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Abstract We consider the convex optimization problem P : minx{ f (x) : x ∈ K}
where f is convex continuously differentiable, and K ⊂ R

n is a compact convex set
with representation {x ∈ R

n : g j (x) ≥ 0, j = 1, . . . ,m} for some continuously
differentiable functions (g j ). We discuss the case where the g j ’s are not all concave
(in contrast with convex programming where they all are). In particular, even if the g j

are not concave, we consider the log-barrier function φμ with parameter μ, associated
with P, usually defined for concave functions (g j ). We then show that any limit point of
any sequence (xμ) ⊂ K of stationary points of φμ,μ → 0, is a Karush–Kuhn–Tucker
point of problem P and a global minimizer of f on K.

Keywords Convex optimization · Convex programming · Log-barrier

1 Introduction

Consider the optimization problem

P : f ∗ := min
x

{ f (x) : x ∈ K}. (1.1)

for some convex and continuously differentiable function f : R
n → R, and where

the feasible set K ⊂ R
n is defined by:
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K := {x ∈ R
n : g j (x) ≥ 0, j = 1, . . . ,m}, (1.2)

for some continuously differentiable functions g j : R
n → R. We say that (g j ), j =

1, . . . ,m, is a representation of K. When K is convex and the (g j ) are concave we
say that K has a convex representation.

In the literature, when K is convex P is referred to as a convex optimization prob-
lem and in particular, every local minimum of f is a global minimum. However, if
on the one hand convex optimization usually refers to minimizing a convex function
on a convex set K without precising its representation (g j ) (see e.g. Ben-Tal and
Nemirovsky [1, Definition 5.1.1] or Bertsekas et al. [3, Chapter 2]), on the other hand
convex programming usually refers to the situation where the representation of K is
also convex, i.e. when all the g j ’s are concave. See for instance Ben-Tal and Nemi-
rovski [1, p. 335], Berkovitz [2, p. 179], Boyd and Vandenberghe [4, p. 7], Bertsekas
et al. [3, §3.5.5], Nesterov and Nemirovski [13, p. 217–218], and Hiriart-Urruty [11].
Convex programming is particularly interesting because under Slater’s condition,1 the
standard Karush–Kuhn–Tucker (KKT) optimality conditions are not only necessary
but also sufficient and in addition, the concavity property of the g j ’s is used to prove
convergence (and rates of convergence) of specialized algorithms.

To the best of our knowledge, little is said in the literature for the specific case where
K is convex but not necessarily its representation, that is, when the functions (g j ) are
not necessarily concave. It looks like outside the convex programming framework,
all problems are treated the same. This paper is a companion paper to [12] where we
proved that if the nondegeneracy condition

∀ j = 1, . . . ,m : ∇g j (x) 	= 0 ∀x ∈ K with g j (x) = 0 (1.3)

holds, then x ∈ K is a global minimizer of f on K if and only if (x, λ) is a KKT point
for some λ ∈ R

m+. This indicates that for convex optimization problems (1.1), and
from the point of view of “first-order optimality conditions”, what really matters is the
geometry of K rather than its representation. Indeed, for any representation (g j ) of K
that satisfies the nondegeneracy condition (1.3), there is a one-to-one correspondence
between global minimizers and KKT points.

But what about from a computational viewpoint? Of course, not all representations
of K are equivalent since the ability (as well as the efficiency) of algorithms to obtain
a KKT point of P will strongly depend on the representation (g j ) of K which is used.
For example, algorithms that implement Lagrangian duality would require the (g j )

to be concave, those based on second-order methods would require all functions f
and (g j ) to be twice continuous differentiable, self-concordance of a barrier function
associated with a representation of K may or may not hold, etc.

When K is convex but not its representation (g j ), several situations may occur. In
particular, the level set {x : g j (x) ≥ a j } may be convex for a j = 0 but not for some
other values of a j > 0, in which case the g j ’s are not even quasiconcave on K, i.e., one
may say that K is convex by accident for the value a = 0 of the parameter a ≥ 0. One
might think that in this situation, algorithms that generate a sequence of feasible points

1 Slater’s condition holds if g j (x0) > 0 for some x0 ∈ K and all j = 1, . . . ,m.
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in the interior of K could run into problems to find a local minimum of f . If the −g j ’s
are all quasiconvex on K, we say that we are in the generic convex case because not
only K but also all sets Ka := {x : g j (x) ≥ a j , j = 1, . . . ,m} are convex. However,
quasiconvex functions do not share some nice properties of the convex functions. In
particular, (a) ∇g j (x) = 0 does not imply that g j reaches a local minimum at x, (b)
a local minimum is not necessarily global and (c), the sum of quasiconvex functions
is not quasiconvex in general; see e.g. Crouzeix et al. [5, p. 65]. And so even in this
case, for some minimization algorithms, convergence to a minimum of f on K might
be problematic.

So an interesting issue is to determine whether there is an algorithm which converges
to a global minimizer of a convex function f on K, no matter if the representation of K
is convex or not. Of course, in view of [12, Theorem 2.3], a sufficient condition is that
this algorithm provides a sequence (or subsequence) of points (xk, λk) ∈ R

n × R
m+

converging to a KKT point of P.
With P and a parameter μ > 0, we associate the log-barrier function φμ : K →

R ∪ {+∞} defined by

x �→ φμ(x) :=
{

f (x)− μ
∑m

j=1 ln g j (x), if g j (x) > 0, ∀ j = 1, . . . ,m
+∞, otherwise.

(1.4)

By a stationary point x ∈ K of φμ, we mean a point x ∈ K with g j (x) 	= 0 for all
j = 1, . . . ,m, and such that ∇φμ(x) = 0. Notice that in general and in contrast with
the present paper, φμ (or more precisely ψμ := μφμ) is usually defined for convex
problems P where all the g j ’s are concave; see e.g. Den Hertog [6] and for more details
on the barrier functions and their properties, the interested reader is referred to Güler
[9] and Güler and Tuncel [10].

Contribution The purpose of this paper is to show that no matter which represen-
tation (g j ) of a convex set K (assumed to be compact) is used [provided it satisfies the
nondegeneracy condition (1.3)], any sequence of stationary points (xμ) of φμ,μ → 0,
has the nice property that each of its accumulation points is a KKT point of P and
hence, a global minimizer of f on K. Hence, to obtain the global minimum of a con-
vex function on K it is enough to minimize the log-barrier function for nonincreasing
values of the parameter, for any representation of K that satisfies the nondegeneracy
condition (1.3). Again and of course, the efficiency of the method will crucially depend
on the representation of K which is used. For instance, in general φμ will not have the
self-concordance property, crucial for efficiency.

Observe that at first glance this result is a little surprising because as we already
mentioned, there are examples of sets Ka := {x : g j (x) ≥ a j , j = 1, . . . ,m} which
are non convex for every 0 	= a ≥ 0 but K := K0 is convex (by accident!) and
(1.3) holds. So inside K the level sets of the g j ’s are not convex any more. Still, and
even though the stationary points xμ of the associated log-barrier φμ are inside K, all
converging subsequences of a sequence (xμ), μ → 0, will converge to some global
minimizer x∗ of f on K. In particular, if the global minimizer x∗ ∈ K is unique then
the whole sequence (xμ) will converge. Notice that this happens even if the g j ’s are
not log-concave, in which case φμ may not be convex for all μ (e.g. if f is linear).
So what seems to really matter is the fact that as μ decreases, the convex function f
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becomes more and more important in φμ, and also that the functions g j which matter
in a KKT point (x∗, λ) are those for which g j (x∗) = 0 (and so with convex associated
level set {x : g j (x) ≥ 0}).

2 Main result

Consider the optimization problem (1.1) in the following context.

Assumption 1 The set K in (1.2) is convex and Slater’s assumption holds. Moreover,
the nondegeneracy condition

∇g j (x) 	= 0 ∀ x ∈ K such that g j (x) = 0, (2.1)

holds for every j = 1, . . . ,m.

Observe that when the g j ’s are concave then the nondegeneracy condition (2.1) holds
automatically. Recall that (x∗, λ) ∈ K × R

m is a Karush–Kuhn–Tucker (KKT) point
of P if

• x ∈ K and λ ≥ 0
• λ j g j (x∗) = 0 for every j = 1, . . . ,m
• ∇ f (x∗)− ∑m

j=1 λ j∇g j (x∗) = 0.

We recall the following result from [12]:

Theorem 1 [12] Let K be as in (1.2) and let Assumption 1 hold. Then x is a global
minimizer of f on K if and only if there is some λ ∈ R

m+ such that (x, λ) is a KKT
point of P.

The next result is concerned with the log-barrier φμ in (1.4).

Lemma 2 Let K in (1.2) be convex and compact and assume that Slater’s condition
holds. Then for every μ > 0 the log-barrier function φμ in (1.4) has at least one
stationary point on K (which is a global minimizer of φμ on K).

Proof Let f ∗ be the minimum of f on K and let μ > 0 be fixed, arbitrary. We first
show that φμ(xk) → ∞ as xk → ∂K (where (xk) ⊂ K). Indeed, pick up an index
i such that gi (xk) → 0 as k → ∞. Then φμ(xk) ≥ f ∗ − μ ln gi (xk)− (m − 1) ln C
(where all the g j ’s are bounded above by C). So φμ is coercive and therefore must
have a (global) minimizer xμ ∈ K with g j (xμ) > 0 for every j = 1, . . . ,m; and so
∇φμ(xμ) = 0. 
�

Notice that φμ may have several stationary points in K. We now state our main
result.

Theorem 3 Let K in (1.2) be compact and let Assumption 1 hold true. For every fixed
μ > 0, choose xμ ∈ K to be an arbitrary stationary point of φμ in K.

Then every accumulation point x∗ ∈ K of such a sequence (xμ) ⊂ K with μ → 0,
is a global minimizer of f on K, and if ∇ f (x∗) 	= 0, x∗ is a KKT point of P.
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Proof Let xμ ∈ K be a stationary point of φμ, which by Lemma 2 is guaranteed to
exist. So

∇φμ(xμ) = ∇ f (xμ)−
m∑

j=1

μ

g j (xμ)
∇g j (xμ) = 0. (2.2)

As μ → 0 and K is compact, there exists x∗ ∈ K and a subsequence (μ�) ⊂ R+ such
that xμ� → x∗ as � → ∞. We need consider two cases:

Case when g j (x∗) > 0, ∀ j = 1, . . . ,m. Then as f and g j are continuously
differentiable, j = 1, . . . ,m, taking limit in (2.2) for the subsequence (μ�), yields
∇ f (x∗) = 0 which, as f is convex, implies that x∗ is a global minimizer of f on R

n ,
hence on K.

Case when g j (x∗) = 0 for some j ∈ {1, . . . ,m}. Let J := { j : g j (x∗) = 0} 	= ∅.
We next show that for every j ∈ J , the sequence of ratios (μ/g j (xμ�), � = 1, . . ., is
bounded. Indeed let j ∈ J be fixed arbitrary. As Slater’s condition holds, let x0 ∈ K
be such that g j (x0) > 0 for all j = 1, . . . ,m; then 〈∇g j (x∗), x0 − x∗〉 > 0. Indeed,
as K is convex, 〈∇g j (x∗), x0 + v − x∗〉 ≥ 0 for all v in some small enough ball
B(0, ρ) around the origin. So if 〈∇g j (x∗), x0 − x∗〉 = 0 then 〈∇g j (x∗), v〉 ≥ 0 for
all v ∈ B(0, ρ), in contradiction with ∇g j (x∗) 	= 0. Next,

〈∇ f (xμ�), x0 − x∗〉 =
m∑

k=1

μ

gk(xμ�)
〈∇gk(xμ�), x0 − x∗〉

≥ μ

g j (xμ�)
〈∇g j (xμ�), x0 − x∗〉, � = 1, . . . ,

where the last inequality holds because all terms in the summand are nonnegative.
Hence, taking limit as � → ∞ yields

〈∇ f (x∗), x0 − x∗〉 ≥ 〈∇g j (x∗), x0 − x∗〉 × lim
�→∞

μ

g j (xμ�)
,

which, as j ∈ J was arbitrary, proves the required boundedness.
So take a subsequence (still denoted (μ�)� for convenience) such that the ratios

μ/g j (xμ�) converge for all j ∈ J , that is,

lim
�→∞

μ

g j (xμ�)
= λ j ≥ 0, ∀ j ∈ J,

and let λ j := 0 for every j 	∈ J , so that λ j g j (x∗) = 0 for every j = 1, . . . ,m. Taking
limit in (2.2) yields

∇ f (x∗) =
m∑

j=1

λ j ∇g j (x∗), (2.3)
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which shows that (x∗, λ) ∈ K×R
m+ is a KKT point for P. Finally, invoking Theorem 1,

x∗ is also a global minimizer of P. 
�

2.1 Discussion

The log-barrier function φμ or its exponential variant f +μ
∑

g−1
j has become pop-

ular since the pioneer work of Fiacco and McCormick [7,8], where it is assumed that
f and the g j ’s are twice continuously differentiable, the g j ’s are concave,2 Slater’s
condition holds, the set K ∩ {x : f (x) ≤ k} is bounded for every finite k, and finally,
the barrier function is strictly convex for every value of the parameter μ > 0. Under
such conditions, the barrier function f + μ

∑
g−1

j has a unique minimizer xμ for

every μ > 0 and the sequence
(
xμ, (μ/g j (xμ)2) ⊂ R

n+m converges to a Wolfe-dual
feasible point.

In contrast, Theorem 3 states that without assuming concavity of the g j ’s, one may
obtain a global minimizer of f on K, by looking at any limit point of any sequence
of stationary points (xμ), μ → 0, of the log-barrier function φμ associated with a
representation (g j ) of K, provided that the representation satisfies the nondegeneracy
condition (1.3). To us, this comes as a little surprise as the stationary points (xμ) are
all inside K, and there are examples of convex sets K with a representation (g j ) sat-
isfying (1.3) and such that the level sets Ka = {x : g j (x) ≥ a j } with a j > 0, are not
convex! (See Example 1) Even if f is convex, the log-barrier function φμ need not be
convex; for instance if f is linear, ∇2φμ = −μ∑

j ∇2 ln g j , and so if the g j ’s are not
log-concave then φμ may not be convex on K for every value of the parameter μ > 0.

Example 1 Let n = 2 and Ka := {x ∈ R
2 : g(x) ≥ a} with x �→ g(x) :=

4− ((x1 +1)2 + x2
2 )((x1 −1)2 + x2

2 ), with a ∈ R. The set Ka is convex only for those
values of a with a ≤ 0; see in Fig. 1. It is even disconnected for a = 4.

We might want to consider a generic situation, that is, when the set

Ka := {x ∈ R
n : g j (x) ≥ a j , j = 1, . . . ,m},

is also convex for every positive vector 0 ≤ a = (a j ) ∈ R
m . This in turn would imply

that the g j are quasiconcave3 on K. In particular, if the nondegeneracy condition (1.3)
holds on K and the g j ’s are twice differentiable, then at most one eigenvalue of the
Hessian ∇2g j (and hence ∇2 ln g j ) is possibly positive (i.e., ln g j is almost concave).
This is because for every x ∈ K with g j (x) = 0, one has 〈v,∇2g j (x)v〉 ≤ 0 for all
v ∈ ∇g j (x)⊥ (where ∇g j (x)⊥ := {v : 〈∇g j (x), v〉 = 0}). However, even in this
situation, the log-barrier function φμ may not be convex. On the other hand, ln g j is
“more” concave than g j on Int K because its Hessian ∇2g j satisfies g2

j ∇2 ln g j =

2 In fact as noted in [7], concavity of the g j ’s is merely a sufficient condition for the barrier function to be
convex.
3 Recall that on a convex set O ⊂ R

n , a function f : O → R is quasiconvex if the level sets {x : f (x) ≤ r}
are convex for every r ∈ R. A function f : O → R is said to be quasiconcave if − f is quasiconvex; see
e.g. [5].
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Fig. 1 Example 1: Level sets {x : g(x) = a} for a = 2.95, 2.5, 1.5, 0 and −2

g j∇2g j − ∇g j (∇g j )
T . But still, g j might not be log-concave on Int K, and so φμ

may not be convex at least for values of μ not too small (and for all values of μ if f
is linear).

Example 2 Let n = 2 and K := {x : g(x) ≥ 0, x ≥ 0} with x �→ g(x) = x1x2 − 1.
The representation of K is not convex but the g j ’s are log-concave, and so the log-
barrier x �→ φμ(x) := f (x)− μ(ln g(x)− ln x1 − ln x2) is convex.

Example 3 Let n = 2 and K := {x : g1(x) ≥ 0; a − x1 ≥ 0; 0 ≤ x2 ≤ b} with
x �→ g1(x) = x1/(ε + x2

2 ) with ε > 0. The representation of K is not convex and g1
is not log-concave. If f is linear and ε is small enough, the log-barrier

x �→ φμ(x) := f (x)− μ(ln x1 + ln(a − x1)− ln(ε + x2
2 )+ ln x2 + ln(b − x2))

is not convex for every value of μ > 0.
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