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Abstract In this paper, the Minty vector variational-like inequality, the Stampacchia
vector variational-like inequality, and the weak formulations of these two inequalities
defined by means of Mordukhovich limiting subdifferentials are introduced and stud-
ied in Asplund spaces. Some relations between the vector variational-like inequal-
ities and vector optimization problems are established by using the properties of
Mordukhovich limiting subdifferentials. An existence theorem of solutions for the
weak Minty vector variational-like inequality is also given.

Keywords Mordukhovich limiting subdifferential · Vector variational-like
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1 Introduction

The vector variational inequality was first introduced and studied by Giannessi [11]
in the setting of finite-dimensional Euclidean spaces. Since then, several applications
have been shown to a wide range of problems in various disciplines in the natural and
social sciences. Consequently, vector variational inequalities have been generalized
in various directions, in particular, vector variational-like inequality problems, see
[1,2,4,6,7,10,14,16,18,19,25,26,31] and the references therein. The vector varia-
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1514 B. Chen, N.-J. Huang

tional-like inequalities are closely related to the concept of the invex and pre-invex
functions which generalize the notion of the convexity of functions. As a matter of
fact, the concept of invexity plays the same role in vector variational-like inequal-
ities as the classical convexity plays in vector variational inequalities. The concept
of the invexity was first introduced by Hanson [15]. More recently, the character-
izations and applications for generalized invexity were studied by many authors, see
[13,17,23,27,29,30,32,33,35] and the references therein.

The relation between the vector variational inequality and the smooth vector optimi-
zation problem has been studied by many authors (see, for example, [12,31,34] and the
references therein). Giannessi [12] showed the relation between the Minty vector vari-
ational inequality and the differentiable, convex optimization problem. Yang et al. [34]
extended the results of Giannessi [12] for differentiable but pseudoconvex functions.
In addition, Yang and Yang [31] gave some relations between the Minty variational-
like inequalities and the vector optimization problems for differentiable but pseud-
oinvex vector-valued functions. Vector variational-like inequalities and nonsmooth
vector optimization problems have also been studied by many authors (see, for exam-
ple, [1,3,18,19,25] and the references therein). Very recently, Rezaie and Zafarani
[25] showed some relations between the vector variational-like inequalities and vector
optimization problems for nondifferential functions under generalized monotonicity.
Al-Homidan and Ansari [1] studied the relation among the generalized Minty vector
variational-like inequality, generalized Stampacchia vector variational-like inequal-
ity, and vector optimization problem for nondifferential and nonconvex functions. The
main results in [1] and [25] were obtained in the setting of Clarke subdifferential. Since
the class of Clarke differential is larger than the class of Mordukhovich subdifferential,
it is necessary to study the vector variational-like inequalities and vector optimizations
problem in the setting of Mordukhovich subdifferential (see [8,9,21,22]).

Motivated and inspired by the work mentioned above, in this paper, we intro-
duce the Minty vector variational-like inequality, Stampacchia vector variational-like
inequality, and the weak formulations of these two inequalities defined by means of
Mordukhovich limiting subdifferentials in Asplund spaces. Some relations between
the vector variational-like inequalities and vector optimization problems are estab-
lished by using the properties of Mordukhovich limiting subdifferentials. We also
present an existence result for the solutions of the weak Minty vector variational-
like inequality. The results presented in this paper generalize some main results in
Al-Homidan and Ansari [1] and Yang and Yang [31].

2 Preliminary results

Throughout this paper X is an Asplund space. A Banach space X is Asplund, or it
has the Asplund property, if every convex continuous function g : U → R defined on
an open convex subset U of X is Fréchet differentiable on a dense subset of U . This
class includes all Banach spaces having Fréchet smooth bump functions (in particular,
spaces with Fréchet smooth renorms, hence, every reflexive space) and spaces with
separable duals, etc. Let X∗ denote the topological dual of X and 〈·, ·〉 be the duality
pairing between X and X∗. A mapping g : X → Y is Fréchet differentiable at x̄ if
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Vector variational-like inequalities 1515

there exists a linear continuous operator ∇g(x̄) : X → Y , called the Fréchet derivative
of g at x̄ , such that

lim
x→x̄

g(x) − g(x̄) − ∇g(x̄)(x − x̄)

‖x − x̄‖ = 0.

Let � be a nonempty subset of X . Given x ∈ � and ε ≥ 0, the set of ε−normals
to � at x is defined by

N̂ ε(x;�) =
⎧
⎨

⎩
x∗ ∈ X∗ : lim sup

u
�−→x

〈x∗, u − x〉
‖u − x‖ ≤ ε

⎫
⎬

⎭
.

If x �∈ �, we put N̂ ε (x;�) = ∅ for all ε ≥ 0.
Let x̄ ∈ �. Then x∗ ∈ X∗ is a limiting normal to � at x̄ if there are sequences

εk ↓ 0, xk
�−→ x̄ , and x∗

k
w∗−→ x∗ such that x∗

k ∈ N̂εk (xk;�) for all k ∈ N . The
collection of such normals

N (x̄;�) = lim sup
x

�−→x̄
ε↓0

N̂ ε(x;�)

is the limiting normal cone to � at x̄ . Put N (x̄;�) = ∅ for x̄ �∈ �. Note that the

symbol u
�−→ x means that u → x with u ∈ �. The symbol

w∗−→ stands for conver-
gence in weak star topology, and N denotes the set of all natural numbers.

Considering the extended-real-valued function g : X → R̄ = [−∞,+∞],
we say that g is proper if g(x) > −∞ for all x ∈ X and its domain, dom
g = {x ∈ X : g(x) < +∞} is nonempty. The epigraph of g is defined as

epi g = {(x, a) ∈ X × R : g(x) ≤ a}.

Considering a point x̄ ∈ X with |g (x̄)| < ∞, the set

∂g(x̄) = {x∗ ∈ X∗ : (x∗,−1) ∈ N ((x̄, g(x̄)); epig)}

is the limiting subdifferential of g at x̄ and its elements are limiting subdifferentials
of g at this point. We put ∂g(x̄) = ∅ if |g(x̄)| = ∞.

The Fréchet subdifferential of g at x̄ is defined by

∂̂g(x̄) =
{

x∗ ∈ X∗ : lim inf
x→x̄

g(x) − g(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}

.

g is said to be lower regular at x̄ if ∂̂g(x̄) = ∂g(x̄).

For more details about the properties of the above-mentioned results, see
Mordukhovich [21].
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1516 B. Chen, N.-J. Huang

Hereafter, unless otherwise specified, we assume that S ⊆ X is a nonempty open
invex set with respect to mapping η : S × S → X . S is said to be an invex set wrt the
mapping η : S × S → X if x + λη(y, x) ∈ S for all x, y ∈ S and λ ∈ [0, 1]. Suppose
that g : S → R̄ is a Lipschitz continuous function.

Definition 2.1 g is said to be invex wrt η on S if for any x, y ∈ S and ξ ∈ ∂g(x),

〈ξ, η(y, x)〉 ≤ g(y) − g(x).

Definition 2.2 g is said to be preinvex wrt η on S if for any x, y ∈ S and λ ∈ [0, 1],

g(x + λη(y, x)) ≤ λg(y) + (1 − λ)g(x).

Definition 2.3 ∂g is said to be monotone wrt η on S if, for any x, y ∈ S, ξ ∈ ∂g(x)

and ζ ∈ ∂g(y),

〈ξ, η(y, x)〉 + 〈ζ, η(x, y)〉 ≤ 0.

Remark 2.1 It is easy to see that if g is said to invex wrt η on S, then ∂g is monotone
wrt η on S.

Definition 2.4 A mapping η : S × S → X is said to be skew if, for any x, y ∈ S,

η(x, y) + η(y, x) = 0.

Definition 2.5 ([5]) Let x, y be two arbitrary points of S. A set Pxz is said to be a
closed η-path joining the points x and z = x + η(y, x) (contained in S) if

Pxz = {u = x + λη(y, x) : λ ∈ [0, 1]}.

Analogously, an open η-path joining the points x and z = x + η(y, x) (contained in
S) is

Po
xz = {u = x + λη(y, x) : λ ∈ (0, 1)}.

Yang et.al [33] introduced the following Condition A.
Condition A: Let S ⊆ X be an invex set wrt η and let g : S → R be a function.

Then,

g(y + η(x, y)) ≤ g(x),∀x, y ∈ S.

Mohan and Neogy [20] introduced the following Condition C. Condition C: for any
x, y ∈ S, λ ∈ [0, 1],

η(y, y + λη(x, y)) = −λη(x, y),

η(x, y + λη(x, y)) = (1 − λ)η(x, y).
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Vector variational-like inequalities 1517

Remark 2.2 Yang et al. [35] showed that, if η : S × S → X satisfies Condition C,
then

η(y + λη(x, y), y) = λη(x, y), λ ∈ [0, 1].

Lemma 2.1 ([27]) Let g and η satisfy Condition A and Condition C. If g is invex wrt
η on S, then g is preinvex wrt η on S.

Lemma 2.2 ([28]) Let x and y be two arbitrary points of S. z = x + η(y, x), g is
lower regular on Po

xz, then there exists c ∈ Po
xz, ξ ∈ ∂g(c),

〈ξ, η(y, x)〉 = g(z) − g(x).

In other words, there exists λ ∈ (0, 1), c = x + λη(y, x), ξ ∈ ∂g(c),

〈ξ, η(y, x)〉 = g(x + η(y, x)) − g(x).

Lemma 2.3 ([24]) Let S be a nonempty convex subset of a Housdorff topological
vector space X, let K be nonempty compact subset of S, suppose that A, B : S ⇒ S
are setvalued mappings satisfying the following conditions:

(A1) Ax ⊂ Bx for all x ∈ S;
(A2) Bx is a convex set for all x ∈ S;
(A3) Ax �= ∅ for all x ∈ S;
(A4) A−1 y = {x ∈ S, y ∈ Ax} is an open set for each x ∈ S;
(A5) for each finite subset N of S, there exists a compact,convex and nonempty subset

L N of S, such that L N ⊃ N, and Ax ∩ L N �= ∅ for all x ∈ L N \K .

Then there exists a x̄ ∈ Bx̄.

Let f = ( f1, . . . , fl) : X → Rl be a vector-valued function. In this paper, we
consider the following vector optimization problem:

(VOP) Minimize f (x) = ( f1(x), . . . , fl(x)) subject to x ∈ S,

where fi : S → R(i = 1, . . . , l) are given functions.
A point x̄ ∈ S is said to be an efficient (or Pareto) solution (respectively, weak

efficient solution) of (VOP) if for all y ∈ S,

f (y) − f (x̄) = ( f1(y) − f1(x̄), . . . , fl(y) − fl(x̄)) /∈ −Rl+\{0},
(respectively, f (y) − f (x̄) = ( f1(y) − f1(x̄), . . . , fl(y) − fl(x̄)) /∈ −intRl+)

where Rl+ is the nonnegative orthant of Rl and 0 is the origin of the nonnegative
orthant.
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1518 B. Chen, N.-J. Huang

3 Minty vector variational-like inequalities

In this section, we consider the following Minty vector variational-like inequality
problem and Stampacchia vector variational-like inequality problem:

(MVVLIP) Find x̄ ∈ S such that, for all y ∈ S and all ξi ∈ ∂ fi (y), i ∈ I =
{1, . . . , l},

〈ξ, η(y, x̄)〉l = (〈ξ1, η(y, x̄)〉, . . . , 〈ξl , η(y, x̄)〉) /∈ −Rl+\{0}.

(SVVLIP) Find x̄ ∈ S such that, for all y ∈ S there exists ξi ∈ ∂ fi (x̄), i ∈ I =
{1, . . . , l},

〈ξ, η(y, x̄)〉l = (〈ξ1, η(y, x̄)〉, . . . , 〈ξl , η(y, x̄)〉) /∈ −Rl+\{0}.

Theorem 3.1 Let S be an open invex set wrt η : S × S → X such that any η−path is
contained in S and η is skew and satisfies Condition C. For each i ∈ I = {1, . . . , l},
assume that fi : S → R(i = 1, . . . , l) is Lipschitz continuous, invex wrt η, lower
regular on S and satisfy Condition A. Then, x̄ ∈ S is a solution of (MVVLIP) if and
only if it is an efficient solution of (VOP).

Proof Let x̄ ∈ S be a solution of (MVVLIP) but not an efficient solution of (VOP).
Then, there exists z ∈ S such that

f (z) − f (x̄) = ( f1(z) − f1(x̄), . . . , fl(z) − fl(x̄)) ∈ −Rl+\{0}. (3.1)

Set z(λ) := x̄ + λη(z, x̄), for all λ ∈ [0, 1]. Since S is invex, z(λ) ∈ S, for all
λ ∈ [0, 1]. By Lemma 2.1, each fi is preinvex wrt η. Thus, for each i = 1, . . . , l,

fi (z(λ)) = fi (x̄ + λη(z, x̄)) ≤ λ fi (z) + (1 − λ) fi (x̄)

and so

fi (x̄ + λη(z, x̄)) − fi (x̄) ≤ λ[ fi (z) − fi (x̄)]

for all λ ∈ [0, 1]. In particular, for λ = 1 and for each i = 1, . . . , l, we have

fi (x̄ + η(z, x̄)) − fi (x̄) ≤ fi (z) − fi (x̄) (3.2)

By Lemma 2.2, there exist λi ∈ (0, 1) and ξi ∈ ∂ fi (z(λi )) with z(λi ) =
x̄ + λiη(z, x̄) such that, for each i = 1, . . . , l

〈ξi , η(z, x̄)〉 = fi (x̄ + η(z, x̄)) − fi (x̄), (3.3)

It follows from (3.2) and (3.3) that, for each i = 1, . . . , l,

〈ξi , η(z, x̄)〉 ≤ fi (z) − fi (x̄), (3.4)
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Suppose that λ1, . . . , λl are all equal. Then by Condition C and Remark 2.2, we
have for all λi ∈ (0, 1), and for each i = 1, . . . , l,

〈ξi , η(z(λi ), x̄)〉 = λi 〈ξi , η(z, x̄)〉 ≤ λi ( fi (z) − fi (x̄)) (3.5)

By (3.1) and (3.5), we know that it contradicts the fact that the x̄ is a solution of
(MVVLIP).

Consider the case when λ1, . . . λl are not all equal. Let λ1 �= λ2. Then by (3.4), we
have

〈ξ1, η(z, x̄)〉 ≤ f1(z) − f1(x̄) (3.6)

and

〈ξ2, η(z, x̄)〉 ≤ f2(z) − f2(x̄) (3.7)

Since f1 and f2 are invex wrt η, by Remark 2.1, ∂ f1 and ∂ f2 are monotone wrt η, then
for all

〈ξ1 − ζ1, η(z(λ1), z(λ2))〉 ≥ 0, for all ζ1 ∈ ∂ f1(z(λ2)). (3.8)

and

〈ζ2 − ξ2, η(z(λ1), z(λ2))〉 ≥ 0, for all ζ2 ∈ ∂ f2(z(λ1)). (3.9)

By Condition C and the Remark 2.2, we have

η(z(λ1), z(λ2)) = η(x̄ + λ1η(z, x̄), x̄ + λ2η(z, x̄))

= η (x̄ + λ2η(z, x̄) + (λ1 − λ2)η(z, x̄), x̄ + λ2η(z, x̄))

= η(x̄ + λ2η(z, x̄) + (λ1−λ2)
1−λ1

η(z, x̄ + λ1η(z, x̄)), x̄ + λ2η(z, x̄))

= (λ1−λ2)
1−λ1

η(z, x̄ + λ1η(z, x̄))

= (λ1 − λ2)η(z, x̄) (3.10)

If λ1 > λ2, then by (3.8) and (3.10), we obtain

〈ξ1 − ζ1, η(z(λ1), z(λ2))〉 = (λ1 − λ2)〈ξ1 − ζ1, η(z, x̄)〉 ≥ 0,

and so

〈ξ1, η(z, x̄)〉 ≥ 〈ζ1, η(z, x̄)〉.

From (3.6), we have

〈ζ1, η(z, x̄)〉 ≤ f1(z) − f1(x̄), for all ζ1 ∈ ∂ f1(z(λ2)). (3.11)
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If λ1 < λ2, then by (3.9) and (3.10), we have

〈ζ2 − ξ2, η(z(λ1), z(λ2))〉 = (λ1 − λ2)〈ζ2 − ξ2, η(z, x̄)〉 ≥ 0

and so

〈ξ2, η(z, x̄)〉 ≥ 〈ζ2, η(z, x̄)〉.

From (3.7), we have

〈ζ2, η(z, x̄)〉 ≤ f2(z) − f2(x̄), for any ζ2 ∈ ∂ f2(z(λ1)). (3.12)

Letting λ̄ = min(λ1, λ2), by (3.11), (3.12), we can find ξ̄i ∈ ∂ fi (z(λ)) such that

〈ξ̄i , η(z, x̄)〉 ≤ fi (z) − fi (x̄), for i = 1, 2.

Hence, we can find λ∗ ∈ (0, 1) and ξ∗
i ∈ ∂ fi (z(λ∗)) such that λ∗ = min(λ1, · · · , λl)

and

〈ξ∗
i , η(z, x̄)〉 ≤ fi (z) − fi (x̄), for each i = 1, . . . l. (3.13)

By (3.1) and (3.13), we have

(〈ξ∗
1 , η(z, x̄)〉, . . . , 〈ξ∗

l , η(z, x̄)〉) ∈ −Rl+\{0}.

It follows from Remark 2.2 that

(〈ξ∗
1 , η(z(λ∗), x̄)〉, . . . , 〈ξ∗

l , η(z(λ∗), x̄)〉) ∈ −Rl+\{0},

which contradicts the fact that x̄ is a solution of (MVVLIP).
Conversely, suppose that x̄ ∈ S is an efficient solution of (VOP), then

( f1(y) − f1(x̄), . . . , fl(y) − fl(x̄)) /∈ −Rl+\{0}, for all y ∈ S. (3.14)

Since fi is invex wrt η, we then have

〈ξi , η (x̄, y)〉 ≤ fi (x̄) − fi (y) , for all y ∈ S, ξi ∈ ∂ fi (y) .

Because η is skew, we get

〈ξi , η (y, x̄)〉 ≥ fi (y) − fi (x̄) , for all y ∈ S, ξi ∈ ∂ fi (y) . (3.15)

By (3.14) and (3.15), we know that x̄ ∈ S is a solution of (MVVLIP). This completes
the proof. ��
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Remark 3.1 (i) Theorem 3.1 improves Theorem 3.1 of [1] in the following two
aspects: (a) the space Rn is extended to the Asplund space; (b) the Conditions
C(c) of Theorem 3.1 in [1] is removed.

(ii) Theorem 3.1 also improves Theorem 3.1 of [31] in the following aspects: (a)
the space Rn is extended to the Asplund space; (b) the differential functions fi

are extended to the nondifferential ones.

Theorem 3.2 Let S be an invex set wrt η : S × S → X. For each i ∈ I =
{1, . . . , l} , fi : S → R (i = 1, . . . , l) is Lipschitz continuous and invex wrt η on S. If
x̄ ∈ S is a solution of (SVVLIP), then it is an efficient solution of (VOP); Furthermore,
if η is skew, then it is a solution of (MVVLIP).

Proof Suppose that x̄ ∈ S is a solution of (SVVLIP) but not an efficient solution of
(VOP). Then there exists y ∈ S such that

( f1 (y) − f1 (x̄) , . . . , fl (y) − fl (x̄)) ∈ −Rl+\ {0} .

As each fi is invex wrt η, we have

〈ξi , η (y, x̄)〉 ≤ fi (y) − fi (x̄) , for all ξi ∈ ∂ fi (x̄)

and so

(〈ξ1, η (y, x̄)〉 , . . . , 〈ξl , η (y, x̄)〉) ∈ −Rl+\ {0} for all ξi ∈ ∂ fi (x̄) ,

which contradicts the fact that x̄ is a solution of (SVVLIP). Furthermore, if η is skew, by
the proof of Theorem 3.1, we know that it is a solution of (MVVLIP). This completes
the proof. ��

4 Weak Minty vector variational-like inequalities

In this section, we consider the following weak Minty vector variational-like
inequalities problem and weak Stampacchia vector variational-like inequalities prob-
lem.

(WMVVLIP) Find x̄ ∈ S such that, for all y ∈ S and all ξi ∈ ∂ fi (y) , i ∈ I =
{1, . . . , l},

〈ξ, η (y, x̄)〉l = (〈ξ1, η (y, x̄)〉 , . . . , 〈ξl , η (y, x̄)〉) /∈ − intRl+.

(WSVVLIP) Find x̄ ∈ S such that, for all y ∈ S there exists ξi ∈ ∂ fi (x̄) , i ∈ I =
{1, . . . , l},

〈ξ, η (y, x̄)〉l = (〈ξ1, η (y, x̄)〉 , . . . , 〈ξl , η (y, x̄)〉) /∈ − intRl+.

Now we show the relation among the sets of solutions of (WMVVLIP) and
(WSVVLIP) and that of the weak efficient solutions of (VOP).

123



1522 B. Chen, N.-J. Huang

Theorem 4.1 Let S be an invex set wrt η : S × S → X, η is skew and satisfies
Condition C. For each i ∈ I = {1, . . . , l} , fi : S → R (i = 1, · · · , l) is Lipschitz
continuous and invex wrt η on S. Then, x̄ ∈ S is a solution of (WMVVLIP) if and only
if it is a solution of (WSVVLIP).

Proof Let x̄ ∈ S is a solution of (WMVVLIP). For any y ∈ S and t ∈ (0, 1], since S
is invex wrt η, we have

x (t) := x̄ + tη (y, x̄) ∈ S.

As x̄ ∈ S is a solution of (WMVVLIP), there exist ξ t
i ∈ ∂ fi (x (t)) such that

(〈
ξ t

1, η (x (t) , x̄)
〉
, . . . ,

〈
ξ t

l , η (x (t) , x̄)
〉)

/∈ − intRl+.

Hence, by Remark 2.2 and t ∈ (0, 1], we have

(〈
ξ t

1, η (y, x̄)
〉
, . . . ,

〈
ξ t

l , η (y, x̄)
〉)

/∈ − intRl+.

Since fi : S → R (i = 1, . . . , l) is Lipschitz continuous on S, we know that
{
ξ t

i

}

is bounded due to Proposition 1.85 in Mordukhovich [21]. Because lim
t→0+ x (t) = x̄ ,

recalling X is Asplund,
{
ξ t

i

}
has a subsequence that converges weak∗ to some ξi ∈

∂ fi (x̄) for i = 1, . . . , l. Hence, for any y ∈ S, there exist ξi ∈ ∂ fi (x̄) , i = 1, · · · , l,
such that

(〈ξ1, η (y, x̄)〉 , . . . , 〈ξl , η (y, x̄)〉) /∈ − intRl+.

This shows that x̄ ∈ S is a solution of (WSVVLIP).
Conversely, suppose that x̄ ∈ S is a solution of (WSVVLIP). Then for any y ∈ S,

there exists ξi ∈ ∂ fi (x̄) , i = 1, . . . , l, such that

(〈ξ1, η (y, x̄)〉 , . . . , 〈ξl , η (y, x̄)〉) /∈ − intRl+.

Since each fi is invex wrt η, by Remark 2.1, we have

〈ζi − ξi , η (y, x̄)〉 ≥ 0, for any y ∈ S, ζi ∈ ∂ fi (y) .

Hence, for any y ∈ S and ζi ∈ ∂ fi (y) , i = 1, . . . , l,

(〈ζ1, η (y, x̄)〉 , . . . , 〈ζl , η (y, x̄)〉) /∈ − intRl+.

Thus, x̄ ∈ S is a solution of (WMVVLIP). This completes the proof. ��
By Theorems 3.2 and 4.1, we can easily obtain the following theorem which present

the equivalence among the sets of solutions of (WMVVLIP) and (WSVVLIP) and that
of the weak efficient solutions of (VOP).

123



Vector variational-like inequalities 1523

Theorem 4.2 Let S be an invex set wrt η : S × S → X, η is skew and satisfies Con-
dition C. For each i ∈ I = {1, · · · , l}, assume that fi : S → R (i = 1, · · · , l) is
Lipschitz continuous and invex wrt η on S. Then, the sets of solutions of (WMVVLIP)
and (WSVVLIP) and that of the weak efficient solutions of (VOP) are equal.

Remark 4.1 Theorem 4.2 extends Theorem 4.1 in [1] from Rn to the Asplund space.

Next we present an existence result for the solutions of (WMVVLIP).

Theorem 4.3 Let S be an convex set of X, for each fi : S → R (i = 1, · · · , l) is
Lipschitz continuous and invex wrt η on S, K be a nonempty compact subset of S.
η is affine, skew and continuous about the first variable. Moreover, suppose that for
each finite subset N of S, there exists a compact, convex and nonempty set L N of S,
such that N ⊂ L N and for all x ∈ L N \K , there is y ∈ L N such that there exists
ξi ∈ ∂ fi (y) , i = 1, · · · , l satisfying

(〈ξ1, η (y, x)〉 , . . . , 〈ξl , η (y, x)〉) ∈ − intRl+.

Then (WMVVLIP) has a solution.

Proof Let A, B : S ⇒ S be two set-valued mappings defined as follows:

Ax =
{

y ∈ S : ∃ξi ∈ ∂ fi (y) , (〈ξ1, η (y, x)〉 , . . . , 〈ξl , η (y, x)〉) ∈ − intRl+
}

.

Bx =
{

y ∈ S : ∀ξi ∈ ∂ fi (x) , (〈ξ1, η (y, x)〉 , . . . , 〈ξl , η (y, x)〉) ∈ − intRl+
}

.

We will show that the set-valued mappings satisfy all the conditions (A1), (A2), (A4),
(A5) of Lemma 2.3, but B does not have a fixed point. Thus, by the Lemma 2.3, we
know there exists x ∈ S such that Ax = ∅ and so x is a solution of (WMVVLIP).

First, we show the condition (A1) of Lemma 2.3 holds. Taking x ∈ S, and y ∈ Ax ,
then there exists ξi ∈ ∂ fi (y), such that

(〈ξ1, η (y, x)〉 , . . . , 〈ξl , η (y, x)〉) ∈ − intRl+.

As each fi is invex wrt η, for any ζi ∈ ∂ fi (x), we have

〈ξi − ζi , η (y, x)〉 ≥ 0

and so

(〈ζ1, η (y, x)〉 , . . . , 〈ζl , η (y, x)〉) ∈ − intRl+.

Thus, y ∈ Bx .
Now, we show the condition (A2) of Lemma 2.3 holds. Let x ∈ S, y1, y2 ∈ Bx

and λ ∈ [0, 1]. For each ξi ∈ ∂ fi (x),

(〈ξ1, η (y1, x)〉 , . . . , 〈ζl , η (y1, x)〉) ∈ − intRl+,

(〈ξ1, η (y2, x)〉 , . . . , 〈ζl , η (y2, x)〉) ∈ − intRl+.
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Since η is affine about the first variable, for each i = 1, . . . , l, we have

〈ξi , η (λy1 + (1 − λ) y2, x)〉 = λ 〈ξi , η (y1, x)〉 + (1 − λ) 〈ξi , η (y2, x)〉 < 0

and so

(〈ξ1, η (λy1 + (1 − λ) y2, x)〉 , . . . , 〈ξl , η (λy1 + (1 − λ) y2, x)〉) ∈ − intRl+.

It follows that λy1 + (1 − λ) y2 ∈ Bx .
Next, we show the condition (A4) of Lemma 2.3 holds. Let y ∈ S, xn ∈ (

A−1 y
)c

such that xn → x . Then xn /∈ A−1 y. Let ξi ∈ ∂ fi (y),

(〈ξ1, η (y, xn)〉 , . . . , 〈ξl , η (y, xn)〉) /∈ − intRl+.

Since η is skew and continuous about the first variable, we obtain

(〈ξ1, η (y, x)〉 , . . . , 〈ξl , η (y, x)〉) /∈ − intRl+.

By the hypotheses, condition (A5) of Lemma 2.3 also holds. It follows that B
does not have a fixed point, because otherwise it would exists some x ∈ S such that
ξi ∈ ∂ fi (x),

(〈ξ1, η (x, x)〉 , . . . , 〈ζl , η (x, x)〉) ∈ − intRl+.

Since η is skew, we know that η (x, x) = 0, a contradiction. Thus by Lemma 2.3,
(WMVVLIP) has a solution. This completes the proof. ��
Acknowledgements The authors are grateful to the editor and referees for their valuable comments and
suggestions.
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