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Abstract The Levenberg–Marquardt method is a regularized Gauss–Newton
method for solving systems of nonlinear equations. If an error bound condition holds it
is known that local quadratic convergence to a non-isolated solution can be achieved.
This result was extended to constrained Levenberg–Marquardt methods for solving
systems of equations subject to convex constraints. This paper presents a local conver-
gence analysis for an inexact version of a constrained Levenberg–Marquardt method.
It is shown that the best results known for the unconstrained case also hold for the
constrained Levenberg–Marquardt method. Moreover, the influence of the regulari-
zation parameter on the level of inexactness and the convergence rate is described.
The paper improves and unifies several existing results on the local convergence of
Levenberg–Marquardt methods.

Keywords Constrained equation · Levenberg–Marquardt method ·
Convergence rate · Inexactness · Non-isolated solution

1 Introduction

Let a sufficiently smooth mapping H : R
n → R

m and a closed convex nonempty
set � ⊆ R

n be given. In this paper we consider the following system of nonlinear
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928 R. Behling, A. Fischer

equations subject to constraints

H(x) = 0, x ∈ �. (1)

In the last decade, Levenberg–Marquardt methods [15,17] and related techniques (see
[8,11]) have turned out to be a valuable tool for solving such problems, in particular
for the case when problem (1) has non-isolated solutions. For results on the local
convergence related to this case we refer to [7,8,10,14,18,19]. Several globaliza-
tion techniques have been suggested, see [1,11,14,16,20] for example. In [4,9,14]
applications of Levenberg–Marquardt techniques to other problems are dealt with.
For problems (1) where H is only semismooth at a solution Levenberg–Marquardt
type algorithms have been developed in [5,12,13]. However, the conditions used for
proving their local superlinear convergence imply the local uniqueness of the solution.

In the present paper we are interested in extending and unifying results on the local
convergence of inexact Levenberg–Marquardt methods for smooth problems (1) that
can have non-isolated solutions. We are now going to discuss this in more detail.

Levenberg–Marquardt methods guarantee a local quadratic (or superlinear) con-
vergence under an error bound condition (see [18] for the first result in this direction).
Even in the classical case when � = R

n and m = n this condition is weaker than
requiring that the Jacobian of H at a solution x∗ is nonsingular. The latter however
implies the isolatedness of x∗. Under such a nonsingularity condition a well known
theory for the level of inexactness in Newton’s method exists [3].

The level of inexactness in the subproblems of Levenberg–Marquardt methods that
is possible without loosing a given superlinear convergence rate was investigated in
[2,6,10] for the unconstrained case, i.e., if � = R

n . Then, the Levenberg–Marquardt
subproblems read as follows

1

2
‖H (s)+ ∇H (s)� (x − s) ‖2 + 1

2
α (s) ‖x − s‖2 + π (s)� (x − s) → min

x
, (2)

where s ∈ R
n can be understood as the current iterate, α(s) > 0 denotes the reg-

ularization parameter, and π(s) ∈ R
n is used to formally describe the inexactness

that may result from approximate data, truncated solution algorithms, or numerical
errors. To obtain a large level for the inexactness under a given convergence rate the
regularization parameter α(s) plays a crucial role.

To explain this let us assume that a quadratic convergence rate should be guaran-
teed. Then, it is shown in [2] that α(s) ∼ ‖H(s)‖2 enables an inexactness level of (at
least) ‖π(s)‖ ∼ ‖H(s)‖4. The inexactness level of ‖π(s)‖ ∼ ‖H(s)‖3 was obtained
in [6] if a significantly larger regularization parameter is used, namely if

α(s) ∼ ‖H(s)‖. (3)

For this choice of α(s) the inexactness level can be further improved to ‖π(s)‖ ∼
‖H(s)‖2, see [10]. This result may serve as a bench mark if we consider the con-
strained case. Levenberg–Marquardt methods for this case were suggested in [14] and
in [19] (the latter for � defined by nonnegativity constraints only). The subproblems
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A unified local convergence analysis of inexact constrained Levenberg–Marquardt methods 929

of the constrained Levenberg–Marquardt method in [14] read as follows

1

2
‖H(s)+ ∇H(s)� (x − s) ‖2 + 1

2
α(s)‖x − s‖2 → min

x
s.t. x ∈ �.

The constrained Levenberg–Marquardt method is known to converge locally with a
quadratic rate if α(s) ∼ ‖H(s)‖2 is assumed, see [14] (and [19] under slightly differ-
ent conditions). It seems that nothing is known on the behavior of inexact versions of
the constrained Levenberg–Marquardt method. The reason for this may lie in the fact
that it is not even clear whether a quadratic rate is possible if the larger value (3) is
used for the regularization parameter α(s).

The present paper gives answers to these problems. It will turn out that the regular-
ization parameter α(s) in terms of ‖H(s)‖β with β ∈ (0, 2] is responsible for the rate
of convergence of the exact constrained Levenberg–Marquardt method. Moreover,
inexactness does not worsen this rate if it is at most proportional to ‖H(s)‖β+1. It will
also be shown in Sect. 5 that this level of inexactness is sharp. The results in this paper
improve or extend previous results in particular those in [2,6,10,14,19].

In Sect. 2 problem (1) is reformulated as an optimization problem and its necessary
optimality conditions are represented as a generalized equation. Based on this an aux-
iliary lemma on the upper Lipschitz-continuity for a perturbation of the generalized
equation is proved. In Sect. 3 the subproblems of the inexact constrained Levenberg–
Marquardt method and the resulting method are formally defined. The local conver-
gence analysis is given in Sect. 4. By an example the sharpness of the inexactness
level is demonstrated in Sect. 5.

The norm ‖ · ‖ always denotes the Euclidean vector norm. By B the closed unit
ball in R

n and by B(z, ρ) the closed ball around z with radius ρ is denoted.

2 An upper Lipschitz-continuity result

Throughout this paper we assume that the solution set of problem (1) is nonempty,
i.e.,

X∗ := {x ∈ � | H(x) = 0} 
= ∅.

Then, any solution of (1) solves the minimization problem

1

2
‖H(x)‖2 → min

x
s.t. x ∈ �, (4)

and vice versa. If H is differentiable then every solution of the minimization problem
satisfies the necessary optimality condition

0 ∈ ∇H(x)H(x)+ N�(x), (5)
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930 R. Behling, A. Fischer

where

N�(x) :=
{ {y ∈ R

n | y�(z − x) ≤ 0 for all z ∈ �} if x ∈ �,
∅ if x /∈ �

denotes the normal cone to the set � at x . In addition to the generalized Eq. (5) we
also consider the perturbed generalized equation

p ∈ ∇H(x)H(x)+ N�(x) (6)

for perturbation parameters p ∈ R
n . Let X (p) denote the solution set of (6). Obviously,

X∗ ⊆ X (0) holds.

Assumption 1 The function H : R
n → R

m is differentiable and ∇H : R
n → R

n×m

is locally Lipschitz continuous.

To formulate the error bound condition (Assumption 2 below) let x∗ ∈ X∗ be an
arbitrary but fixed solution. Assumption 1 could be restricted to some neighborhood
of x∗ which, however, is avoided for simplicity.

Assumption 2 There are w > 0 and δ ∈ (0, 1] so that

w dist[x, X∗] ≤ ‖H(x)‖ for all x ∈ B(x∗, δ) ∩�.

To enable subproblems simpler than those we use in this paper (see Sect. 3), pro-
jected Levenberg–Marquardt steps can be employed, see [14] and [16] (within a local
phase). Then, however, the corresponding local convergence analysis requires that the
inequality in Assumption 2 holds for all x ∈ B(x∗, δ) although the set � in problem
(1) is a proper subset of R

n . This implies that, in a neighborhood of x∗, problem (1)
is equivalent to H(x) = 0. Therefore, depending on the problem, Assumption 2 can
be significantly weaker than assuming that the inequality holds for all x ∈ B(x∗, δ).
It is shown in [10, Section 3] that such projected Levenberg–Marquardt steps can be
regarded as solutions of unconstrained Levenberg–Marquardt subproblems (2) with
an appropriate definition of the perturbation π . Due to this, the advantage from enlarg-
ing the regularization parameter, i.e., that the level of inexactness increases without
destroying quadratic convergence (see the discussion in Sect. 1), applies to the pro-
jected steps in [14,16].

The following lemma shows that the mapping p �→ X (p) is upper Lipschitz con-
tinuous at x∗ under the previous assumptions.

Lemma 1 Let Assumptions 1 and 2 be satisfied. Then, there are μ > 0 and δ∗ > 0
so that

X (p) ∩ B(x∗, δ∗) ⊆ X∗ + μ‖p‖B

for all p ∈ R
n.
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A unified local convergence analysis of inexact constrained Levenberg–Marquardt methods 931

Proof Let us first fix some δ∗ ∈ (0, δ] and let p ∈ R
n be arbitrarily chosen. If

X (p) ∩ B(x∗, δ∗) is empty, nothing has to be shown. Otherwise, let x p denote any
element of X (p) ∩ B(x∗, δ∗). Then, there is yp ∈ N�(x p) so that

p = ∇H(x p)H(x p)+ yp. (7)

Since X∗ is nonempty and closed there is x̂ p ∈ X∗ such that ‖x p− x̂ p‖ = dist[x p, X∗].
This implies

x̂ p ∈ B
(
x∗, 2δ∗

)
. (8)

Assumption 1 ensures (due to Taylor’s formula) that there is C1 > 0 so that, for any
z ∈ X∗ ∩ B(x∗, 2δ∗) and any x ∈ B(x∗, 2δ∗),

‖H(x)+ ∇H(x)�(z − x)‖2 ≤ C1‖z − x‖4.

Therefore, by (8), x̂ p ∈ X∗, and x p ∈ B(x∗, δ), we have

r
(
x p

) := ‖H
(
x p

) + ∇H
(
x p

)� (
x̂ p − x p

) ‖2 ≤ C1‖x̂ p − x p‖4

= C1 dist
[
x p, X∗]4

. (9)

For the left hand side we obtain

r
(
x p

) = 2
(
x̂ p − x p

)� ∇H
(
x p

)
H

(
x p

)+(
x̂ p−x p

)� ∇H
(
x p

)∇H
(
x p

)�(
x̂ p−x p

)
+‖H

(
x p

) ‖2

and

2
(
x̂ p − x p

)� ∇H
(
x p

)
H

(
x p

) + ‖H
(
x p

) ‖2 ≤ r
(
x p

)
.

Since x̂ p, x p ∈ � and yp ∈ N�(x p) we have (x̂ p − x p)
�yp ≤ 0 and, with (7), get

p� (
x̂ p − x p

) = (
x̂ p − x p

)� ∇H
(
x p

)
H

(
x p

) + (
x̂ p − x p

)�
yp

≤ 1

2

(
r
(
x p

) − ‖H
(
x p

) ‖2
)
.

By (9) and Assumption 2, this implies

p� (
x̂ p − x p

) ≤ 1

2

(
C1 dist

[
x p, X∗]4 − w2 dist

[
x p, X∗]2

)
.

Due to x p ∈ B(x∗, δ∗), choosing δ∗ ∈ (0, δ] sufficiently small leads to C1 dist[x p, X∗]2

≤ 1
2w

2 and

p� (
x̂ p − x p

) ≤ −1

4
w2 dist

[
x p, X∗]2
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932 R. Behling, A. Fischer

follows. Thus, dividing this inequality by ‖x̂ p−x p‖ (which is the same as dist[x p, X∗])
yields

1

4
w2 dist

[
x p, X∗] ≤ ‖p‖.

Setting μ := 4w−2 completes the proof. ��
Lemma 1 implies that X (0) ∩ B(x∗, δ∗) ⊆ X∗. This means that, although the gener-
alized Eq. (5) is only a necessary optimality condition for the minimization problem
(4), all vectors that satisfy this necessary condition and are not too far away from x∗
also solve the minimization problem.

3 Subproblems and method

Given some s ∈ � the algorithm we are going to analyze solves the following sub-
problem

0 ∈ ∇xψ (x, s)+ N� (x) , (10)

where ψ : R
n × R

n → R is defined by

ψ (x, s) := 1

2
‖H (s)+ ∇H (s)� (x − s) ‖2 + 1

2
α (s) ‖x − s‖2 + π (s)� (x − s)

and π(s) ∈ R
n denotes a perturbation that enables inexactness within the subprob-

lem. The level of inexactness is described by Assumption 3 below. It depends on the
exponent β ∈ (0, 2] in the following definition of the regularization parameter.

α(s) :=
{ ‖H(s)‖β if s /∈ X∗,

1 if s ∈ X∗. (11)

Note that the convergence theorem does not change if an appropriate less restrictive
rule is used to define α(s) for s /∈ X∗. For example,

α0‖H(s)‖β ≤ α(s) ≤ α1‖H(s)‖β

for some constants α1 ≥ α0 > 0 can be employed.
By the convexity of � and ψ(·, s) the generalized Eq. (10) is equivalent to the

quadratic minimization problem

ψ (x, s) → min
x

s.t. x ∈ �. (12)

Due to α(s) > 0 the function ψ(·, s) is strongly convex. Since the convex set � is
also nonempty and closed problem (12) has a unique solution denoted by x(s).

123



A unified local convergence analysis of inexact constrained Levenberg–Marquardt methods 933

Assumption 3 There is cπ > 0 so that

‖π(s)‖ ≤ cπ‖H(s)‖β+1 for all s ∈ B(x∗, δ).

Given a starting point x0 ∈ � the constrained Levenberg–Marquardt method gen-
erates a sequence {xk} of iterates defined by

xk+1 := x(xk) k = 0, 1, 2, . . . (13)

Roughly speaking, the following lemma shows that locally the length of a Levenberg–
Marquardt step is bounded by a constant times the distance of the current iterate to X∗.
The lemma is related to similar results in literature, for example see [2,14]. However,
since these results are either proved for the unconstrained case or do not deal with
inexactness a proof will be given.

Lemma 2 Let Assumptions 1–3 be satisfied. Then, there is κ > 0 so that

‖x(s)− s‖ ≤ κ dist[s, X∗] for all s ∈ B(x∗, δ).

Proof Recall that X∗ is nonempty and bounded. Thus, for any s ∈ R
n , there is ŝ ∈ X∗

with

‖s − ŝ‖ = dist[s, X∗]. (14)

As x(s) solves the minimization problem (12) we have

1

2
α (s) ‖x (s)− s‖2 + π (s)� (x (s)− s) ≤ ψ (x (s) , s) ≤ ψ

(
ŝ, s

)
. (15)

From Assumption 1 and Taylor’s formula it follows that there is L0 > 0 so that

‖H (s) ‖ = ‖H (s)− H
(
ŝ
) ‖ ≤ L0‖ŝ − s‖ (16)

and

‖H (s)+ ∇H (s)�
(
ŝ − s

) ‖2 ≤ L0‖ŝ − s‖4

hold for all s ∈ B(x∗, δ). With the latter inequality, (15) implies

‖x (s)− s‖2 ≤ α (s)−1
(

L0‖ŝ − s‖4 + 2‖ŝ − s‖‖π(s)‖ + 2‖x(s)− s‖‖π(s)‖
)

+‖ŝ − s‖2
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934 R. Behling, A. Fischer

for all s ∈ B(x∗, δ). Because α(s)−1‖π(s)‖ ≤ cπ‖H(s)‖ holds by (11) and Assump-
tion 3, we obtain from (11), Assumption 2, (16), and (14) that

‖x (s)− s‖2 ≤ dist
[
s, X∗]2

(
dist

[
s, X∗]2−β

L0w
−β + 2cπ L0 + 1

)

+ 2cπ L0‖x (s)− s‖ dist
[
s, X∗] .

Since dist[s, X∗] ≤ δ is valid for all s ∈ B(x∗, δ) there is L1 > 0 so that

‖x (s)− s‖2 − 2cπ L0 dist
[
s, X∗] ‖x(s)− s‖ − L1 dist

[
s, X∗]2 ≤ 0

holds for all s ∈ B(x∗, δ). Now, it can easily be seen that the inequalities

h2 − 2cπ L0 dist
[
s, X∗] h − L1 dist

[
s, X∗]2 ≤ 0, h ≥ 0

are satisfied both if and only if

0 ≤ h ≤
(

cπ L0 +
√

c2
π L2

0 + L1

)
dist

[
s, X∗] .

Hence, the assertion of the lemma follows for κ := cπ L0 +
√

c2
π L2

0 + L1. ��

4 Local convergence

The local convergence results obtained below could also be derived by means of the
general iterative framework for generalized equations in [8]. For simplicity we how-
ever decided to provide proofs that are more instructive for Levenberg–Marquardt
methods. To proceed let us first define


(x, s) := ∇H (x) H (x)− ∇xψ (x, s)

for all s, x ∈ R
n . By the definition of ψ this can be rewritten as


(x, s) = (∇H (x)− ∇H (s)) H (x)+∇H (s)
(

H (x)−H (s)−∇H (s)� (x − s)
)

−α (s) (x − s)− π (s) . (17)

Moreover, in the remaining part of the paper

τ := min{β + 1, 2}

will be used to describe a convergence rate.
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Lemma 3 Let Assumptions 1–3 be satisfied. Then, there is C > 0 so that

‖
(x (s) , s) ‖ ≤ C dist
[
s, X∗]τ for all s ∈ B(x∗, δ0),

where δ0 := (κ + 1)−1δ.

Proof Recall that, for any s ∈ R
n, ŝ ∈ X∗ is defined by (14). From Assumptions 1

and 3, Lemma 2, and (17) we obtain that, for all s, x ∈ B(x∗, δ) with s /∈ X∗, there
is L ≥ L0 > so that

‖H (s) ‖ = ‖H (s)− H
(
ŝ
) ‖ ≤ L dist

[
s, X∗] , (18)

‖H (x (s)) ‖ = ‖H (x (s))− H
(
ŝ
) ‖

≤ L‖x (s)− ŝ‖
≤ L

(‖x (s)− s‖ + ‖s − ŝ‖)
≤ L (κ + 1) dist

[
s, X∗] , (19)

and

‖
(x, s)‖ ≤ L‖H(x)‖‖x − s‖ + L‖x − s‖2

+‖H(s)‖β‖x − s‖ + cπ‖H(s)‖β+1. (20)

By Lemma 2, we have for all s ∈ B(x∗, δ0) that

‖x(s)− x∗‖ ≤ ‖x(s)− s‖ + ‖s − x∗‖
≤ κ dist[s, X∗] + δ0 ≤ (κ + 1)δ0 = δ. (21)

Therefore, the variable x within (20) can be replaced by x(s). This together with (18),
(19), and Lemma 2 leads to

‖
(x(s), s)‖ ≤ C dist[s, X∗]τ (22)

for all s ∈ B(x∗, δ0)\X∗, where C := L2κ(κ + 1)+ Lκ2 + Lβκ + cπ Lβ+1. Since
x(s) = s for s ∈ X∗, it follows by (17) and Assumption 3 that (22) also holds for
s ∈ X∗. ��
Lemma 4 Let Assumptions 1–3 be satisfied. Then, there are Ĉ > 0 and δ� > 0 so
that

dist[x(s), X∗] ≤ Ĉ dist[s, X∗]τ ≤ 1

2
dist[s, X∗] for all s ∈ B(x∗, δ�).

Proof Let s ∈ R
n be arbitrary but fixed. Then, subproblem (10) is equivalent to the

generalized equation


(x, s) ∈ ∇H(x)H(x)+ N�(x).
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936 R. Behling, A. Fischer

Hence, x(s) is the unique solution of this equation. Therefore, x(s) is also a solution
of the perturbed generalized Eq. (6) with p := 
(x(s), s), i.e., x := x(s) solves


(x (s) , s) ∈ ∇H (x) H (x)+ N� (x) .

This means

x (s) ∈ X (
 (x (s) , s)) .

To apply Lemma 1 we also need that x(s) ∈ B(x∗, δ∗). To this end and for later use
let us define

δ� := min

{
δ0,

δ∗
κ + 1

, (2μC)
−1
τ−1

}
.

Now, for s ∈ B(x∗, δ�), similar to (21) we obtain from Lemma 2 that‖x(s)−x∗‖ ≤ δ∗.
Thus, x(s) ∈ X (
(x(s), s)) ∩ B(x∗, δ∗) is valid for all s ∈ B(x∗, δ�). Lemma 1,
Lemma 3, and the definition of δ� imply

dist
[
x(s), X∗] ≤ μ‖
(x (s) , s) ‖ ≤ μC dist

[
s, X∗]τ ≤ 1

2
dist

[
s, X∗]

for all s ∈ B(x∗, δ�). With Ĉ := μC the proof is complete. ��

Lemma 5 (Lemma 2.9 in [10]) Let {wk} ⊂ R
n, rk ⊂ [0,∞) be sequences, and

r ∈ [0, 1), R > 0 numbers so that, for k = 0, 1, 2, . . . ,

‖wk − w0‖ ≤ r0
R

1 − r
(23)

implies

rk+1 ≤ r rk and ‖wk+1 − wk‖ ≤ Rrk . (24)

Then, {rk} converges to 0 and {wk} converges to some ŵ ∈ R
n. If, for some t > 1 and

c > 0,

rk+1 ≤ cr t
k and ‖ŵ − wk‖ ≥ rk (25)

is satisfied for k = 0, 1, 2, . . . then {wk} converges to ŵ with the Q-order of t .

Theorem 1 Let Assumptions 1–3 be satisfied and let {xk} be a sequence generated
by the Levenberg–Marquardt method (13). Then, there is ε > 0 so that x0 ∈ B(x∗, ε)
implies that the sequence {xk} converges to some x̂ ∈ X∗ with the Q-order τ .
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A unified local convergence analysis of inexact constrained Levenberg–Marquardt methods 937

Proof To apply Lemma 5 we set wk := xk and rk := dist[xk, X∗] for k = 0, 1, 2, . . .
and

r := 1

2
, R := κ, c := Ĉ, t := τ = min{β + 1, 2}.

Then, assuming (23) provides

‖xk − x∗‖ ≤ ‖xk − x0‖ + ‖x0 − x∗‖ ≤ 2κ dist[x0, X∗] + ‖x0 − x∗‖.

Setting ε := (2κ + 1)−1δ� we have

‖xk − x∗‖ ≤ (2κ + 1)‖x0 − x∗‖ ≤ (2κ + 1)ε ≤ δ� ≤ δ.

Thus, Lemmas 4 and 2 can be applied for s := xk . This leads to

dist
[
xk+1, X∗] ≤ 1

2
dist

[
xk, X∗] and ‖xk+1 − xk‖ ≤ κ dist

[
xk, X∗] ,

i.e., (24) is valid. Therefore, by Lemma 5, the sequence {dist[xk, X∗]} converges to 0
and {xk} converges to some x̂ ∈ X∗.

Thanks to Lemma 4 and since ‖x̂ − xk‖ ≥ dist[xk, X∗] is obviously valid for
k = 0, 1, 2, . . . , we see that (25) is satisfied. Thus, Lemma 5 guarantees that {xk}
converges to x̂ with the Q-order τ . ��

5 Sharpness of the level of inexactness

In this section we show that, in general, the level of inexactness given by Assumption 3
cannot be increased without reducing the convergence rate τ = min{β + 1, 2} of the
Levenberg–Marquardt method (13). To this end let us consider the simple example,
where � := R

2 and H : R
2 → R is given by

H(x) := ‖x‖2 − 1. (26)

Obviously, the solution set X∗ of H(x) = 0 is the unit sphere and Assumptions 1 is
valid. Moreover, since

dist[x, X∗] ≤ (‖x‖ + 1) dist[x, X∗] = (‖x‖ + 1)|‖x‖ − 1| = |‖x‖2 − 1| = |H(x)|,

Assumption 2 is satisfied forw = 1 and any δ > 0 regardless which solution x∗ ∈ X∗
is taken. For later use let, for some ρ ∈ (0, 1

4 ],

S (ρ) :=
{

x ∈ R
2\X∗ | dist

[
x, X∗] ≤ ρ

}
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938 R. Behling, A. Fischer

denote a set surrounding the solution set X∗. Then, according to (11), the regularization
parameter is

α (s) = |H (s) |β (27)

for any s ∈ S(ρ) with some β ∈ (0, 2]. Let us assume that, for some η ∈ (0, 1), the
perturbation vector is given by

π (s) := −σ (s) s + π (s)⊥ ∈ R
2 (28)

with

σ (s) := |H (s) |β+η, ‖π (s)⊥ ‖ = |H (s) |β+η, and s�π (s)⊥ = 0. (29)

Then, ‖π(s)‖ ≤ √
5|H(s)|β+η is valid for all s ∈ B(0, 2). Note that for η ≥ 1

Assumption 3 would be satisfied for any x∗ ∈ X∗ and the level of inexactness is
not increased in comparison with Theorem 1. Therefore, only η ∈ (0, 1) need to be
considered.

Now, to estimate the influence of the inexactness on the convergence rate of the
Levenberg–Marquardt method, we analyze the ratio

dist
[
x(s), X∗]

dist
[
s, X∗]ν (30)

for ‖s‖ → 1 and ν > 1. By the definition of H in (26) we know that

dist
[
x(s), X∗] = |‖x(s)‖ − 1| =

∣∣‖x(s)‖2 − 1
∣∣

‖x(s)‖ + 1
. (31)

Recall that, due to � = R
2, the solution x(s) of the subproblem (12) is the unique

solution of the linear system

(
∇H (s)∇H (s)T + α (s) I

)
(x − s) = −∇H (s) H (s)− π (s) .

For our example (26), we obtain

(
4ss� + α (s) I

)
(x (s)− s) = −2(‖s‖2 − 1)s − π (s) . (32)

Then, with (32), (28), and (29), a simple calculation shows that, for any s ∈ S(ρ),

x (s) = 2‖s‖2 + 2 + α (s)+ σ (s)

4‖s‖2 + α (s)
s − 1

α (s)
π (s)⊥
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and, by (27) and (29),

‖x(s)‖2 =
(

2‖s‖2 + 2 + α(s)+ σ(s)

4‖s‖2 + α(s)

)2

‖s‖2 + |H(s)|2η

are valid. This implies that ‖x(s)‖ + 1 is bounded above on S( 1
4 ). Moreover, taking

into account (31), Assumption 2, and (29) as well as β ∈ (0, 2] and η ∈ (0, 1), we
obtain after a longer calculation that there are c1, c2 > 0 and ρ̂ ∈ (0, 1

4 ] so that

dist
[
x(s), X∗] ≥ c1 dist

[
s, X∗]β+η + c2 dist

[
s, X∗]2η

holds for all s ∈ S(ρ̂). Hence, if

ν > ν(β, η) := min{β + η, 2η},

the ratio (30) tends to ∞ for ‖s‖ → 1, i.e., in the above example the Levenberg–Mar-
quardt method cannot converge to a solution with an order of ν. Since

ν(β, η) = min{η + β, 2η} < min{1 + β, 2} = τ,

the convergence rate τ in Theorem 1 cannot be guaranteed if the level of inexactness
is larger than required in Assumption 3.

6 Final remarks

Let the regularization parameter α(s) be given by (11), i.e., α(s) = ‖H(s)‖β . For
β = 1, Theorem 1 tells us that the local convergence rate of the constrained Levenberg–
Marquardt method (13) is τ = 2, where an inexactness level of ‖H(s)‖2 is enabled. For
the unconstrained case (� = R

n) a corresponding result has been shown recently in
[10]. However, for the constrained Levenberg–Marquardt methods in [14,19], β = 2
is required to achieve a quadratic rate. With the present paper, the local behavior of
an inexact constrained Levenberg–Marquardt method is analyzed for the first time. A
sharp maximal level of inexactness depending on β ∈ (0, 2] is derived. In particular,
this shows that β = 1 should be used to allow a maximal inexactness without reducing
the quadratic rate. Numerical results in [10] underline this in the unconstrained case.
If β = 2 is considered the level of inexactness given in [2] for the unconstrained
case could be improved from ‖H(s)‖4 to ‖H(s)‖3 and also holds if constraints are
present. According to Theorem 1, β ∈ (0, 1) implies a convergence rate less than 2.
Nevertheless, this choice of β may be useful to allow larger perturbations.
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