest F
and a1, . . . , ar be vectors associated with variables f1, . . . , fr . Given that the rank of
B̃ is equal to n−r −m, the rank of B = [B̃ a1 a2 . . . ar ] is equal to n−m if the vectors
in B̃ with vectors a1, . . . , ar are linearly independent. Accordingly, we provide in the
following a suitable condition that guarantees B is a basis of the problem P2. But before
going into the details, we need to introduce some additional notation. Lets assume that
T1, . . . ,Tz1 ⊂ G̃1,Tz1+1, . . . ,Tz2 ⊂ G̃2 and in general Tz(k−1)+1, . . . ,Tzk ⊂ G̃k

for all k ∈ K. Therefore the number of spanning trees in each subnetwork G̃k is
equal to zk − z(k−1) with z0 = 0 and zm = r + m. In a similar fashion, let N T

1 =
{1, . . . , nT

1 },N T
2 = {nT

1 + 1, . . . , nT
2 }, and in general N T

z = {nT
(z−1) + 1, . . . , nT

z }
for all z ∈ Z = {1, . . . , z1, z1 + 1, . . . , z2, . . . , z(m−1) + 1, . . . , zm} without loss of
generality. Finally, let D′ be the matrix formed by the elements dz,s = ∑

l∈N T
z

al
s for

all z ∈ Z ′ = Z\{z1, z2, . . . , zm} and s ∈ S ′ = {1, . . . , r}. Note that |Z| = r + m and
|Z ′| = r by definition.

Theorem 1 rank (B) = n − m if and only if rank (D′) = r .

Proof After column arrangements, the matrix B can be reexpressed as

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T1 · · · 0 · · · 0 · · · 0 �1

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · Tz1 · · · 0 · · · 0 �z1

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · Tz(m−1)+1 · · · 0 �z(m−1)+1

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · 0 · · · Tzm �zm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10)

where 0 are matrices of conformal dimensions with all entries equal to zero, Tz is the
node-arc incidence matrix of Tz and

�z =

⎛

⎜
⎜
⎝

a
n(z−1)+1
1 a

n(z−1)+1
2 · · · a

n(z−1)+1
r

a
n(z−1)+2
1 a

n(z−1)+2
2 · · · a

n(z−1)+2
r

· · · · · · · · · · · ·
anz

1 anz
2 · · · anz

r

⎞

⎟
⎟
⎠
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for all z ∈ Z . Here, rank(T1) = nT
1 − 1, rank(T2) = nT

2 − nT
1 − 1, and in general

rank(Tz) = nT
z − nT

(z−1) − 1 for all z ∈ Z . As every non-singular square submatrix
of the node-arc incidence matrix of a directed network is triangular, the matrix B can
be rewritten as

B′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T′
1 · · · 0 · · · 0 · · · 0 �′

1
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · T′

z1
· · · 0 · · · 0 �′

z1· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · T′

z(m−1)+1 · · · 0 �′
z(m−1)+1

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · 0 · · · T′

zm
�z′

m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11)

where

T′
z =

⎛

⎜
⎜
⎝

0 0 · · · 0
±1 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · ±1

⎞

⎟
⎟
⎠ and �′

z =

⎛

⎜
⎜
⎝

dz,1 dz,2 · · · dz,r

a
n(z−1)+2
1 a

n(z−1)+2
2 · · · a

n(z−1)+2
r

· · · · · · · · · · · ·
anz

1 anz
2 · · · anz

r

⎞

⎟
⎟
⎠

for all z ∈ Z . Hence, rank(B) = ∑m
k=1

∑zk
z=z(k−1)+1 rank(Tz) + rank(D) = n − r −

m + rank(D) where D is formed by the elements dz,s = ∑
l∈N T

z
al

s for all z ∈ Z
and s ∈ S ′. As we have 0 = ∑

l∈Nk
al

s = ∑
l∈N T

z(k−1)+1
al

s + · · · + ∑
l∈N T

zk
al

s for all

k ∈ K, s ∈ S from (5), rank(B) = n − m holds if and only if rank(D′) = r . �	
Therefore, a basic solution to MCPFD consists of an (r + m)-spanning forest F in
G̃ where r = 0, . . . , t as well as variables { f1, . . . , fr } verifying that rank(D′) = r .
Note that for each (r + m)-spanning forest, there are

(t
r

)
combinations of selecting r

variables among { f1, . . . , ft }.
Definition 1 An (r +m)-spanning forest F in G̃ is a good (r +m)-forest with respect
to the variables { fs}s∈S ′ with S ′ ⊆ S and

∣
∣S ′∣∣ = r , if rank(D′) = r where D′ is formed

by the elements dz,s = ∑
l∈N T

z
al

s for all z ∈ Z ′ and s ∈ S ′ and N T
z is the node set of

tree Tz in forest F .

Theorem 2 A basic solution of MCPFD is constituted by an (r + m)-spanning forest
F in G̃ where r = 0, . . . , t plus a set of r variables { fs}s∈S ′ ,S ′ ⊆ S,

∣
∣S ′∣∣ = r

verifying that F is a good (r + m)-forest with respect to { fs}s∈S ′ .

Proof It is clear from the preceding developments. �	

3 Network simplex based algorithm

In this section, we give in details the main steps required for the primal simplex
algorithm developed to solve problem P2.
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A network simplex based algorithm for MCPFD problem 1179

1. Finding the initial basic feasible solution: If none is conveniently available, then
all artificial start method [10,1,15,2] can be used to get a basic feasible solution
with artificial variables in the network G̃ . The initial basic feasible solution is con-
stituted by the good m-forest defined by this feasible solution. All other variables
are non-basic variables and are equal to their lower bounds or upper bounds.

2. Computing the values of the basic variables: From now on we assume that the
basis is given by a good (r + m)-forest such that Tz ⊂ F for all z ∈ Z and
the variables { f1, . . . , fr }. Let B be the set of arcs (i, j) ∈ Ã such that fi j is
a basic variable, and B′ be the set of s ∈ S such that fs is a basic variable.
Accordingly, we categorize non-basic variables such that L = {(i, j) ∈ Ã\B :
fi j = 0},L′ = {s ∈ S \B′ : fs = 0},U = {(i, j) ∈ Ã\B : fi j = ui j } and
U ′ = {s ∈ S\B′ : fs = us}. Finally, we let V1

z = {(i, j) ∈ U : i ∈ N T
z , j /∈ N T

z }
and V2

z = {(i, j) ∈ U : i /∈ N T
z , j ∈ N T

z } for all z ∈ Z ′. Then, the following
Theorem guarantees that the values of variables { f1, . . . , fr } are solvable.

Theorem 3 The values of basic variables { f1, . . . , fr } are the solution of the follow-
ing linear system:

D′f = b′ (12)

where D′ is previously defined, f = ( f1, . . . , fr )t and b′ = (
b′

1, . . . , b′
r

)t
with

b′
z =

∑

l∈N T
z

bl −
⎛

⎝
∑

(i, j)∈V1
z

ui j −
∑

(i, j)∈V2
z

ui j

⎞

⎠ −
∑

l∈N T
z

∑

s∈U ′
al

sus z ∈ Z ′

Proof After fixing the values of non-basic variables, each constraints in (7) can be
reformulated as

∑

j :(i, j)∈B
fi j −

∑

j :( j,i)∈B
f j i +

∑

s∈B′
al

s fs = b̂l l ∈ N

where b̂l = bl − ∑
j :(i, j)∈U ui j + ∑

j :( j,i)∈U ui j − ∑
s∈U ′ al

sus . Since ui j vanishes if

i ∈ N T
z , j ∈ N T

z and (i, j) ∈ U ,

∑

l∈N T
z

b̂l =
∑

l∈N T
z

bl −
∑

i∈N T
z , j /∈N T

z ,

(i, j)∈U

ui j +
∑

i /∈N T
z , j∈N T

z ,

(i, j)∈U

ui j −
∑

l∈N T
z

∑

s∈U ′
al

sus

=
∑

l∈N T
z

bl −
∑

(i, j)∈V1
z

ui j +
∑

(i, j)∈V2
z

ui j −
∑

l∈N T
z

∑

s∈U ′
al

sus = b′
z

for all z ∈ Z ′. Similar to the proof of Theorem 1, we may solve the linear system (12)
to obtain the value of variables { f1, . . . , fr }. Hence, the proof is complete. �	
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The values of basic variables { f1, . . . , fr } affect the requirement of each supply and
demand node. Then, the flow values of the remaining arcs in each tree Tz z ∈ Z can
be determined by applying the general procedure of the network simplex algorithm.

3. Computing node potentials for a given basis: Given a basic feasible solution, we
have to verify if it is optimal by calculating node potentials π = (πi : i ∈ N )

and taking into account the fact that the reduced cost of each basic variable is
zero. In other words, we should be able to find node potentials such that cπ

i j =
0 for all (i, j) ∈ B and cπ

s = 0 for all s ∈ B′ where cπ
i j = ci j − πi + π j for

all (i, j) ∈ Ã and cπ
s = cs − ∑

i∈N ai
sπi for all s ∈ S. The first condition can

be satisfied by computing appropriate node potentials as in the network simplex
algorithm. If these node potentials also satisfy the second condition then we are
done. Otherwise, new node potentials π̃ can be calculated such that

π̃i =
{

πi + σz for all i ∈ N T
z and z ∈ Z ′

πi for all i ∈ N T
z and z ∈ {z1, z2, . . . , zm} (13)

where σ = (
σz : z ∈ Z ′)t are obtained by solving the linear system

(
D′)t

σ = cπ

given cπ = (cπ
z : z ∈ Z ′)t and D′ previously defined.

Lemma 2 The node potentials π̃ given in (13) satisfies cπ̃
i j = 0 for all (i, j) ∈ B and

cπ̃
s for all s ∈ B′.

Proof It can be verified that node potentials π̃ satisfy cπ̃
i j = 0 for each (i, j) ∈ B.

Then, for all s ∈ B′, it holds that cπ̃
s = cs −∑

l∈N al
s π̃i = cπ

s −∑
z∈Z ′

∑
l∈N T

z
al

sσz =
cπ

s −∑
z∈Z ′ dz,sσz = cπ

s − cπ
s =0 by taking into account the linear system given. �	

4. Testing optimality and selecting the entering variable: Since problem P2 in (6)–(9)
is a linear program, the optimality conditions can be written as

cπ
i j � 0 (i, j) ∈ L, cπ

i j � 0 (i, j) ∈ U , (14)

and

cπ
s � 0 s ∈ L′, cπ

s � 0 s ∈ U ′. (15)

If the given basis satisfies the optimality conditions (14) and (15), it is optimal and
the algorithm terminates. Otherwise, the algorithm selects a non-basic variable fi j with
(i, j) ∈ L ∪ U violating the condition in (14) or a non-basic variable fs with s ∈ L′ ∪
U ′ violating the condition in (15) as entering variable according to any usual rules [1].

5. Selecting the leaving variable: Suppose that we have selected an entering non-
basic variable which is equal to its lower bound. Increasing the value of this
variable by θ units will necessitate to alter the values of some basic variables to
maintain the feasibility. If the value of the entering variable hits its upper bound
while the values of the modified basic variables stay between their respective
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A network simplex based algorithm for MCPFD problem 1181

bounds, then the entering variable still remains non-basic. Otherwise, the non-
basic variable enters the basis and one of the basic variables will leave at its lower
or upper bound. Similar arguments can be made if the entering non-basic variable
is initially at its upper bound. Depending on the non-basic variable that enter the
basis, we will consider three different cases to identify the leaving basic variable.

Case 1. The entering variable is fi j with i ∈ N T
z and j ∈ N T

z . In this case, the
variable fi j only affects tree Tz . The arc corresponding to this variable is
added to Tz which creates a unique cycle. The amount of flow θ is increased
and sent through this cycle until the variable corresponding to one of the
arcs of the cycle reaches its upper or lower bound. If this variable is fi j ,
then it remains non-basic. Otherwise, it enters the basis and one of the basic
variables at its lower or upper bound will leave. In either cases, the value of
all basic variables corresponding to the remain arcs of the cycle are adjusted
with respect to this additional amount of flow.

Case 2. The entering variable is fi j with i ∈ N T
z , j ∈ N T

z′ and z �= z′. Suppose
that an additional amount of flow θ is sent through arc (i, j). Then, the
demand of tree Tz decreases in θ units and the demand of Tz′ increases
in θ units. Therefore, new values of variables f1, . . . , fr are obtained by
solving a modification of system (12) such that D′f = b̄′ where b̄′ =(

b′
1, . . . , b′

z − θ, . . . , b′
z′ + θ, . . . , b′

r

)t
. Once these values are determined,

the value of θ is increased until fi j or one of the basic variables reaches one of
its bounds. Then, the arguments presented in Case 1 remains also valid here.

Case 3. The entering variable is fs where r < s � t . When the value of var-
iable fs is increased by θ � 0, the demand of each tree Tz for which∑

l∈N T
z

al
s > 0 should decrease in θ

∑
l∈N T

z
al

s , the demand of each

tree Tz for which
∑

l∈N T
z

al
s < 0 should increase in θ

(
−∑

l∈N T
z

al
s

)
.

Therefore, the new values of variables f1, . . . , fr are determined by
solving a modification of system (12) such that D′f = b̄′ where

b̄′ =
(

b′
1 − θ

∑
l∈N T

1
al

s, . . . , b′
r − θ

∑
l∈N T

r
al

s

)t
. Then, the arguments

presented in Case 1 remains also valid here.

4 Conclusion

In this study, we investigated a variant of MCNF problem which we briefly called the
minimum cost proportional flow problem with disconnected networks. The proposed
model covers the equal flow problem, some generalized network flow problems and
the manufacturing network flow problem. After reformulating the problem, we have
shown that the bases are characterized as good (r +m)-forests which are very similar to
spanning trees. Based on this property, we developed a primal simplex algorithm that
exploits the network structure of the problem and requires only slight modifications
of the network simplex algorithm.

We showed that the instances of MCPFD and MNF problems can be transformed
to each other. However, the algorithm given in this study to solve the MCPFD problem
has some important aspects that distinguish it from other existing ones developed to
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solve the MNF problem. As for example, the detachment procedure proposed by Wang
and Lin [17] partitions the basis into t + 1 basic components, each corresponding to
a tree, at the very start. However, our solution algorithm includes at most this amount
of complicating variables into the basis and only when they are needed. It thus has the
possibility to better exploit the embedded network structure. Moreover, the algorithm
is tailored to deal directly with the decomposable structure of the MCPFD problem. In
another case, Lu et al. [12] presented an extended cycle method to calculate the reduced
costs for non-basic variables when solving the MNF problem. Note that our algorithm
calculates the reduced costs for non-basic variables based on the node potentials at
the cost of solving r linear equations, which is more time efficient.

The application of the method will be especially consequential for large scale prob-
lems (e.g. inventory planning of a product assembled from several modules each of
which supplied from separate logistics networks) and for problems where MCPFD is
included as a subproblem and must be solved within an algorithmic framework several
times.

Acknowledgments This work has been financially supported by Galatasaray University Research Fund
under Grant No.10.402.007.

5 Appendix

In Fig. 2, the transformations of two special nodes in MNF, namely the combination
and distribution nodes, to the equivalent structures in MCPFD are illustrated. Here

Fig. 2 Transformation of combination and distribution nodes in MNF to the equivalent structures in
MCPFD
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Fig. 3 Transformation of different cases in MCPFD to the equivalent structures in MNF

ki j and k ji correspond to the proportionality coefficients. There is no need to devise
any other transformations for other special nodes in MNF to obtain equivalent struc-
tures in MCPFD. In Fig. 3, the transformations of different network structures with
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proportional flow requirements in MCPFD to the equivalent structures in MNF are
provided. In each subfigure, the sign (·) over any arc implies that the flow on that arc
must be proportional to some other arc flow in the same figure.
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