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Abstract We consider a two-machine flow shop scheduling problem with effects
of deterioration and learning. By the effects of deterioration and learning, we mean
that the processing time of a job is a function of its execution starting time and its
position in a sequence. The objective is to find a sequence that minimizes the make-
span. Several dominance properties and two lower bounds are derived, which are used
to speed up the elimination process of a branch-and-bound algorithm proposed to solve
the problem. Two heuristic algorithms are also proposed to obtain near-optimal solu-
tions. Computational results are presented to evaluate the performance of the proposed
algorithms.

Keywords Scheduling · Flow shop · Deteriorating jobs · Learning effect ·
Makespan · Branch-and-bound algorithm

1 Introduction

In many branches of industry and logistics, there arise problems of ordering jobs on
machines (Pardalos [19], Pardalos and Resende [18], Setamaa-Karkkainen et al. [20],
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Lee and Yu [14], Hadda [9], Gawiejnowicz [8], and Floudas and Pardalos [7]). In
classical scheduling theory, the job processing times are considered to be constant.
In practice, however, we often encounter situations in which the job processing times
may be subject to change due to the phenomena of learning and/or deterioration. Job
deterioration appears, e.g., in scheduling maintenance jobs or cleaning assignments,
where any delay in processing a job is penalized by incurring additional time for
accomplishing the job. Job learning effect appears when the processing times arise
from manual operations, in which case the possibility of learning exists.

Extensive surveys of scheduling models and problems involving jobs with deterio-
rating jobs can be found in Alidaee and Womer [1], Cheng et al. [4] and Gawiejnowicz
[8]. An extensive review of research on scheduling with learning effect and/or deterio-
rating jobs could be found in Biskup [3]. More recent papers that consider scheduling
jobs with learning effect and/or deteriorating jobs include Wu et al. [29], Shiau et al.
[21], Toksar and Guner [22], Wu and Lee [27,28], Cheng et al. [5,6], Lee and Wu
[12], Lee et al. [13], Wang and Liu [24], and Ng et al. [17], Zhao and Tang [30], Wang
and Wang [25], and Wang et al. [26].

On the other hand, the phenomenon that learning effect and deteriorating jobs occur
simultaneously can be observed in real-life situations. For example, as the manufac-
turing environment becomes increasingly competitive, in order to provide customers
with greater product variety, organizations are moving toward shorter production runs
and frequent product changes. The learning and forgetting that workers undergo in this
environment have thus become increasingly important as workers tend to spend more
time in rotating among tasks and responsibilities prior to becoming fully proficient.
These workers are often interrupted by product and process changes, which inadver-
tently affect performance. For simplicity, we refer to this as forgetting. Considering
learning and forgetting effects in measuring productivity should be helpful in improv-
ing the accuracy of production planning and productivity estimation (Nembhard and
Osothsilp [16]). Another practical example that motivates the above scheduling model
is the manual production of glass crafts by a skilled craftsman. Silicon-based raw mate-
rial is first heated up in an oven until it becomes a lump of malleable dough from which
the craftsman cuts pieces and shapes them according to different designs into differ-
ent glass craft products. The initial time to heat up the raw material to the threshold
temperature at which it can be shaped is long and so the first piece (i.e., job) has a long
processing time, which includes both the heating time (i.e., the deterioration effect)
and the shaping time (i.e., the normal processing time). The second piece requires a
shorter time to re-heat the dough to the threshold temperature (i.e., a smaller dete-
rioration effect). Similarly, the later a piece is cut from the dough, the shorter is its
heating time to reach the threshold temperature. On the other hand, the pieces that
are shaped later require shorter shaping times because the craftsman’s productivity
improves as a result of learning (Cheng et al. [6]). This paper extends the results of
Lee [10] and Wang and Liu [24] by considering a two-machine flow shop scheduling
with the effects of deterioration and learning to minimize makespan. We provide the
exact solution and near-optimal solutions for the two-machine flow shop makespan
scheduling problem with the effects of deterioration and learning.

The rest of this paper is organized as follows. In the next section we give the prob-
lem description. In Sect. 3 we propose several elimination rules, which can be used to
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enhance the search for the optimal solution. In Sect. 4 we establish an exact algorithm
and two heuristics to search for the optimal and near-optimal solutions. In Sect. 5 we
present computational experiments to evaluate the performance of the branch-and-
bound algorithm and the heuristic algorithms. Concluding remarks are given in the
last section.

2 Problem description

Two-machine flow shop scheduling problems are frequently found in industry and are
characterized by a set of jobs, N = {J1, J2, . . . , Jn} and a set of the two machines
M = {M1, M2}. The set of n jobs are to be processed sequentially on the two machines.
That is, the jobs follow the same permutation, starting with machine M1, followed by
machine M2. Let pi jr (t) be the processing time of job J j on machine Mi if it is started
at time t and scheduled in position r in a sequence. From Lee [10] and Wang and Liu
[24], we consider the following model:

pi jr (t) = αi j tr
a, (1)

where αi j denotes the deterioration rate of job J j on machine Mi and a ≤ 0 denotes
a constant learning index (Biskup [2]). All the jobs are available for processing at
time t0 > 0. The objective is to find a schedule that minimizes the makespan, i.e., the
maximum completion time of all the jobs. We assume unlimited intermediate storage
between successive machines for the general flow shop scheduling problem.

Let Ci, j (π) denote the completion time of job J j on machine Mi under schedule
π . Let Ci,[ j](π) denote the completion time of the j th job on machine Mi under
schedule π . Thus the completion time of job J j is C j = C2, j . Using the three-
field notation for scheduling problem classification, the problem can be denoted as
F2|pi jr (t) = αi j tra|Cmax (the complexity of this problem is still open). For ease
of exposition, we denote p1 j by α j , and p2 j by β j , j = 1, 2, . . . , n. Since unlim-
ited intermediate storage is assumed, it is evident that an optimal schedule exists
with no idle time between consecutive jobs on machine M1. For a given scheduling
π = [J1, J2, . . . , Jn], the completion time of the r th job on machine M1 is given by

C1,[r ] = t0

r∏

i=1

(
1 + αi i

a)
, r = 1, 2, . . . , n. (2)

3 Dominance properties

Let S1 and S2 be two job schedules in which the difference between S1 and S2 is a
pairwise interchange of two adjacent jobs Ji and J j , i.e., S1 = (π, Ji , J j , π

′) and
S2 = (π, J j , Ji , π

′), where π and π ′ are partial sequences. Further, we assume that
there are r −1 jobs in π . Thus, Ji and J j are the r th and the (r +1)th jobs, respectively.
Meanwhile, J j and Ji are scheduled in the r th and the (r + 1)th positions in S2. To
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further simplify notation, let A and B denote the completion times of the last job in π

on M1 and M2, respectively.
It is clear that the completion times of Jk in S1 and S2 are equal if it is in π since

it is in the same position in both sequences. To show S1 dominates S2, it suffices to
show that the (r + 1)th jobs in S1 and S2 satisfy the condition

C[r+1](S1) ≤ C[r+1](S2), (3)

where [ ] denotes the position of a job in a sequence. Three separate cases need to be
considered: (i) B−A

Ara ≤ αi ≤ α j , (ii) αi ≤ B−A
Ara ≤ α j , and (iii) αi ≤ α j ≤ B−A

Ara ; each
case is divided into 4 subcases.

Proposition 1.1 If B−A
Ara ≤ αi ≤ α j , αi ≥

(
r

r+1

)a
max{βi , β j } and (1 + αi ra)(1 +

α j (r + 1)a)(1 + β j (r + 1)a) ≤ (1 + α j ra)(1 + αi (r + 1)a)(1 + βi (r + 1)a), then S1
dominates S2.

Proof Since B−A
Ara ≤ αi ≤ α j and αi ≥

(
r

r+1

)a
max{βi , β j }, the completion times of

Ji and J j in S1 and S2 are

C[r ](S1) = max
{

A(1 + αi r
a), B

} (
1 + βi r

a) = A
(
1 + αi r

a) (
1 + βi r

a)
,

C[r+1](S1) = max
{

A(1 + αi r
a)(1 + α j (r + 1)a), A

(
1 + αi r

a) (
1 + βi r

a)}

× (
1 + β j (r + 1)a)

= A
(
1 + αi r

a) (
1 + α j (r + 1)a) (

1 + β j (r + 1)a)
,

C[r ](S2) = max
{

A(1 + α j r
a), B

} (
1 + β j r

a) = A
(
1 + α j r

a) (
1 + β j r

a)
,

and

C[r+1](S2) = max
{

A(1 + α j r
a)(1 + αi (r + 1)a), A(1 + α j r

a)(1 + β j r
a)

}

× (
1 + βi (r + 1)a)

= A
(
1 + α j r

a) (
1 + αi (r + 1)a) (

1 + βi (r + 1)a)
.

Thus, from (1 + αi ra)
(
1 + α j (r + 1)a

) (
1 + β j (r + 1)a

) ≤ (
1 + α j ra

)
(1 + αi

(r + 1)a) (1 + βi (r + 1)a), we have

C[r+1](S1) ≤ C[r+1](S2).

Therefore, S1 dominates S2. ��
Proposition 1.2 If B−A

Ara ≤ αi ≤ α j , βi ≥ α j
( r+1

r

)a
, β j ≥ αi

( r+1
r

)a
and (1 +

αi ra)(1 + βi ra)(1 + β j (r + 1)a) ≤ (1 + α j ra)(1 + β j ra)(1 + βi (r + 1)a), then S1
dominates S2.

Proposition 1.3 If B−A
Ara ≤ αi ≤ α j , βi ≥ α j

( r+1
r

)a
, β j ≤ αi

( r+1
r

)a
and (1 +

αi ra)(1 +βi ra)(1 +β j (r + 1)a) ≤ (1 +α j ra)(1 +αi (r + 1)a)(1 +βi (r + 1)a), then
S1 dominates S2.
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Proposition 1.4 If B−A
Ara ≤ αi ≤ α j , βi ≤ α j

( r+1
r

)a
, β j ≥ αi

( r+1
r

)a
and (1 +

αi ra)(1 + α j (r + 1)a)(1 + β j (r + 1)a) ≤ (1 + α j ra)(1 + β j ra)(1 + βi (r + 1)a),
then S1 dominates S2.

Proposition 2.1 If αi ≤ B−A
Ara ≤ α j , A (1 + αi ra)

(
1 + α j (r + 1)a

)≤ B (1 + βi ra) ,

αi ≤ β j

(
r

r+1

)a
and B (1 + βi ra)

(
1 + β j (r + 1)a

) ≤ A
(
1 + α j ra

) (
1 + β j ra

)
(1+

βi (r + 1)a), then S1 dominates S2.

Proposition 2.2 If αi ≤ B−A
Ara ≤ α j , A (1 + αi ra)

(
1 + α j (r + 1)a

)≥ B (1 + βi ra) ,

αi ≥ β j

(
r

r+1

)a
and (1 + αi ra)

(
1 + α j (r + 1)a

) (
1+β j (r + 1)a

)≤(
1 + α j ra

)
(1+

αi (r + 1)a) (1 + βi (r + 1)a), then S1 dominates S2.

Proposition 2.3 If αi ≤ B−A
Ara ≤ α j , A (1 + αi ra)

(
1 + α j (r + 1)a

)≤ B (1 + βi ra) ,

αi ≥ β j

(
r

r+1

)a
and B (1 + βi ra)

(
1 + β j (r + 1)a

)≤ A
(
1 + α j ra

)
(1 + αi (r + 1)a)

(1 + βi (r + 1)a), then S1 dominates S2.

Proposition 2.4 If αi ≤ B−A
Ara ≤ α j , A (1 + αi ra)

(
1 + α j (r + 1)a

)≥ B (1 + βi ra) ,

αi ≤ β j

(
r

r+1

)a
and (1 + αi ra)

(
1 + α j (r + 1)a

) (
1 + β j (r + 1)a

) ≤ (
1 + α j ra

)
(
1 + β j ra

)
(1 + βi (r + 1)a), then S1 dominates S2.

Proposition 3.1 If αi ≤ α j ≤ B−A
Ara , A (1 + αi ra)

(
1 + α j (r + 1)a

)≤ B (1 + βi ra) ,

A
(
1 + α j ra

)
(1 + αi (r + 1)a) ≤ B

(
1 + β j ra

)
and βi ≤ β j , then S1 dominates S2.

Proposition 3.2 If αi ≤ α j ≤ B−A
Ara , A (1 + αi ra)

(
1 + α j (r + 1)a

) ≥ B (1 + βi ra)

A
(
1 + α j ra

)
(1 + αi (r + 1)a) ≥ B(1+β j ra) and (1 + αi ra)

(
1 + α j (r + 1)a

)
(1 +

β j (r + 1)a
) ≤ (1 + α j ra)(1 + αi (r + 1)a) (1 + βi (r + 1)a), then S1 dominates S2.

Proposition 3.3 If αi ≤ α j ≤ B−A
Ara , A(1 + αi ra)(1 + α j (r + 1)a) ≤ B(1 +

βi ra), A(1 + α j ra)(1 + αi (r+1)a) ≥ B(1+β j ra) and B(1+βi ra)(1+β j (r+1)a) ≤
A(1 + α j ra)(1 + αi (r + 1)a)(1 + βi (r + 1)a), then S1 dominates S2.

Proposition 3.4 If αi ≤ α j ≤ B−A
Ara , A(1 + αi ra)(1 + α j (r + 1)a) ≥ B(1 +

βi ra), A(1 + α j ra)(1 + αi (r + 1)a) ≤ B(1 + β j ra) and A(1 + αi ra)(1 + β j (r +
1)a)(1 + β j (r + 1)a) ≤ B(1 + β j ra)(1 + βi (r + 1)a), then S1 dominates S2.

To further curtail the size of a branching tree, we develop two dominance properties
for a pairwise interchange of two non-adjacent jobs. Let S1 and S2 be two job sched-
ules in which the difference between S1 and S2 is a pairwise interchange of two non-
adjacent jobs Ji and J j , i.e., S1 = (π, Ji , π

′, J j , π
′′) and S2 = (π, J j , π

′, Ji , π
′′),

where π, π ′ and π ′′ are partial sequences, and Ji and J j are in positions r and τ in
schedule S1.

Theorem 1 If jobs Ji and J j satisfy αi > α j and βi = β j , then S2 dominates S1.

Proof It should be clear that the completion times of Jk in sequences S1 and
S2 are equal if it is in π because both sequences have the same jobs in these
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positions, i.e., C1[r−1](S2) = C1[r−1](S2), C2[r−1](S2) = C2[r−1](S2) for positions
k = 1, 2, . . . , r − 1.

The completion times of Ji and J j in S2 are, respectively,

C2[r ](S2) = max
{
C1[r−1](S2) + α j C1[r−1](S2)r

a, C2[r−1](S2)
}

+β max
{
C1[r−1](S2) + α j C1[r−1](S2)r

a, C2[r−1](S2)
}

ra

= max
{
C1[r−1](S2)(1 + α j r

a)(1 + βra), C2[r−1](S2)(1 + βra)
}
,

C2[r ](S1) = max
{
C1[r−1](S2)(1 + αi r

a)(1 + βra), C2[r−1](S2)(1 + βra)
}
,

From these two equations, we have

C2[r ](S2) ≤ C2[r ](S1) (4)

since αi ≥ α j .

For positions k = r + 1, r = 2, . . . , τ − 1,

C2[k](S2) = max

{
C1[r−1](S2)(1 + α j r

a)

k∏

l=1

(1 + α[l](r + l)a)(1 + βr τ−1),

C1[r−1](S2)(1 + α j r
a)

k−1∏

l=1

(1 + α[l](r + l)a)(1 + βr τ−2)(1 + βr τ−1),

. . .

C1[r−1](S2)(1 + α j r
a)

τ−1∏

l=r

(1 + βla),

C2[r−1](S2)(1 + βr τ−1)

}
,

C2[k](S1) = max

{
C1[r−1](S2)(1 + αi r

a)

k∏

l=1

(1 + α[l](r + l)a)(1 + βr τ−1),

C1[r−1](S2)(1 + αi r
a)

k−1∏

l=1

(1 + α[l](r + l)a)(1 + βr τ−2)(1 + βr τ−1),

. . .

C1[r−1](S2)(1 + αi r
a)

τ−1∏

l=r

(1 + βla),

C2[r−1](S2)(1 + βr τ−1)

}
.
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Since both equations have the same positions except for position τ , we have

C2[k](S2) ≤ C2[k](S1) (5)

since αi ≥ α j .

For position k = τ ,

C2[τ ](S2) = max

{
C1[r−1](S2)(1 + α j r

a)(1 + αiτ
a)

τ−1∏

l=r+1

(1 + α[l]la)(1 + βτ a),

C1[r−1](S2)(1 + α j r
a)

τ−1∏

l=r+1

(1 + α[l]la)(1 + βr τ−1)(1 + βr τ ),

C1[r−1](S2)(1 + α j r
a)

τ−2∏

l=r+1

(1 + α[l]la)(1 + βr τ−2)(1 + βr τ−1)(1 + βr τ ),

. . .

C1[r−1](S2)(1 + α j r
a)

τ∏

l=r

(1 + βla),

C2[r−1](S2)(1 + βr τ )

}
,

C2[τ ](S1) = max

{
C1[r−1](S2)(1 + αi r

a)(1 + α jτ
a)

τ−1∏

l=r+1

(1 + α[l]la)(1 + βτ a),

C1[r−1](S2)(1 + αi r
a)

τ−1∏

l=r+1

(1 + α[l]la)(1 + βr τ−1)(1 + βr τ ),

C1[r−1](S2)(1 + αi r
a)

τ−2∏

l=r+1

(1 + α[l]la)(1 + βr τ−2)(1 + βr τ−1)(1 + βr τ ),

. . .

C1[r−1](S2)(1 + αi r
a)

τ∏

l=r

(1 + βla),

C2[r−1](S2)(1 + βr τ )

}
.

From these two equations, we have

C2[τ ](S2) ≤ C2[τ ](S1) (6)

since αi ≥ α j and (1 + α j ra)(1 + αiτ
a) ≤ (1 + αi ra)(1 + α jτ

a).
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For the jobs that are in π ′, their completion times may be delayed due to (6), i.e.,

C[k](S2) ≤ C[k](S1), if J[k] ∈ π ′. (7)

Hence, S2 dominates S1. ��
Theorem 2 If jobs Ji and J j satisfy αi = βi , α j = β j , and αi > α j , then S2 domi-
nates S1.

Proof It should be clear that the completion times of Jk in sequences S1 and
S2 are equal if it is in π because both sequences have the same jobs in these
positions, i.e., C1[r−1](S2) = C1[r−1](S2), C2[r−1](S2) = C2[r−1](S2) for positions
k = 1, 2, . . . , r − 1.

The completion times of Ji and J j in S2 are, respectively,

C2[r ](S2) = max
{
C1[r−1](S2) + α j C1[r−1](S2)r

a, C2[r−1](S2)
}

+α j max
{
C1[r−1](S2) + α j C1[r−1](S2)r

a, C2[r−1](S2)
}

ra

= max
{

C1[r−1](S2)(1 + α j r
a)2, (C2[r−1](S2)(1 + α j r

a)
}

,

C2[r ](S1) = max
{

C1[r−1](S2)(1 + αi r
a)2, (C2[r−1](S2)(1 + αi r

a)
}

,

From these two equations, we have

C2[r ](S2) ≤ C2[r ](S1) (8)

since αi ≥ α j .

For positions k = r + 1, r = 2, . . . , τ − 1,

C2[k](S2) = max

{
C1[r−1](S2)(1 + α j r

a)

k∏

l=r+1

(1 + α[l]la)(1 + α[k]ka),

C1[r−1](S2)(1 + α j r
a)

k−1∏

l=r+1

(1 + α[l]la)

k∏

l=k−1

(1 + α[l]la),

C1[r−1](S2)(1 + α j r
a)

k−2∏

l=r+1

(1 + α[l]la)

k∏

l=k−2

(1 + α[l]la),

. . .

C1[r−1](S2)(1 + α j r
a)2

k∏

l=r+1

(1 + α[l]la),

C2[r−1](S2)(1 + α j r
a)

k∏

l=r+1

(1 + α[l]la)

}
,

C2[k](S1) = max

{
C1[r−1](S2)(1 + αi r

a)

k∏

l=r+1

(1 + α[l]la)(1 + α[k]ka),
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C1[r−1](S2)(1 + αi r
a)

k−1∏

l=r+1

(1 + α[l]la)

k∏

l=k−1

(1 + α[l]la),

C1[r−1](S2)(1 + αi r
a)

k−2∏

l=r+1

(1 + α[l]la)

k∏

l=k−2

(1 + α[l]la),

. . .

C1[r−1](S2)(1 + αi r
a)2

k∏

l=r+1

(1 + α[l]la),

C2[r−1](S2)(1 + αi r
a)

k∏

l=r+1

(1 + α[l]la)

}
.

Since both equations have the same positions except for position τ , we have

C2[k](S2) ≤ C2[k](S1) (9)

since αi ≥ α j .

For position k = τ ,

C2[τ ](S2) = max

{
C1[r−1](S2)(1 + α j r

a)

τ−1∏

l=r+1

(1 + α[l]la)(1 + αiτ
a)2,

C1[r−1](S2)(1 + α j r
a)

τ−2∏

l=r+1

(1 + α[l]la)

τ−1∏

l=τ−2

(1 + α[l]la)(1 + αiτ
a),

C1[r−1](S2)(1 + α j r
a)

τ−3∏

l=r+1

(1 + α[l]la)

τ−1∏

l=τ−3

(1 + α[l]la)(1 + αiτ
a),

. . .

C1[r−1](S2)(1 + α j r
a)2

τ−1∏

l=r+1

(1 + α[l]la)(1 + αiτ
a),

C2[r−1](S2)(1 + α j r
a)

τ−1∏

l=r+1

(1 + α[l]la)(1 + αiτ
a)

}
,

C2[τ ](S1) = max

{
C1[r−1](S2)(1 + αi r

a)

τ−1∏

l=r+1

(1 + α[l]la)(1 + α jτ
a)2,

C1[r−1](S2)(1 + αi r
a)

τ−2∏

l=r+1

(1 + α[l]la)

τ−1∏

l=τ−2

(1 + α[l]la)(1 + α jτ
a),

C1[r−1](S2)(1 + αi r
a)

τ−3∏

l=r+1

(1 + α[l]la)

τ−1∏

l=τ−3

(1 + α[l]la)(1 + α jτ
a),

. . .
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C1[r−1](S2)(1 + αi r
a)2

τ−1∏

l=r+1

(1 + α[l]la)(1 + α jτ
a),

C2[r−1](S2)(1 + αi r
a)

τ−1∏

l=r+1

(1 + α[l]la)(1 + α jτ
a)

}
.

From these two equations, since αi ≥ α j , we have (1 + αi ra)2(1 + α jτ
a) ≥

(1 + α j ra)2(1 + αiτ
a) and (1 + αi ra)(1 + α jτ

a) ≥ (1 + α j ra)(1 + αiτ
a), hence

C2[τ ](S2) ≤ C2[τ ](S1). (10)

For the jobs that are in π ′, their completion times may be delayed due to (10), i.e.,

C[k](S2) ≤ C[k](S1), if J[k] ∈ π ′. (11)

Hence, S2 dominates S1. ��

4 Algorithms

In this section we give two lower bounds to curtail the size of the branching tree
and an initial upper bound by using two heuristic algorithms. We also construct a
branch-and-bound algorithm to solve small-sized problems.

4.1 The heuristic algorithms

In this subsection two heuristic algorithms are presented. The procedure is adapted
from the results in Wang et al. [23], Mosheiov [15], and Lee and Wu [11].

For the problem F2|pi j (t) = αi j t |Cmax, Mosheiov [15] proposes an optimal algo-
rithm (Algorithm SOLVE-FS2), but it is noted that this algorithm might not provide the
optimal solution for this problem with a learning effect. Hence a heuristic algorithm
is proposed, which is based on Algorithm SOLVE-FS2.

Wang et al. [23] propose three heuristic algorithms for the problem under study in
this paper when there are no deteriorating jobs. The first method focuses on avoiding
or reducing idle time on the second machine. The second method focuses on avoiding
or reducing the waiting time of the jobs on the second machine. The third method is to
choose the jobs that yield local optimality. Their computational results show that the
first heuristic method is superior to the others. Lee and Wu [11] propose a two-phase
heuristic algorithm for the same problem with a learning effect.
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In summary, the steps of the procedures are as follows:

Heuristic Algorithm 1 (HA1)

Phase I

Step 1. Partition the jobs into two sets with set N1 containing all the jobs with
α j ≤ β j and set N2 all the jobs with α j > β j .

Step 2. The jobs in N1 go first in non-decreasing order of α j and the jobs in N2
follow in non-increasing order of β j .

Phase II

Step 1. Let S0 be the initial solution obtained from Phase I.
Step 2. Set k = 1 and i = k + 1.
Step 3. Create a new sequence S1 by moving J[i] in S0 forward to position k. Replace

S0 by S1 if the value of the makespan of S1 is smaller than that of S0.
Step 4. If i < n, then set i = i + 1, go to Step 3.
Step 5. If k < n − 1, then set k = k + 1, go to Step 2. Otherwise, stop.

Heuristic Algorithm 2 (HA2)

Phase I

Step 1. Set k = 1 and N = {J1, J2, . . . , Jn}.
Step 2. Choose the job Ji with the smallest (1 + αi )(1 + βi ) to be scheduled in the

kth position. Set Ak = t0(1 + αi ) and C[k] = t0(1 + αi )(1 + βi ). Delete Ji

from N .
Step 3. Collect the jobs that satisfy the condition Ak(1 + αi (k + 1)a) ≤ C[k].
Step 3.1. If more than one job meets the condition, then choose the job Ji having the

smallest αi to be scheduled in the (k + 1)th position.
Step 3.2. If no job meets the condition, then choose the job Ji with the smallest pro-

cessing time βi on M1 to be scheduled in the (k + 1)th position. Update C[k]
by C[k+1] = max{Ak(1 + αi (k + 1)a), C[k]}(1 + βi (k + 1)a), and Ak by
Ak+1 = Ak(1 + αi (k + 1)a). Delete Ji from N . Increase k by 1.

Step 4. If N is not empty, then go to Step 3. Otherwise, Stop.

Phase II

Step 1. Let S0 be the initial solution obtained from Phase I.
Step 2. Set k = 1 and i = k + 1.
Step 3. Create a new sequence S1 by moving J[i] in S0 forward to position k. Replace

S0 by S1 if the value of the makespan of S1 is smaller than that of S0.
Step 4. If i < n, then set i = i + 1, go to Step 3.
Step 5. If k < n − 1, then set k = k + 1, go to Step 2. Otherwise, stop.

4.2 Lower bounds

The efficiency of a branch-and-bound algorithm largely depends on the use of effec-
tive lower bounds to trim the partial sequences. In the following we derive two lower
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bounds to curtail the size of the branching tree. Suppose that π is a partial schedule in
which the order of the first k jobs has been determined and S is a complete schedule
obtained from π . By definition, the completion time of the (k + 1)th job is

C[k+1](S) = max

⎧
⎨

⎩t0

k+1∏

j=1

(1 + α[ j] ja), C[k](S)

⎫
⎬

⎭ (1 + β[k+1](k + 1)a)

≥ C[k](S)(1 + β[k+1](k + 1)a).

Similarly,

C[i](S) = max

⎧
⎨

⎩t0

i∏

j=1

(1 + α[ j] ja), C[i−1](S)

⎫
⎬

⎭ (1 + β[i]ia)

≥ C[k](S)

i∏

j=k+1

(1 + β[ j] ja) for i = k + 1, . . . , n.

Therefore, the makespan of S is

Cmax(S) = C[n](S) ≥ C[k](S)

n∏

j=k+1

(1 + β[ j] ja). (12)

Observe that the first term on the right-hand side of Eq. 12 is known, the term C[k](S) is
known and a lower bound for π can be obtained by minimizing the term

∏n
j=k+1(1 +

β[i]ia). Lee [10] proves that the makespan is minimized by sequencing the jobs accord-
ing to the shortest remaining deterioration rate (SRPT) rule. Thus, the minimal value
of Eq. 12 can be obtained by sequencing the unscheduled jobs in non-decreasing order
of the deterioration rates. Consequently, we obtain the first lower bound

L B1 = C[k](S)

n∏

j=k+1

(1 + β( j) ja), (13)

where β(k+1) ≤ β(k+2) ≤ · · · ≤ β(n) is a non-decreasing order of the deterioration
rates on M2 for the remaining unscheduled jobs. However, if the deterioration rates
on the first machine are large, this lower bound may not be tight. To overcome this
situation, we need to take the deterioration rates on M1 into consideration. In general,
we have

C[i] = max

⎧
⎨

⎩t0

i∏

j=1

(1 + α[ j] ja), C[i−1](S)

⎫
⎬

⎭ (1 + β[i]ia)

≥ t0

i∏

j=1

(1 + α[ j] ja)(1 + β[i]ia) for i = k + 1, . . . , n.
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Therefore, the makespan of S is

Cmax(S) = C[n](S) ≥ t0

k∏

j=1

(1 + α[ j] ja)

n∏

j=k+1

(1 + α[ j] ja)(1 + β[i]ia). (14)

Observe that the term t0
∏k

j=1(1+α[ j] ja) on the right-hand side of Eq. 14 is known and
a lower bound for π can be obtained by minimizing the term

∏n
j=k+1(1+α[ j] ja)(1+

β[i]ia). Lee [10] proves that the makespan is minimized by sequencing the jobs accord-
ing to the shortest remaining deterioration rate (SRPT) rule. Thus, the minimal value
of Eq. 14 can be obtained by sequencing the unscheduled jobs in non-decreasing order
of the deterioration rates on M1. Consequently, we obtain the second lower bound

L B2 = t0

k∏

j=1

(1 + α[ j] ja)

n∏

j=k+1

(1 + α( j) ja)

(
1 + min

k+1≤ j≤n
β j n

a
)

, (15)

where α(k+1) ≤ α(k+2) ≤ · · · ≤ α(n) is a non-decreasing order of the deterioration
rates on M1 for the remaining unscheduled jobs.

In order to make the lower bound tighter, we choose the maximum value between
Eqs. (13) and (15) as the lower bound for π . That is,

L B = max{L B1, L B2}.

4.3 The branch-and-bound algorithm

Our branch-and-bound algorithm uses the depth search strategy. We first perform the
heuristic algorithm to obtain a sequence as the initial solution. This algorithm assigns
jobs in a forward manner starting from the first position. In the searching tree, we
choose a branch and systematically work down the tree until we either eliminate it on
the basis of a lower bound or reach its final node, which is either used as a substitute
for the initial solution or eliminated.

Branch-and-bound Algorithm

Step 1. Use Heuristic Algorithm 1 and Heuristic Algorithm 2 (if both solutions are
different, then choose the best solution) to obtain an initial solution for the
problem.

Step 2. Start the assignment of jobs at the beginning of a schedule and move forward
one step at a time.

Step 3. In the kth level node, the first k positions are occupied by k specific jobs.
Select one of the remaining n − k jobs for the node at level k + 1.

Step 4. First apply Theorems 1 and 2, then use Propositions 1.1-3.4 to eliminate the
dominated partial sequences from the initial node and their descendants from
the tree.
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Step 5. Calculate the lower bound for the node. If the lower bound for an unfath-
omed partial schedule is larger than the initial solution, eliminate the node.
Calculate the objective function value of the completed schedule, if it is less
than the initial solution, replace it as the new solution; otherwise, eliminate
it.

Step 6. Continue until all nodes have been explored, and the solution that ultimately
remains is optimal.

5 Computational experiments

Computational experiments were conducted to evaluate the effectiveness of the branch-
and-bound algorithm and the heuristic algorithms. The heuristic algorithm and the
branch-and-bound algorithm were coded in VC++ 6.0 and the computational experi-
ments were run on a Pentium 4 personal computer with a RAM size of 1 Gb. The job
deterioration rates on machines M1 and M2 were generated from a uniform distribution
over (0, 1).

In order to test the branch-and-bound algorithm, 12 different job sizes, n = 10,
12, 14, 16, 18, 20, 22, 24, 26, 28, 30 and 32 were used. And 50 replications were
randomly generated for each condition. A total of 600 problems were tested. For all
the tests, we set t0 = 1. In addition, the learning curves were taken to be 90%, 80%,
and 70%, which yielded a = −0.152,−0.322, and -0.515, respectively, according to
Biskup [2]. For the branch-and-bound algorithm, the average number of nodes, the
maximum number of nodes, the average time, and the maximum time (in millisec-
onds) are reported. The contributions of the dominance properties and the lower bound
are evaluated by algorithm efficiency, which is calculated in terms of the number of
nodes explored compared with the total number of nodes. The percentage error of the
solution produced by the heuristic algorithms are calculated as

(HA1 − V ∗)/V ∗ × 100% and
(
HA2 − V ∗) /V ∗ × 100%

where HA1 and HA2 are the makespan of the solution generated by the heuristic
methods and V ∗ is the makespan of the optimal schedule. The running times for the
heuristic algorithms are not given, since most problems are done in no time (a reported
CPU time is zero) and the others are finished within a second. The contribution of the
dominance properties and the lower bound is shown by the algorithm efficiency, which
is calculated in terms of the number of nodes explored compared with the total number
of nodes. The results are summarized in Table 1.

In Table 1, it is shown that the branch-and-bound algorithm can solve a problem
of up to 32 jobs in a reasonable amount of time. However, the execution time and the
number of nodes increase dramatically as the job size increases. The computational
results also show that the proposed heuristics perform very well in terms of error per-
centages. The mean error percentage is less than 0.1% for all sizes of the problems.
From Table 1, we also see that HA2 is more effective than HA1 when a = −0.322
and −0.515.
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Table 1 Results for branch-and-bound algorithm and heuristic algorithms

n a Branch and bound algorithm Error percentage

CPU time (ms) Node number HA1 HA2

Mean Max Mean Max Mean Max Mean Max

−0.152 2.4 16 48.5 514 0.005 0.035 0.016 0.064

10 −0.322 3.1 16 15.85 76 0.01 0.082 0.009 0.072

−0.515 1.55 16 13.5 39 0.02 0.114 0.018 0.088

−0.152 9.4 79 101.4 1538 0.004 0.054 0.026 0.404

12 −0.322 4.65 16 19.75 117 0.007 0.08 0.006 0.075

−0.515 3.9 16 19.4 95 0.024 0.105 0.019 0.082

−0.152 12.45 78 67.6 619 0.005 0.037 0.009 0.047

14 −0.322 7.85 31 29.95 181 0.018 0.117 0.013 0.046

−0.515 10.95 47 63.85 534 0.026 0.121 0.015 0.068

−0.152 9.4 31 14.05 57 0.011 0.062 0.015 0.087

16 −0.322 17.9 62 33.95 215 0.013 0.099 0.012 0.082

−0.515 17.2 47 31.15 187 0.04 0.157 0.007 0.041

−0.152 21.05 47 15.4 60 0.012 0.076 0.021 0.074

18 −0.322 29.65 157 55.25 600 0.039 0.264 0.015 0.087

−0.515 17.2 62 25.7 178 0.032 0.098 0.013 0.067

−0.152 71.3 500 113.65 1113 0.007 0.061 0.028 0.144

20 −0.322 81.15 531 150.65 1416 0.024 0.116 0.017 0.082

−0.515 50.75 172 55.35 304 0.05 0.178 0.009 0.047

−0.152 71.2 313 49.75 392 0.01 0.031 0.024 0.211

22 −0.322 63.35 188 41.85 161 0.049 0.172 0.006 0.031

−0.515 80.25 359 69.85 504 0.046 0.277 0.007 0.074

−0.152 82.75 219 48.85 222 0.008 0.054 0.017 0.078

24 −0.322 91.3 406 68.35 479 0.02 0.062 0.01 0.076

−0.515 114.95 360 64.85 293 0.038 0.213 0.004 0.022

−0.152 209.45 1281 139.8 1584 0.019 0.123 0.021 0.158

26 −0.322 451.5 5422 222.55 3170 0.044 0.145 0.017 0.121

−0.515 217.15 875 94.4 530 0.049 0.172 0.012 0.068

−0.152 185.9 609 62.8 308 0.011 0.1 0.032 0.146

28 −0.322 317.95 2734 148.05 1597 0.047 0.185 0.018 0.148

−0.515 142.3 359 43.6 192 0.028 0.107 0.011 0.051

−0.152 504.1 6906 324.05 5816 0.012 0.1 0.015 0.112

30 −0.322 231.3 610 64.1 242 0.045 0.164 0.013 0.076

−0.515 832.75 4110 364.95 2600 0.064 0.394 0.01 0.037

−0.152 487.45 2172 112.45 919 0.015 0.105 0.024 0.15

32 −0.322 946.1 6828 276.3 3002 0.041 0.24 0.027 0.204

−0.515 317.1 766 64.5 227 0.068 0.221 0.022 0.122
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6 Conclusions

We study in this paper a two-machine flow shop scheduling problem under the assump-
tion that the processing times are not constant over time. We assume that processing
time of a job is a function of its execution starting time and its position in a sequence.
The computational complexity of this problem remains an open problem. Several
dominance conditions and lower bounds for the makespan of the problem are devel-
oped and used in a proposed branch-and-bound algorithm to search for the optimal
solutions. Two heuristic algorithms are also proposed, which are shown by compu-
tational experiments to be effective and efficient in obtaining near-optimal solutions.
Extension to bi-criterion or other objective functions seems to be an interesting topic
for future research.
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