
Optim Lett (2010) 4:619–633
DOI 10.1007/s11590-010-0226-6

ORIGINAL PAPER

A biased random-key genetic algorithm for road
congestion minimization

Luciana S. Buriol · Michael J. Hirsch · Panos M. Pardalos ·
Tania Querido · Mauricio G. C. Resende · Marcus Ritt

Received: 11 July 2010 / Accepted: 27 July 2010 / Published online: 10 August 2010
© Springer-Verlag 2010

Abstract One of the main goals in transportation planning is to achieve solutions
for two classical problems, the traffic assignment and toll pricing problems. The traffic
assignment problem aims to minimize total travel delay among all travelers. Based
on data derived from the first problem, the toll pricing problem determines the set of
tolls and corresponding tariffs that would collectively benefit all travelers and would
lead to a user equilibrium solution. Obtaining high-quality solutions for this frame-
work is a challenge for large networks. In this paper, we propose an approach to solve

L. S. Buriol · M. Ritt
Instituto de Informática, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves,
Porto Alegre 9500, Brazil
e-mail: buriol@inf.ufrgs.br

M. Ritt
e-mail: marcus.ritt@inf.ufrgs.br

M. J. Hirsch
Raytheon Company, 300 Sentinel Drive, Annapolis Junction, MD 20701, USA
e-mail: mjh8787@ufl.edu

P. M. Pardalos
Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall,
Gainesville, FL 32611, USA
e-mail: pardalos@ufl.edu

T. Querido
Linear Options Consulting, 7450 SW 86th Way, Gainesville, FL 32608, USA
e-mail: tania@linearoptions.com

M. G. C. Resende (B)
Algorithms and Optimization Research Department, AT&T Labs Research, 180 Park Avenue,
Room C241, Florham Park, NJ 07932, USA
e-mail: mgcr@research.att.com

123

620 L. S. Buriol et al.

the two problems jointly, making use of a biased random-key genetic algorithm for
the optimization of transportation network performance by strategically allocating
tolls on some of the links of the road network. Since a transportation network may
have thousands of intersections and hundreds of road segments, our algorithm takes
advantage of mechanisms for speeding up shortest-path algorithms.

Keywords Transportation networks · System optimal · User equilibrium · Genetic
algorithms · Dynamic shortest paths

1 Introduction

Stable transportation systems are one of the main factors contributing to a high quality
of life. Moreover, as reported by Arnott and Small [2], millions of dollars are spent
every day on traffic issues. Thus, traffic planning is a crucial component of any plan-
ning process for investment and operating policies. Traffic assignment models have
been used to provide the necessary description of real-world traffic flows with accu-
racy. These problems are mathematically modeled on a graph, with nodes representing
locations of interest and arcs representing valid roads on which traffic can flow. Some
pairs of nodes define commodities, or origination–destination (OD) pairs, represent-
ing traffic flow start and end points. In most instances, each arc of the network has an
associated capacity and cost of use, as a function of the amount of traffic using the
arc. In addition, some arcs might have tolls levied on them, adding to the arc cost. The
main goal in the traffic planning model is to levy tolls on some arcs of the network
such that the overall cost of the network (the sum of the cost of each arc) is minimized.

As an example, one can look at New York City. Each day, many people living
in New Jersey commute into New York City to work. Suppose we label the city of
Newark (in New Jersey) as one origination node of our traffic network, and the borough
of Queens (in NYC) as a destination node. It is easy to see that there are many possible
traffic paths to go from the origination node to the destination node. Some of the arcs
in these paths have tolls levied on them (Holland and Lincoln tunnels, for example),
while others do not. In addition, each arc has an associated cost as a function of the
number of commuters using that arc. Each commuter ideally would want to minimize
the cost of their trip, i.e. of getting from their starting point to their destination.

Optimizing transportation network performance has been widely discussed in the
literature [3,4,12,13,15,20] and two fundamental traffic assignment models have been
developed: User Equilibrium (UE) and System Optimal (SO) models. UE is used to
describe the behavior of users on a given traffic network. In a UE solution, each
driver will follow their shortest path (least cost path) in traveling from their orig-
ination to their destination. In contrast, SO describes a traffic network at its best
operation. This means that a SO solution seeks to spread the traffic flow over all
the arcs of the network so that the overall network cost is minimized. Hence, a UE
solution attempts to do what is best for each individual driver, without consider-
ation of other users on the network, while a SO solution considers the overall per-
formance of the network, without consideration of any individual user. These two
concepts seem contradictory, and in a way they are. The overall traffic assignment

123

A biased random-key genetic algorithm 621

problem can therefore be viewed as simultaneously solving the UE and SO problems,
i.e. to find a traffic flow that is both UE and SO. In most instances, tolls are intro-
duced on some of the arcs in the network so that the resulting SO and UE solutions
coincide.

It is important to note that while the transportation problem can be stated in terms
of both system optimality and user equilibrium, to the best of our knowledge, there has
been no effort to solve these problems jointly. In effect, the problem has always been
split into two subproblems. In the literature, the SO problem is first considered (see,
for instance [18]). Convex functions are used to represent the cost of traveling along
each arc, as a function of the flow on the arc. This problem is solved to optimality, and
the SO solution is then used as input into the UE problem. In order to induce users to
choose the SO path solution, tolls are levied on certain arcs within the traffic network.
A genetic algorithm which solves the toll location and level problem separately has
been proposed by Shepherd and Sumalee [23].

The minimum toll booth problem (MINTB) was introduced in [4] as an approach
to minimize the number of toll locations for which a UE solution is achieved, main-
taining the SO solution. MINTB was formulated as a mixed-integer program [4], and
is NP-hard [3]. Various heuristics have been designed in an effort to solve the MINTB.
The reader is referred to [3] for a survey of traffic assignment problems as well as
solution techniques.

One problem with the above two-phase approach is that the SO solution may result
in an infeasible UE solution. Hearn and Ramana [17] report infeasibility with a toll
pricing problem for a network with 416 links, 962 nodes, and 1,623 OD pairs, when an
approximate solution to the SO program, with a relative optimality gap of 10−3, is used
to construct the constraints defining the MINTB program. To overcome infeasibility,
methods based on penalty terms [18] and relaxation of constraints [19] are employed.
However, obtaining high quality solutions for this framework remains a challenge for
large networks. Another issue, related to the heuristics defined for the MINTB prob-
lem, is to select an appropriate neighborhood structure, that is a set of solutions near a
given solution. In [3,19] a binary vector {ya} is used to indicate whether arc a has a toll
levied on it and the neighborhood is limited to adjacent vertices in the unit hyper-cube
(N.B.: each binary vector {ya} can be seen as one vertex of the unit hyper-cube). Due
to this neighborhood, even for small problem instances, the computation time reported
was large, and the quality of the solution was poor. For a complete review of the design
and evaluation of road network pricing schemes we refer the reader to the survey by
Tsekeris and Voß [25].

In this paper we propose a biased random-key genetic algorithm (BRKGA), similar
to the one presented in [14] for the optimization of Internet traffic flow, that seeks a
system efficient pattern and user optimal solution for a fixed number of toll booths.
The results presented here improve upon the ones in [9].

This paper is organized as follows. In Sect. 2 we present the mathematical frame-
work for the traffic assignment problem. In Sect. 3 we review the basic concepts
of BRKGA. Section 4 describes the BRKGA used to determine the optimal or near-
optimal traffic pattern and tolling scheme. Computational results are reported in Sect. 5.
Finally, conclusions are presented in Sect. 6.

123

622 L. S. Buriol et al.

2 Problem formulation

Given a network topology and certain traffic flow demands, we levy tolls on arcs,
seeking an efficient system such that the resulting multi-commodity least-cost (UE)
solution is optimal for the overall system. In a mathematical framework, consider a
directed graph G = (N , A), with N representing the set of nodes and A the set of
arcs. Each arc a ∈ A has an associated capacity ca and cost Φa , which is a function
of the load �a (or flow) on the arc, the time ta to transverse the unloaded arc, a power
parameter pa , and a cost Ba . In real-world traffic networks, arc (road) delays are
generally described by nonlinear functions associated with these network congestion
parameters. We assume that Φa is a strictly increasing, convex function. In addition,
define K ⊆ N × N to be the set of commodities, or OD pairs, having o(k) and d(k)

as origination and destination nodes, respectively, ∀ k ∈ K̂ = {1, . . . , |K |}. Each
commodity k ∈ K̂ has an associated demand of traffic flow dk defined, i.e. for each
OD pair {o(k), d(k)}, there is an associated amount of flow dk that emanates from
node o(k) and terminates at node d(k). Furthermore, define xk

a to be the contribution
of commodity k to the flow on arc a. We can write the traffic optimization problem as

minimize Φ =
∑

a∈A

�ata
[
1 + Ba(�a/ca)pa

]
/

∑

k∈K̂

dk (1)

subject to

�a =
∑

k∈K̂

xk
a , ∀ a ∈ A (2)

∑

i :(j,i)∈A

xk
(j,i) −

∑

i :(i, j)∈A

xk
(i, j) =

⎧
⎨

⎩

−dk if j = d(k)

dk if j = o(k) ∀ j ∈ N , k ∈ K̂
0 otherwise

(3)

xk
a ≥ 0, ∀ a ∈ A, ∀ k ∈ K̂ . (4)

Objective function (1) represents the average trip duration for the system, based
on the travel cost function of the Bureau of Public Roads (BPR) [7]. This function
may vary according to a specific network. Φ uses the volume delay (time) on arc a
as a function of total flow. Our goal is to allocate a fixed number K of tolls on arcs
such that the delay value Φ is minimized, thus corresponding to a system efficient
solution. In this function, �a/ca is the utilization of arc a. In Sect. 5 we describe in
more detail the delay function for some real-world problems. Constraint (2) defines
the load on each arc a as the sum of flow on arc a arising from each commod-
ity. Constraint (3) defines flow conservation on the network, which is equivalent
to the system of equations Mxk = dk, ∀ k ∈ K̂ , where M is the arc-node inci-
dence matrix for the network and xk = {xk

a }a∈A is the flow vector corresponding to
commodity k ∈ K̂ . Constraint (4) specifies that the flow on each arc must be non-
negative.

Our approach to solving (1–4) is indirect. We seek to levy tolls on K arcs of
the transportation network such that if traffic is routed on least cost paths, then the

123

A biased random-key genetic algorithm 623

objective function Φ = ∑
a∈A �ata[1 + Ba(�a/ca)pa]/∑

k∈K̂ dk is minimized. We
call this problem the toll booth problem. We accomplish this minimization with a
BRKGA.

3 Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean [6] for solving combinatorial optimization problems
involving sequencing. In a RKGA, chromosomes are represented as vectors of ran-
domly generated real numbers in the interval [0, 1]. A deterministic algorithm, called
a decoder, takes as input a solution vector and associates with it a solution of the
combinatorial optimization problem for which an objective value or fitness can be
computed.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of n random-keys.
Each component of the solution vector is generated independently at random in the
real interval [0, 1]. After the fitness of each individual is computed by the decoder
in generation k, the population is partitioned into two groups of individuals: a small
group of pe elite individuals, i.e. those with the best fitness values, and the remain-
ing set of p − pe non-elite individuals. In the experiments described in Sect. 5, we
set pe = 0.25p. To evolve the population, a new generation of individuals must be
produced. All elite individual of the population of generation k are copied without
modification to the population of generation k + 1. RKGAs implement mutation by
introducing mutants into the population. A mutant is simply a vector of random keys
generated in the same way that an element of the initial population is generated. At
each generation, a small number pm of mutants is introduced into the population. In
the experiments described in Sect. 5, we set pm = 0.05p. With the pe elite individ-
uals and the pm mutants accounted for in population k + 1, p − pe − pm additional
individuals need to be produced to complete the p individuals that make up the new
population. This is done by producing p − pe − pm offspring through the process of
mating or crossover.

Bean [6] selects two parents at random from the entire population to implement
mating in a RKGA. A biased random-key genetic algorithm, or BRKGA [16], differs
from a RKGA in the way parents are selected for mating. In a BRKGA, each element
is generated combining one element selected at random from the elite partition in the
current population and one from the non-elite partition. Repetition in the selection of a
mate is allowed and therefore an individual can produce more than one offspring in the
same generation. Parameterized uniform crossover [24] is used to implement mating
in BRKGAs. Let ρe be the probability that an offspring inherits the vector component
of its elite parent. Let n denote the number of components in the solution vector of an
individual. For i = 1, . . . , n, the i th component c(i) of the offspring vector c takes
on the value of the i th component e(i) of the elite parent e with probability ρe and the
value of the i th component ē(i) of the non-elite parent ē with probability 1 − ρe. In
the experiments described in Sect. 5, we set ρe = 0.7.

123

624 L. S. Buriol et al.

When the next population is complete, i.e. when it has p individuals, fitness values
are computed for all of the newly created random-key vectors and the population is
partitioned into elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous n-dimensional hypercube, using the decoder to
map solutions in the hypercube to solutions in the solution space of the combinatorial
optimization problem where the fitness is evaluated.

To specify a BRKGA, we simply need to specify how solutions are encoded and
decoded. We specify our algorithm next.

4 A BRKGA for the toll booth problem

In this section we describe a BRKGA for the toll booth problem by first showing how
solutions are encoded and then how they are decoded.

A BRKGA was applied to open shortest path first (OSPF) [10,14] and distributed
exponentially weighted flow splitting (DEFT) [22] intra-domain Internet routing prob-
lems. In this paper, we take advantage of some similarities between the OSPF routing
problem and the traffic assignment problem, and apply a BRKGA, similar to the one
proposed in [10], to optimize traffic networks.

4.1 Solution encoding

Solutions in the toll booth problem are specified by the location of the toll booths and
the corresponding toll tariff for each booth. Solutions are encoded with the 2m-dimen-
sional array X , where m = |A|. Components Xm+1, . . . ,X2m determine the location
of the toll booths and together with components X1, . . . ,Xm , they determine the toll
tariffs. Tariffs are integer-valued in the interval [1, wmax].

4.2 Solution decoding

The decoder takes as input the encoded solution vector (X1, . . . ,Xm,Xm+1, . . . ,X2m),
and outputs a solution of the toll booth problem, i.e. the location and tariff of each of
the K toll booths as well as the average trip duration Φ (which is the objective function
we seek to minimize). The random keys Xm+1, . . . ,X2m are used to determine the
location of the K toll booths. The keys are sorted (ties are broken by key index) and
the indices of K largest keys correspond to the locations where tolls are to be levied,
i.e. if key Xm+a is one of the K largest among keys Xm+1, . . . ,X2m , then a toll booth
is placed on arc a. For all a ∈ A, let the zero-one variable ba = 1 if and only if a toll
booth is placed on arc a. Then arc a ∈ A has toll tariff

wa = �Xa · wmax� · ba, (5)

i.e. if arc a has a toll booth, the value of its toll tariff is determined by the random
key Xa .

123

A biased random-key genetic algorithm 625

Fig. 1 Pseudo-code for the
solution evaluation procedure

Once toll booth locations with their corresponding tariffs are determined, the
decoder needs to determine the cost of the solution w. To do this, the total flow
�a is computed for all edges a ∈ A by routing the traffic on least cost routes. This is
accomplished by routing forward each demand from its starting node to its destination.
Traffic at intermediate nodes is split equally among all outgoing links on least cost
paths to the destination. The corresponding cost (mean delay time) is computed as

Φ =
∑

a∈A

�ata[1 + Ba(�a/ca)pa]/
∑

k∈K̂

dk . (6)

A fast local search attempts to modify the tariffs to further reduce the mean delay.
In OSPF routing, there is no link weight equal to zero, so the least weight path

is the one with the shortest distance. For the toll booth problem, untolled links are
considered to have zero weight (no tariff). The least cost paths are calculated based
on the tariffs of the tolled arcs. Depending on the number of tolls, there can be several
paths with cost zero. Thus, we consider a slightly different notion of least cost path.
Two paths are considered of equal cost if they have the same total cost and the same
number of hops. In case they have the same total cost, but different hop counts, the
least cost path is considered to be the one with the fewest hops.

In the remainder of this section, we show how the total flow on each edge is com-
puted and how local search is carried out.

4.3 Solution evaluation

The main computational bottleneck of this BRKGA is in the solution evaluation. In
this section, we describe the procedure used for evaluating a solution (see pseudo-code
in Fig. 1).

Let T be the set of destination nodes. We compute |T | single-destination shortest
path graphs gt . Each graph gt , with destination t ∈ T , has an |A|-vector, Lt , associated
with its arcs, that stores the partial loads flowing to t that traverse each arc a ∈ A.
The total load on each arc is stored in the |A|-vector l. For each destination t , the
|N |-vectors π t and δt are associated with the nodes. The least cost from each node
to t is stored in π t , while δt keeps the number of least-cost links outgoing from each
node in gt .

123

626 L. S. Buriol et al.

In order to update the new arc loads, we compute the shortest paths to all desti-
nation nodes t ∈ T and arrive at a graph gt = (N , At), ∀ t ∈ T . This is achieved
using Dijkstra’s well-known shortest path algorithm [1] with a simple change. Two
paths are considered of equal cost if they have the same total distance and the same
hop counts. Since we compute shortest paths to all destination nodes, we reverse
the direction of all arcs in G and compute the distances π t

u, ∀ u ∈ N , to desti-
nation in T , similar to what is done in [10]. Given the shortest paths to each des-
tination, we can calculate the flows Lt for all OD demand pairs with destination
t and finally the total flows l. The cost of a solution is computed according to
function (6).

4.4 Local improvement procedure

We next describe an adaptation for the toll booth problem of the local improvement
procedure proposed in [10]. Starting from a given solution w produced by the decoder,
the local improvement procedure analyzes solutions in the neighborhood of a current
solution w searching for a solution having a smaller cost. If such a solution exists,
then it replaces the current solution. Otherwise, the current solution is returned as the
decoded solution.

Besides being computationally demanding, the use of large local search neighbor-
hoods in a BRKGA decoder can lead to loss of population diversity, and consequently
premature convergence to low-quality local minima. Below, we describe the local
improvement procedure using a small neighborhood.

As before, let la denote the total load on arc a ∈ A in the solution defined by the
current weight settings w. We recall that Φa(la) denotes the routing cost on this arc.
The local improvement procedure examines the effect of increasing the weights of
a small subset of the arcs. These candidate arcs are selected among those with the
highest routing costs and whose tariff is less than wmax. To reduce the routing cost of a
candidate arc, the procedure attempts to increase its tariff, in case there is a toll installed
on the arc, in order to induce a reduction of its load with the objective of reducing not
only Φa but also the total cost Φ. If the selected arc has no toll booth present, a toll
booth is created on it with tariff of value one. After the procedure attempts to increase
its tariff, a toll booth is removed from some other link to maintain the constant number
of toll booths.

To select the link to have its toll removed, a subset of r arcs of R, the set of tolled
arcs, are tested in circular order to avoid testing an arc twice without having tested all
tolled arcs. In case the solution does not improve, the search returns to the previous
state. If this leads to a reduction in the overall routing cost, the change is accepted and
the procedure is restarted. The procedure stops at a local minimum when no change
in the toll tariffs can improve the total routing cost Φ. The pseudo-code in Fig. 2
describes the local improvement procedure in detail.

The procedure LocalImprovement takes as input parameters the current solu-
tion defined by the weights w, the vector b that indicates which are the tolled arcs, and
a parameter q which specifies the maximum number of candidate arcs to be examined
in each local improvement iteration. In the experiments described in Sect. 5, we set

123

A biased random-key genetic algorithm 627

Fig. 2 Pseudo-code of procedure LocalImprovement

q = 5. In the pseudo-code, solution values for the solution represented by vector pairs
{w, b} are denoted by Φw,b.

The loop in lines 2–27 analyzes at most q selected candidate arcs for weight increase
in the current solution. The arc indexes are renumbered in line 1 such that the arcs are
considered in non-increasing order of routing cost. The current solution {w, b} and its
cost Φw,b is saved in line 3. Arc a′ is selected in line 4. If arc a′ has no toll booth, we
install a toll of tariff one (line 6), and set a flag in line 7 to indicate that this operation
was performed. The loop in lines 9–15 examines all possible weight changes for arc
a′ in the range [wa′ +1, wa′ +�(wmax −wa′)/4�]. A neighbor solution w′, keeping all
arc weights unchanged except for arc a′, is built in lines 10 and 11. If the new solution
w′ has a smaller routing cost than the current solution (test in line 12), then the current
solution is updated in line 13. The loop in lines 16–21 is executed only if the current
arc being analyzed was previously not tolled. In line 17, r arcs belonging to the set
R of tolled arcs, are tested one at a time, always considering arcs with smallest costs
first. In our experiments, we set r = 10. Initially, tolled arcs are tested in order of
increasing routing cost, but once a change is performed, the new tolled arc is placed
in the position occupied by the previous tolled arc, and the order may be not respected
anymore, since the vector is not resorted. We observed that resorting the vector did not
show improvement in the final results. In line 19 we test if the solution is better than
the current solution in the beginning of the loop in line 2. In case the new solution is
better, it is taken as the current solution in line 23, and the for loop stops. If there is

123

628 L. S. Buriol et al.

no better solution, then the current solution is reset to the solution at the start of the
current iteration in line 25.

The routing cost Φ(w′) associated with the neighbor solution w′ must be evaluated
in lines 12 and 19. Instead of computing it from scratch, we use fast update procedures
for recomputing the shortest path graphs as well as the arc loads. When a toll booth is
installed in an arc, or a toll booth is removed from an arc, or the weight of a tolled arc
changes, we used the dynamic shortest paths described in [8] to update the shortest
path graph, instead of recomputing it from scratch. Once the new arc loads are known,
the total routing cost is computed as the sum of the individual arc routing costs. In
[10] the use of shortest paths reduced the total runtime of the algorithm by a factor of
approximately 15. We observe similar speedups here.

5 Computational results

We performed a set of experiments with the aim of exploring the quality of the solutions
found by our heuristic methods. We compare two variants of the BRKGA: one with
the fast local search in the decoder and another without. We refer to these heuristics as
BRKGA-LS and BRKGA, respectively. For the experiments, we used a computer with
an Intel Pentium Core 2 Duo processor, running at 3 GHz, with 2 Gb of main memory.
The algorithms were coded in C and compiled with the gcc compiler, version 4.2.4
with optimization flag -03.

Both variants of the genetic algorithm were run with identical parameters. The size
of the population was set at 50, the elite set had 13 solutions, while the mutant set had
three. In the crossover, the probability of the offspring inheriting the random key of
the elite parent was set at 70%.

5.1 The nine-node example

To provide an example of how our heuristics work in comparison with the MINTB
approach, we consider the nine-node problem proposed in [17]. The objective function
used for this problem is based on BPR data and is identical to the one used to describe
cost delay for larger instances. The nine-node network has 18 links, and four OD
pairs. Figure 3 displays the optimality gap obtained for this example when running
BRKGA-LS for different numbers of tolls.

The objective function value of the optimal solution of model (1–4) for this instance
is 22.59314 [17]. It is important to note that BRKGA-LS does not produce the optimal
configuration for this instance. The solution found by BRKGA-LS was about the same
as the one found by BRKGA. This is due to the fact that, in small networks, a sys-
tem optimal solution can deviate significantly from an equal-cost multi-path routing
solution.

For this instance, MINTB generated a solution with zero-cost paths for all com-
modities, while our approach allows non-zero flows on all links. The fact that we split
flows evenly on all outgoing arcs while minimizing the cost of the user’s paths allows
for us to find solutions displaying system efficiency and user equilibrium.

123

A biased random-key genetic algorithm 629

 0

 10

 20

 30

 40

 50

 60

 70

0 2 4 6 8 10 12 14 16 18

op
tim

al
ity

 g
ap

 (
%

)

number of tolls

Fig. 3 Number of tolls installed versus optimality gap for the nine-node example

Table 1 Attributes of
real-world problem instances

Instance Vertices Arcs OD pairs Destinations

Sioux Falls 24 76 528 24

Stockholm 416 962 1,623 45

Barcelona 1,020 2,522 7,922 108

Winnipeg 1,052 2,836 4,345 138

5.2 Real-world problems

Some real-world problems with known attributes from the transportation science lit-
erature have a particular objective function. We consider for example, the Sioux
Falls, North Dakota instance [21]. In this instance, the delay function on each arc
is Φa = �ata[1 + βa(�a/ca)4]. Other instances, such as Stockholm, Winnipeg,
and Barcelona are also studied in this paper, and have the same delay function.
Their attributes (number of nodes, number of links, number of OD pairs, and number
of destinations) are displayed in Table 1. These instances are available online [5].

5.3 Optimal solutions

The traffic optimization problem (1–4) has a convex objective function and linear
constraints. Therefore it can, in principle, be solved by standard methods of convex
optimization. We implemented a solver for the traffic optimization problem based on
cvxopt [11], a freely available solver for convex programs.

Our implementation uses a more compact, but equivalent, formulation of (1–4),
which represents the flows of all OD pairs with the same destination as a single com-
modity. This reduces the number of variables from |A| |K | to |A| D, where D = |{d |
(o, d) ∈ K }| is the number of different destinations. Table 1 shows that this number
is a factor between 22 and 73 smaller than the number of OD pairs.

123

630 L. S. Buriol et al.

Table 2 Optimal solutions
Instance Optimal value Solution time (s)

Nine-node 22.539181 <1

Sioux Falls 19.950794 22

Stockholm Did not finish >259,200

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50 60 70

op
tim

al
ity

 g
ap

 (
%

)

number of tolls

BRKGA
BRKGA-LS

Fig. 4 Number of tolls installed versus optimality gap of results of the both variants of BRKGA (with and
without local search) for the Sioux Falls instance. We tested installing 10, 20, 30, 40, 50, 60, and 70
tolls

The cvxopt solver was able to produce optimal values for only the two smallest
instances shown in Table 2. On Stockholm, an instance with 416 nodes and 962
arcs, the solver did not terminate within three days of CPU time. Therefore, we did
not attempt to optimally solve the two other larger instances with cvxopt.

5.4 Quality of the BRKGA solutions

We compare the best solution values and the optimality gap (when possible) obtained
by two variants of our heuristic, BRKGA and BRKGA-LS. For each instance, we used
different numbers of tolled arcs, varying from a few and up to a toll booth on every arc.
For each number of tolled arcs, we ran both variants of the heuristic three times with
different random seeds for 5,000 generations, but at most up to a time limit of one hour.
The results represent the average of these runs. Each run of instance Sioux Falls
took on average about 2 min of CPU time, while the runs on instance Stockholm
took about 18 min. Runs for instances Winnipeg and Barcelona always termi-
nated with the 60-min time limit. The number of generations for instance Winnipeg
varied from 169 to 912, while for instance Barcelona this number varied from 240
to 1296. The BRKGA-LS variant spent between 50 and 70% of its time in the local
search.

Figures 3 and 4 show computational results for instances nine-node and Sioux
Falls, respectively. Since it was possible to optimally solve these instances, the plots

123

A biased random-key genetic algorithm 631

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900

av
er

ag
e

tri
p

du
ra

tio
n

number of tolls

Stockholm

BRKGA
BRKGA-LS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000

av
er

ag
e

tri
p

du
ra

tio
n

number of tolls

Winnipeg

BRKGA
BRKGA-LS

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500

av
er

ag
e

tri
p

du
ra

tio
n

number of tolls

Barcelona

BRKGA
BRKGA-LS

Fig. 5 Number of tolls installed versus quality of results of BRKGA and BRKGA-LS on instances
Stockholm (top), Winnipeg (middle), and Barcelona (bottom)

123

632 L. S. Buriol et al.

show the optimality gap (in percent above the optimal solution), while the results for
the remaining instances are absolute values. Figure 4 shows that for a sufficient num-
ber of installed tolls (40 or more), the solution found by BRKGA-LS lies within 15%
of the SO solution for the Sioux Falls instance.

Figure 5 shows computational results for instances Stockholm, Winnipeg,
and Barcelona. For each instance, we present results found by BRKGA and
BRKGA-LS.

The experiments show that BRKGA-LS finds better solutions than BRKGA with
similar running times. For all tests performed, on only two cases was the average solu-
tion value found by BRKGA better than the corresponding value found by BRKGA-LS
(Winnipeg with 500 tolls and Barcelona with 500 tolls).

For most of the instances, the quality of the results improves with larger toll sets.
For BRKGA-LS, the solution value almost always decreases monotonically with an
increasing number of tolls, while for BRKGA, even more variation is observed.

Given that in almost all cases BRKGA-LS finds better solutions as the number of
installed tolls increases, one can choose a trade-off between the number of tolled links
and the quality of the solution.

6 Conclusions

In this paper, we adapted the evolutionary algorithm introduced in [10] to a trans-
portation problem. We were only able to solve small instances to optimality with
cvxopt, a solver for convex optimization. We proposed and evaluated two variants
of a BRKGA, one with and the other without local search in the decoder. By means
of computing a solution that minimizes the average delay of the trips, we deal with
both SO and UE problems simultaneously. As we have applied a heuristic to solve this
problem, there is no guarantee that the system optimal solution is achieved. Instead,
an efficient solution for the overall transportation system is obtained. We show both
genetic algorithms obtain solutions of good quality for small and large instances. In
almost all cases, the quality of the solution improves with the increase in the number
of tolls deployed. However, a large number of tolls may be not suitable to apply, at
this time, in a real-world situation. Thus, one can choose the number of tolls to be
installed by considering the quality of solution achieved.

Acknowledgments Luciana S. Buriol and Marcus Ritt received support from the Brazilian National
Council of Technological and Scientific Development (CNPq) under project number 483413/2009-7.
Research by P. M. Pardalos has been supported by a grant from the University of Florida Center for Multi-
modal Solutions for Congestion Mitigation, United States Department of Transportation/Federal Highway
Administration.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows—Theory, Algorithms, and Applica-
tions. Prentice-Hall, Englewood Cliffs (1993)

2. Arnott, R., Small, K.: The economics of traffic congestion. Am. Sci. 82, 446–455 (1994)
3. Bai, L.: Computational methods for toll pricing models. Ph.D. thesis, University of Florida, Gainesville,

Florida (2004)

123

A biased random-key genetic algorithm 633

4. Bai, L., Hearn, D.W., Lawphongpanich, S. : Relaxed toll sets for congestion pricing problems. In:
Hearn, D., Lawphongpanich, S., Smith, M. (eds.) Mathematical and Computational Models for Con-
gestion Charging, Springer, Berlin (2006)

5. Bar-Gera, H.: Transportation networks test problems (2007). http://www.bgu.ac.il/~bargera/tntp
6. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Com-

put. 6, 154–160 (1994)
7. Bureau of Public Roads: Traffic Assignment Manual. Tech. rep., US Dept. of Commerce, Urban Plan-

ning Division, Washington, DC (1964)
8. Buriol, L., Resende, M., Thorup, M.: Speeding up dynamic shortest-path algorithms. INFORMS J.

Comput. 20, 191–204 (2008). doi:10.1287/ijoc.1070.0231
9. Buriol, L.S., Hirsch, M.J., Pardalos, P., Querido, T., Resende, M.G., Ritt, M.: A hybrid genetic algo-

rithm for road congestion minimization. In: Proceedings of the XLI Simpósio Brasileiro de Pesquisa
Operacional, pp. 2515–2526 (2009)

10. Buriol, L.S., Resende, M.G.C., Ribiero, C.C., Thorup, M.: A hybrid genetic algorithm for the weight
setting problem in OSPF/IS-IS routing. Networks 46, 36–56 (2005)

11. Dahl, J., Landenberghe, L.: CVXOPT (2005). http://abel.ee.ucla.edu/cvxopt
12. Dial, R.B.: Minimal-revenue congestion pricing part I: a fast algorithm for the single origin case. Transp.

Res. B 33, 189–202 (1999)
13. Dial, R.B.: Minimal-revenue congestion pricing part II: an efficient algorithm for the general

case. Transp. Res. B 34, 645–665 (1999)
14. Ericsson, M., Resende, M.G.C., Pardalos, P.M.: A genetic algorithm for the weight setting problem in

OSPF routing. J. Combin. Optim. 6, 299–333 (2002)
15. Florian, M., Hearn, D. et al.: Network equilibrium models and algorithms. In: Ball, M.O. (ed.)

Network Routing, pp. 485–550. Elsevier Science, Amsterdam (1995)
16. Gonçalves, J., Resende, M.: Biased random-key genetic algorithms for combinatorial optimization.

Tech. rep., AT&T Labs Research, Florham Park, NJ (2010). (http://www.research.att.com/~mgcr/doc/
srkga.pdf). To appear in J. Heuristics

17. Hearn, D.W., Ramana, M.: Solving Congestion Toll Pricing Models. Equilibrium and Advances in
Transportation Modeling. North-Holland, New York (1988)

18. Hearn, D.W., Ribera, J.: Bounded flow equilibrium by penalty methods. In: Proceedings of the IEEE
International Conference on Circuits and Computers, pp. 162–164 (1980)

19. Kim, D., Pardalos, P.: A solution approach to the fixed charge network flow problem using a dynamic
slope scaling procedure. Oper. Res. Lett. 24, 195–203 (1999)

20. Lawphongpanich, S., Hearn, D.W.: An MPEC approach to second-best toll pricing. Math. Program.
Ser. B 101, 33–55 (2004)

21. LeBlanc, L.J., Morlok, E.K., Pierskalla, W.P.: An efficient approach to solving the road network equi-
librium traffic assignment problem. Transp. Res. 9, 309–318 (1975)

22. Reis, R., Ritt M., Buriol, L.S., Resende, M.G.C.: A biased random-key genetic algorithm for OSPF
and DEFT routing to minimize network congestion. Int. Trans. Oper. Res. (2010, in press)

23. Shepherd, S., Sumalee, S.: A genetic algorithm based approach to optimal toll level and location
problems. Netw. Spatial Econ. 4(2), 161–179 (2004)

24. Spears, W., DeJong, K.: On the virtues of parameterized uniform crossover. In: Proceedings of the
Fourth International Conference on Genetic Algorithms, pp. 230–236 (1991)

25. Tsekeris, T., Voß, S.: Design and evaluation of road pricing: state-of-the-art and methodological
advances. Netnomics 10, 5–52 (2009)

123

http://www.bgu.ac.il/~bargera/tntp
http://dx.doi.org/10.1287/ijoc.1070.0231
http://abel.ee.ucla.edu/cvxopt
http://www.research.att.com/~mgcr/doc/srkga.pdf
http://www.research.att.com/~mgcr/doc/srkga.pdf

	A biased random-key genetic algorithm for road congestion minimization
	Abstract
	1 Introduction
	2 Problem formulation
	3 Biased random-key genetic algorithms
	4 A BRKGA for the toll booth problem
	4.1 Solution encoding
	4.2 Solution decoding
	4.3 Solution evaluation
	4.4 Local improvement procedure

	5 Computational results
	5.1 The nine-node example
	5.2 Real-world problems
	5.3 Optimal solutions
	5.4 Quality of the BRKGA solutions

	6 Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

