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Abstract In this paper, we consider a task allocation model that consists of assigning
a set of m unmanned aerial vehicles (UAVs) to a set of n tasks in an optimal way. The
optimality is quantified by target scores. The mission is to maximize the target score
while satisfying capacity constraints of both the UAVs and the tasks. This problem
is known to be NP-hard. Existing algorithms are not suitable for the large scale set-
ting. Scalability and robustness are recognized as two main issues. We deal with these
issues by two optimization approaches. The first approach is the Cross-Entropy (CE)
method, a generic and practical tool of stochastic optimization for solving NP-hard
problem. The second one is Branch and Bound algorithm, an efficient classical tool
of global deterministic optimization. The numerical results show the efficiency of our
approaches, in particular the CE method for very large scale setting.
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1 Introduction

The use of unmanned aerial vehicles (UAVs) for various military missions has received
growing attention in the past years. Apart from the obvious advantage of not placing
human life at risk, the lack of a human pilot enables considerable weight savings
and lower costs. On the other hand, UAVs provide an opportunity for new opera-
tional paradigms. However, to realize these advantages, UAVs must have a high level
of autonomy and capacity to work cooperatively in groups. In this context, several
algorithms dealing with the problem of commanding multiple UAVs to cooperatively
perform multiple tasks have been developed. The aim is to assign specific tasks and
flyable trajectories to each vehicle to maximize the group performance. The intrinsic
uncertainty imbedded in military operations makes the problem more challenging.
Scalability and robustness are recognized as two main issues. Also, to allow imple-
mentation, the developed algorithms must be solved in real time.

Extensive research has been done recently in this field [4,7,9,12–18,20,21,27–30].
In [4,17,20], task allocation has been formulated in the form of Mixed-Integer Lin-
ear Programming (MILP). In this approach, the problem is solved as a deterministic
optimization problem with known parameters. Since the MILP is NP-hard, it suffers
from poor scalability although the solutions preserve global optimality [19]. Moreover,
military situations are in general dynamic and uncertain because of the UAV’s sens-
ing limitation and adversarial strategies. Thus, replanning is necessary whenever the
information is updated. Heuristics and ad-hoc methods have been considered during
replanning in [14,17]. On the other hand, uncertainty is considered via optimization
parameters, and risk management techniques in finance are utilized (see e.g. [21,28]).
In [21], a nonlinear integer programming problem is formulated where a risk measure
by conditional value-at-risk is considered as constraint. In [28], a robust approach
using the Soyster formulation on the expectation of the target scores is investigated.
These approaches are based on solving hard combinatorial optimization problems and
then scalability is still a big issue. An alternative approach dealing with uncertainties
consists of formulating a stochastic optimal control problem by using the method of
Model Predictive Control (MPC) [6,27].

In this paper, we are interested in task allocation models where we seek to assign
a set of m UAVs to a set of n tasks in an optimal way. The optimality is quantified by
target scores. The mission is to maximize the target score while satisfying capacity
constraints of both the UAVs and the tasks.

The scoring scheme defining effectiveness in our work is a nonlinear function.
More precisely, our considered problem is a mixed integer nonlinear programming
problem for which the classical MILP solution method can not be used. We propose
two approaches to tackle it. The first approach is the Cross-Entropy (CE) method, a
simple generic and practical tool of stochastic optimization for solving NP-hard prob-
lem. The second one is the Branch and Bound algorithm, an efficient classical tool of
global deterministic optimization.

The CE method was originally developed in [22] for an adaptive networks, where
an adaptive variance minimization algorithm for estimating probabilities of rare events
for stochastic networks was presented. It was modified in [23,24] to solve optimiza-
tion problems. Several recent publications demonstrate the power of the CE method
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as simple and efficient approach for many applications such as telecommunication
systems, buffer allocation, vehicle routing, DNA sequence alignment, Machine Learn-
ing, etc. It has been proved that this method is particularly relevant for solving “hard”
combinatorial optimization problems. In fact, when deterministic methods failed to
find the optimal solution within a reasonable time, in most cases the CE method allows
to find a fairly good solution more quickly. This motivates us to investigate the CE
method for large scale UAV Task Assignment Problem. For measuring the efficiency
of the CE method and globally solving the considered problem, we develop a Brand
and Bound (B&B) algorithm and compare the two methods.

The rest of paper is organized as follows. In Sect. 2, we describe the problem and
give its mathematical formulation. Section 3 is dedicated to the description of CE
method and its application for solving the considered problem. The B&B is presented
in Sect. 4 while the numerical experiments are reported in Sect. 5. Finally we conclude
the paper by Sect. 6.

2 Problem statement

Let V and T be the sets of m UAVs and n targets, respectively. The scoring scheme
defining effectiveness is based on the definition of target score. Each target j has an
associated score based on the task success probability r j and a weight w j measuring
the importance of the target. The probability that the task will be successfully carried
out for that target depends on y j , the number of UAVs which have been assigned to
the target j , in the following way:

1− (1− r j )
y j .

A target score is computed as the product of the success probability and its weight:

g j (y j ) = w j (1− (1− r j )
y j ), (1)

and the UAVs group effectiveness is simply the sum of all individual target scores:∑
j∈T g j (y j ). Then the goal is to maximize the UAVs group effectiveness.
Let zi j , for i ∈ V = {1, . . . , m} and j ∈ T = {1, . . . , n}, be the decision variable

defined by: zi j is equal to 1 when the UAV i is assigned to the target j, and 0 otherwise.
An entry of m × n adjacency matrix A, ai j , indicates which target each UAV can be
assigned. So, the number y j can be computed as y j =∑i∈V ai j zi j , j ∈ T .

The mathematical model of this problem can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x,y

∑

j∈T
w j (1− (1− r j )

y j )

s.t. y j = ∑

i∈V
ai j zi j , j ∈ T,

∑

j∈T
zi j = 1, i ∈ V,

zi j ∈ {0, 1}, i ∈ V, j ∈ T .

(2)
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The second constraints ensure that each UAV i is used for only one task. This problem
is an integer nonlinear programming which is known to be very hard.

3 A Cross-Entropy algorithm for solving the UAV task assignment problem (2)

3.1 An introduction to Cross-Entropy method

The CE method is a relatively new method for solving both continuous multi-extremal
and combinatorial optimization problems. It was originally developed in the rare-event
estimation framework [22] as an adaptive importance sampling scheme for estimat-
ing rare event probabilities via simulation. This approach was afterward modified in
[23,24] for solving both continuous multi-extremal and combinatorial optimization
problems. The main idea of the CE method is the construction of a random sequence
of solutions which converges probabilistically to the optimal or near-optimal solution.
It involves the following two iterative phases:

1. Generation of a sample of random data (trajectories, vectors, etc.) according to a
specified random mechanism.

2. Updating the parameters of the random mechanism, typically parameters of pdfs
(probability density functions), on the basis of the data, to produce a “better”
sample in the next iteration.

Unlike most of the stochastic algorithms for optimization which are based on local
search, the CE method is a global random search procedure. The CE method was
successfully applied to various problems such as the traveling salesman problem [23],
the bipartition problem [23], the maximal cut problem [25], the image matching [10],
the image segmentation [11], etc.

For a comprehensive overview and history of the CE method, the reader is referred
to [26]. For the sake of completion we present below the generic CE scheme for
combinatorial optimization problems.

Consider the problem of minimizing the function S over a finite set X , say

γ ∗ = min
x∈X

S(x). (3)

The starting point in the methodology of the CE method applied to (3) is to associate
an estimation problem with the optimization problem (3). To this end one defines a col-
lection of indicator functions I{S(x)≤γ } on X for various thresholds or levels γ ∈ R.
Next, let { f (·; v), v ∈ V } be a family of (discrete) probability density functions (pdfs)
on X , parameterized by a real-valued (vector) v.

For some u ∈ V , we consider the Associated Stochastic Problem (ASP):

�(γ ) = Pu(S(x) ≤ γ ) =
∑

x∈X
I{S(x)≤γ } f (x; u) = Eu I{S(x)≤γ }, (4)

where Pu is the probability measure under which the random state X has the pdf
f (·; u), and Eu denotes the corresponding expectation operator. The idea of CE method
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is to construct simultaneously two sequences of levels γ̂1, γ̂2, . . . , γ̂T and parameters
(vectors) v̂1, v̂2, . . . , v̂T such that γ̂T is close to the optimal γ ∗, and v̂T is such that
the corresponding density assigns high probability mass to the collection of states that
give a low value. More specifically, one initializes by setting v0 = u and choosing a
not very small quantity θ , and then proceeds as follows:

1. Adaptive updating of γt . For a fixed vt , let γt be the θ -quantile of S(X) under
vt−1. That is, γt satisfies

Pvt−1(S(X) ≥ γt ) ≥ 1− θ, (5)

Pvt−1(S(X) ≤ γt ) ≥ θ, (6)

where X ∼ f (·; vt−1).

A simple estimator of γt , denotes γ̂t , can be obtained by drawing a random sample
X1, X2, . . . , X N from f (·; vt−1). Suppose that S(Xσ(1)) ≤ S(Xσ(2)) ≤ · · · ≤
S(Xσ(N )), where σ is a permutation of the set {1, . . . , N }. Estimate the θ -quantile
of S(X) as

γ̂t = S�θ N�. (7)

2. Adaptive updating of vt . For a fixed γt and vt−1, derive vt by minimizing the
Kullback-Leibler distance, or equivalent to solving the program

max
v

Evt−1 I{S(X)≤γt } ln f (X; v). (8)

The stochastic counterpart of (8) is as follows: for fixed γ̂t and v̂t−1 the estimate
of vt−1, derive v̂t from the solution of following program

max
v

D(v) := 1

N

N∑

i=1

I{S(Xi )≤γt } ln f (Xi ; v). (9)

In typical applications, the function D is concave and differentiable with respect
to v, and thus updating Eq. (9) is equivalent to solving the following system of
equations:

1

N

N∑

i=1

I{S(Xi )≤γt }∇ ln f (Xi ; v) = 0, (10)

where the gradient is with respect to v.

CE Algorithm for combinatorial optimization

1. Choose v̂0, and 0 < θ < 1. Set t = 1.

2. Generate N samples X1, X2, . . . , X N according to f (·; v̂t−1), and compute
θ -quantile γ̂t of S according to (7).
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3. Use the same samples X1, X2, . . . , X N to solve the stochastic programming prob-
lem (9). Denote the solution by v̂t .

4. If for some t ≥ d, say d = 5 such that

γ̂t = γ̂t−1 = · · · = γ̂t−d ,

then stop; otherwise set t = t + 1, reiterate from step 2.

For the convergence analysis of the CE method we refer to [5,8,26].

3.2 A Cross-Entropy method for solving problem (2)

We first rewrite the problem (2) in the form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x

f (z) := ∑

j∈T
w j
(
1− r j

)∑
i∈V ai j zi j

s.t.
∑

j∈T
zi j = 1, ∀i ∈ V,

zi j ∈ {0, 1}, ∀i ∈ V, j ∈ T .

(11)

Denote by Z the feasible set of (11), say

Z :=
⎧
⎨

⎩
z = (zi j ) ∈ {0, 1}mn :

∑

j∈T

zi j = 1, i ∈ V

⎫
⎬

⎭
.

It is clear that each variable z ∈ Z is identical to an assignment mapping mz :
{1, . . . , m} 
−→ {1, . . . , n}, i.e., mz(i) = j iff zi j = 1. Then, the set Z is identical
to the set:

X = {x = (x1, . . . , xm) : xi ∈ {1, . . . , n} is the target assigned to UAV i}. (12)

The CE algorithm draws particular assignment of UAVs to targets that will be eval-
uated and then selected, in order to obtain a drawing law which will converge toward
the optimal assignment. First, we must choose a family of pdf, f (·; v), describing a
probability choice of x .

A discrete probability law p( j |i) is associated to each UAV i . It represents the
probability to assign the UAV i to the target j . These probabilities are summarized by
the matrix M :

M =

⎛

⎜
⎜
⎝

p(1|1) p(2|1) · · · p(n|1)

p(1|2) p(2|2) · · · p(n|2)

· · ·
p(1|m) p(2|m) · · · p(n|m)

⎞

⎟
⎟
⎠.
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Note that, we must have

n∑

j=1

pM ( j |i) = 1.

Let X = (x1, x2, . . . , xm) be the random assignment vector of UAVs to targets, xi

is the target assigned to UAV i for the draw. The probability of drawing the vector
according to M is

p(X) =
m∏

i=1

p(xi |i),

where p(xi |i) is the coefficient in the column xi and the row i of matrix M .
In each iteration, suppose that Xk, Xk = (xk

1 , . . . , xk
i , . . . , xk

m), k = 1, 2, . . . , N
are the samples drawn. The H = �θ N� best samples, according to the objective func-
tion f , are selected to update M . Denoting {X1, X2, . . . , X H } as the H “best” vectors
among the draws {X1, X2, . . . , X N }. Minimizing the Kullback–Leibler distance leads
to the following optimization problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
p( j |i) K :=

H∑

h=1
ln

(
m∏

i=1
p(xh

i |i)
)

s.t.
n∑

j=1
p( j |i) = 1, i = 1, . . . , m,

p( j |i) ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

(13)

We first rewrite the objective function as follows

K =
H∑

h=1

ln

(
m∏

i=1

p
(

xh
i |i
)
)

=
m∑

i=1

H∑

h=1

ln
(

p
(

xh
i |i
))

=
m∑

i=1

n∑

j=1

card{h ∈ {1, . . . , H} : xh
i = j} ln(p( j |i))

Denoting

u ji = p( j |i), b ji = card{h ∈ {1, . . . , H} : xh
i = j}.

The program (13) is equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
u ji

(

−
m∑

i=1

n∑

j=1
b ji ln(u ji )

)

s.t.
n∑

j=1
u ji = 1, i = 1, . . . , m,

u ji ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

(14)
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Since it is a convex programming problem, we consider the Karusk–Kuhn-Tucker
(KKT) condition of the program (14):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− b ji
u ji
+ λi − μ j i = 0, i = 1, . . . , m, j = 1, . . . , n,

λi

(
n∑

j=1
u ji − 1

)

= 0, i = 1, . . . , m,

μ j i u ji = 0, i = 1, . . . , m, j = 1, . . . , n,

λi ≥ 0, i = 1, . . . , m,

μ j i ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

Then by solving the KKT condition, we get the updating formula of matrix M as
follows

p( j |i) := card{h ∈ {1, . . . , H} : xh
i = j}

H
·

The CE algorithm for solving the Problem (11):

Step 1. Initialize M = M0 = (p0( j |i))m×n a uniform distribution, i. e.,

p0( j |i) = 1

n
, i = 1, . . . , m, j = 1, . . . , n,

and choose θ ∈ (0, 1),
Step 2. Draw N samples X1, X2, . . . , X N according to M . Compute f (Xk),

k = 1, 2, . . . , N ,
Step 3. Sort the sequence { f (Xk)}Nk=1 in the increasing orders. Let f (Xσ(1)) ≤

f (Xσ(2)) ≤· · ·≤ f (Xσ(N )), where σ is a permutation of the set {1, 2, . . . , N }.
Set H = �θ N�, then choose H best draws Xσ(1), Xσ(2), . . . , Xσ(H),

Step 4. Update M by the formula

p( j |i) := card{h ∈ {1, 2, . . . , H} : xσ(h)
i = j}

H
,

Step 5. Iterate step 2, 3, 4 until convergence.
In practice, we should choose M0 in the Step 1 as follows:

p0( j |i) =
⎧
⎨

⎩

1
ni

if ai j = 1,

0 if ai j = 0,

where ni =∑n
j=1 ai j , i = 1, . . . , m.
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4 A Branch and Bound algorithm

For globally solving the considered problem, and for measuring the quality of our
CE algorithm, we develop a global approach based on classical Branch and Bound
(B&B) scheme. The lower bounds are computed by solving the relaxed problem:

min

⎧
⎨

⎩
f (z) =

n∑

j=1

w j (1− r j )

m∑

i=1
ai j zi j : z ∈ K

⎫
⎬

⎭
, (15)

where K is nonempty bounded polyhedral convex set in R
mn .

Since this problem is convex, it can be solved by standard solvers for convex pro-
gramming. Here, we use DCA [1–3] to solve it. DCA is an efficient approach for
DC (Difference of Convex functions) programming problems. It addresses a general
DC program of the form

α := inf
{

f (z) := g(z)− h(z) : z ∈ R
n} (Pdc)

where g and h are convex, lower semicontinuous proper functions. DC programs with
closed convex set constraints C can be cast into (Pdc) by adding χC , the indicator
function on C , with g. (χC (z) = 0 if z ∈ C,+∞ otherwise).

The DC (Difference of Convex functions) programming and DCA (DC Algorithms)
constitute the backbone of Nonconvex Programming and Global Optimization. They
were introduced by Tao in 1985 and extensively developed by An and Tao since 1994
to become now classic and increasingly popular. It is clear that convex programs are
false DC programs for which DCA can be used. On the other hand, with suitable
DC decompositions, DCA applied to convex programs permits to find again standard
optimization methods for convex programming.

The idea of DCA is quite simple: each iteration k one linearizes the concave part
−h and then solve the resulting convex program. More precisely, DCA consists of
computing at each iteration k

yk ∈ ∂h(zk), zk+1 ∈ arg min
z∈Rn

{
g(z)− h(zk)− 〈z − zk, yk〉

}
(Pk).

For solving (15) we use the following DC decomposition:

f (z) =
n∑

j=1

w j (1− r j )

m∑

i=1
ai j zi j = g(z)− h(z), (16)

where

g(z) := λ

2
‖z‖2; h(z) := λ

2
‖z‖2 −

n∑

j=1

w j (1− r j )

m∑

i=1
ai j zi j

. (17)
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Here, λ takes the associated value such that h is convex.
Description of the DCA for problem (15)

Step 1. Initialization: Choose z0 ∈ K , ε1 > 0, and ε2 > 0. Set k = 0.

Step 2. Compute yk = ∇h(zk), with

yk
i j = λzk

i j − w j log(1− r j )ai j (1− r j )

m∑

i=1
ai j zk

i j

for i = 1, . . . , m, j = 1, . . . , n.
Step 3. Compute zk+1 by solving the convex quadratic problem

{
min

z

(
g(x)− 〈z, yk〉)

s.t. z ∈ K .

Step 4. Iterate Step 2 and 3 until

∣
∣
∣ f
(

zk+1
)
− f (zk)

∣
∣
∣ ≤ ε1

(
1+

∣
∣
∣ f
(

zk+1
)∣
∣
∣
)

or
∥
∥
∥zk+1 − zk

∥
∥
∥ ≤ ε2

(
1+

∥
∥
∥zk+1

∥
∥
∥
)
.

Let � be the set defined by

� :=
⎧
⎨

⎩
z = (zi j ) ∈ [0, 1]mn :

∑

j∈T

zi j = 1, i ∈ V

⎫
⎬

⎭
.

B&B Algorithm
Let R0 := [0, 1]m.n and ε be a sufficiently small positive number. Set restart := true;
Solve the convex problem (15) with K ← K R0 = � ∩ R0 to obtain a solution zR0

and the first lower bound β0 := β(R0);
If zR0 is feasible to (11) then

set γ0 := f (zR0), z0 := zR0 , restart := false else γ0 := +∞;
Endif
If (γ0 − β0) ≤ ε|γ0|) then STOP, z0 is an ε-optimal solution of (11) else set � ←
{R0}, k ← 0;
Endif
While (STOP= false) do

Select a rectangle Rk such that βk = β(Rk) = min{β(R) : R ∈ �}.
Let j∗ ∈ {1, . . . , m.n} be the index such that zRk

j∗ /∈ {0, 1}. Divide Rk into two
sub-rectangles Rk0 and Rk1 via the index j∗:

Rki = {z ∈ Rk : z j∗ = i; i = 0, 1}. (18)
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Solve the subproblems (Pki ) to obtain β(Rki ) and (zRki ):

(Pki ) β(Rki ) = min{ f (z) : z ∈ �, z ∈ Rki }. (19)

For i = 0, 1
If zRki is feasible to (11) then

update γk and the best feasible solution zk ;
Endif

Endfor
Set � ← �∪ {Rki : β(Rki ) < γk − ε, i = 0, 1} \ Rk .
If � = ∅ then STOP, zk is an ε-optimal solution else set k ← k + 1.

Endwhile

5 Numerical results

The algorithms are written in language C on Microsoft Visual C++ 2008. The imple-
mentation takes place on a notebook with chipset Intel(R) Core(TM) Duo CPU 2.0
GHz, RAM 3GB. The commercial software CPLEX 11.2 is used as a convex quadratic
programming solver.

The following notations are used in these tables:

– Pb: Problem,
– Bin: number of the binary variables,
– Ctrs: number of the constraints,
– Obj : value of the objective function obtained by each algorithm,
– T ime: CPU time in seconds of each algorithm,
– Gap% = Obj−Lastlowerbound

Obj ,

– GapCE% = Obj−Firstlowerbound
Obj .

In Table 1, we give a comparison between CE and B&B. The results have dem-
onstrated that with small dimension, CE gives good solutions as the same as B&B
does, but CPU time in our approach is very better. The ratio of time consumed varies
from 114 to 10,218. Especially, for Problem 4, B&B runs for more than one hour and
does not produce a solution, whereas CE gives a good solution. In this problem, we
compute GapCE by using the first lower bound. Figures 1 and 2 show the result for
nine out of ten problems. In Table 2, we continue to compare in larger dimension, with
m = 20, n = 10. We can see that CE still works very well while B&B runs for more
than one hour and does not produce a solution, for all problems. In these experiments
CE was run with number of samples, N = 50, and θ = 0.4. The number of iterations
is limited to 20.

Table 3 gives the the results with 10 instances with large dimensions having
50 × 30 = 1,500 binary variables. The weights {w j } are random integers chosen
uniformly from 1 to 10, and the task success probabilities {r j } are random numbers
chosen uniformly in interval [0, 1]. The parameters are chosen as follows: number of
samples is N = 100, θ = 0.4. Table 4 presents the results for very large dimensions.
In this case we take θ = 0.04. The maximum of number of iterations is 50.
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Table 1 CE compares with B&B, m = 10, n = 10

Data CE method B&B

Pb Bin Ctrs Obj Time(s) Gap Obj Time(s) Gap

1 100 10 29.425828 0.078 0.1999 29.425858 170.890 0.2

2 100 10 40.899408 1.156 0.5556 40.790448 1919.812 0.29

3 100 10 30.256247 0.078 1.2553 29.927309 776.766 0.17

4 100 10 26.001069 1.140 2.85 NA >1 h NA

5 100 10 34.964398 0.078 0.06 34.964398 8.937 0.06

6 100 10 28.286803 2.890 1.03 28.286803 2887.265 1.03

7 100 10 35.185966 0.078 0.3965 35.454166 47.859 1.15

8 100 10 29.528116 0.078 0.33 29.528116 23.110 0.33

9 100 10 19.188199 0.078 0.46 19.188199 38.578 0.46

10 100 10 15.761578 0.078 2.08 15.761578 797.063 2.08
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Fig. 1 Objective function, m = 10, n = 10
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Fig. 2 CPU time, m = 10, n = 10
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Table 2 CE compares with
B&B, m = 20, n = 10

Data CE method B&B

Pb Bin Ctrs Obj Time(s) GapCE Obj Time (h)

1 200 20 23.765072 0.203 0.2 NA >1

2 200 20 21.351345 0.218 0.56 NA >1

3 200 20 22.799311 0.187 1.26 NA >1

4 200 20 23.388861 0.203 2.85 NA >1

5 200 20 18.416153 0.187 0.06 NA >1

6 200 20 25.096867 0.203 1.03 NA >1

7 200 20 22.698760 0.187 0.4 NA >1

8 200 20 19.459113 0.218 0.33 NA >1

9 200 20 13.077463 0.187 0.46 NA >1

10 200 20 23.539310 0.203 2.08 NA >1

Table 3 Results with large
dimensions: m = 50, n = 30

Instance Bin Ctrs Time(s) GapCE

1 1,500 50 4.766 2.562583

2 1,500 50 4.750 3.315747

3 1,500 50 4.797 2.816054

4 1,500 50 4.797 1.868424

5 1,500 50 5.047 3.784732

6 1,500 50 4.875 2.093580

7 1,500 50 4.968 3.010455

8 1,500 50 4.797 1.401817

9 1,500 50 4.937 3.711038

10 1,500 50 4.860 2.658826

Table 4 Results with very large
dimensions

Instance m n Bin Ctrs Time (s) GapCE Samples

1 300 100 30,000 300 141.078 1.270807 1,000

2 500 100 50,000 500 229.593 1.829299 1,000

3 500 300 150,000 500 1190.437 3.139713 2,000

4 700 500 350,000 700 2306.141 4.031592 2,000

5 1,000 500 500,000 1,000 3649.781 5.114315 2,000

6 Conclusion

In this work, we have firstly proposed an approach based on the CE method for solving
UAV Task Assignment problem, and then presented a global approach based on B&B
algorithm for measuring the quality of our CE algorithm. The results have shown the
efficiency of this approach not only with small dimensions but also with very large
dimensions. This approach can overcome very well the barrier of binary variables, that
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the standard methods are usually very difficult for treating. Other non-linear models
of task assignment problem will be studied in our future work.
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