
Optim Lett (2011) 5:631–638
DOI 10.1007/s11590-010-0225-7

ORIGINAL PAPER

Russian doll search for the Steiner triple covering
problem

Patric R. J. Östergård · Vesa P. Vaskelainen

Received: 31 January 2010 / Accepted: 26 July 2010 / Published online: 6 August 2010
© Springer-Verlag 2010

Abstract Russian doll search is applied to finding maximum independent sets in
hypergraphs, focusing on a particular subproblem of the hitting set problem, the Steiner
triple covering problem. An instance denoted A135 is solved considerably faster with
Russian doll search than with integer linear programming and a state-of-the-art opti-
mization tool (using otherwise a similar established approach to split the problem into
subproblems). In addition, the improvement in speed makes it possible to carry out a
search proving that all optimal solutions for A135 are isomorphic.

Keywords Hitting set problem · Russian doll search · Set covering problem ·
Steiner triple system

1 Introduction

Russian doll search [15] is a variant of exhaustive backtrack search that has success-
fully been applied to a variety of discrete optimization problems [9,11,14]. Russian
doll search is here applied to finding maximum independent sets in hypergraphs, in
particular to a subproblem known as the Steiner triple covering problem; formal defi-
nitions of these will be given in Sect. 2. The motivation for studying the Steiner triple
covering problem in this context is its suitability for benchmarking purposes; it is a
challenging problem, yet with a relatively small number of variables.

The two largest instances of the Steiner triple covering problem solved so far [12,13]
are known as A135 and A243. Both instances are highly symmetric: their symmetry
groups are of order 25920 and 115562653240320, respectively. A common approach

P. R. J. Östergård · V. P. Vaskelainen (B)
Department of Communications and Networking, Aalto University, P.O. Box 13000,
00076 Aalto, Finland
e-mail: vesa.vaskelainen@tkk.fi

123

632 P. R. J. Östergård, V. P. Vaskelainen

to solving optimization problems with a large symmetry group is to determine, up to
symmetry, all partial solutions of a certain kind—these are known as seeds—and to
search for the complete solution starting from the seeds [7]. This method is indeed
applied in [12,13], using integer linear programming for solving the instances A135
and A243.

The aim of the current work is to see how Russian doll search compares with inte-
ger linear programming for the hitting set problem. Moreover, we want to carry out
the comparison for instances that have little symmetry, since the role of the overall
approach—choice and construction of seeds, and so on—is otherwise substantial.

The results are to be compared with state-of-the-art achievements, in particular
[12,13], where the instances A135 and A243 are settled. Since the seeds for A243 have
a large group of symmetry in the approach in [12,13], we shall here focus on A135.
Indeed, we are able to solve the instance A135—with a similar approach apart from the
general type of algorithm—roughly 100 times faster than in [12,13], which solved the
instance using a state-of-the-art integer linear programming tool and hardware with
comparable performance. Furthermore, we use our algorithm to go one step further
and find all optimal solutions for A135; it turns out that the previously known solution
is unique up to the symmetry of the instance.

The paper is organized as follows. In Sect. 2, basic concepts and the iterative method
used to construct instances of the Steiner triple covering problem are defined. In Sect. 3,
the use of symmetries (automorphisms) for pruning the search space is discussed, and
a Russian doll search algorithm for the Steiner triple covering problem is presented in
Sect. 4. Computational results are gathered in Sect. 5.

2 Hitting sets and independent sets in hypergraphs

In the hitting set problem we are given a set S and a collection F of subsets of S,
and the task is to find a subset B ⊆ S that intersects all members of F . The prob-
lem of determining whether there are solutions of size at most a given integer K is
NP-complete. In the optimization version of the problem, we want to minimize |B|.

If B is an optimum solution to an instance of the hitting set problem, then S \ B is a
maximum set that does not contain any of the sets in the collection F . Viewing S as a
set of vertices and the collection F as the edges of a hypergraph, S \ B is a maximum
independent set in this hypergraph. Consequently, instances of the hitting set problem
can be solved by either minimizing or maximizing. The maximization version—that
is, the determination of maximum independent sets in hypergraphs—is considered in
this work.

The hitting set problem is a basic combinatorial optimization problem. Moreover,
as no polynomial-time algorithm is known for this problem, sets of problem instances
are of high value in evaluating developed algorithms. One such set of instances is
obtained by taking F from a class of Steiner triple systems (constructed in a well-
defined way, so that anyone can reconstruct the class); such a subproblem of the hitting
set problem is the Steiner triple covering problem.

A Steiner triple system consists of a set V of points and a collection B of
3-element subsets of V , called blocks, such that each 2-element subset of V is

123

Russian doll search for the Steiner triple covering problem 633

Fig. 1 Graphical presentation of A45

contained in exactly one block. We denote the number of points by n. Steiner triple
systems exists if and only if n ≡ 1 or 3 (mod 6). Hall, Jr. [4] introduced a recursive
technique for generating a bigger Steiner triple system from smaller ones. Certain such
instances, named An and with parameters n = 3m and n = 5 · 3m , both for m ≥ 1,
form the Steiner triple covering problem and have been considered in many algorithm
papers, including [3,8,10,13].

For completeness, we present the generation of A3n from An . Let a new system
A3n have points ai, j , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, 3}. Then {au,r , av,s, aw,t } is a block
of A3n if

(i) {u, v, w} is a block of An and r = s = t , or
(ii) {u, v, w} is a block of An and {r, s, t} = {1, 2, 3}, or

(iii) u = v = w and {r, s, t} = {1, 2, 3}.

Figure 1 illustrates how A45 is obtained from A15 (which is the subsystem in the
upper left corner of the picture). There are 45 columns, corresponding to the points,
and 330 rows, corresponding to the blocks. Black squares show which points occur in
which blocks. The first part of the figure consists of the 3× 35 = 105 blocks from (i)
and the 15 blocks from (iii). The second and third part of the figure correspond to the
6 × 35 = 210 blocks from (ii). Likewise the instance A3 defines the other sequence
of instances in a unique way. The instances A3m , m ≥ 1, correspond to affine Steiner
triple systems AG(m, 3). An alternative way of constructing such systems is to take
one point for each vector of length m over Z3 and let three points form a block exactly
when their corresponding vectors sum to the zero vector.

123

634 P. R. J. Östergård, V. P. Vaskelainen

Table 1 Solutions of A45 Size Total Orbit size

9 45 90 180 360

15 9 1

14 16425 1 4 13 38

13 714915 1 5 65 1952

12 9007020 2 35 561 24730

11 36587250 2 38 905 101169

3 Automorphisms

An isomorphism between two Steiner triple systems is a bijection between their points
sets that maps the blocks of one system onto the blocks of the other. An automorphism
is an isomorphism of a system with itself (that is, a symmetry of the system). The set
of all automorphisms form a group, the automorphism group. The set of all blocks
that can be obtained from one block by applying automorphisms forms an orbit.

The Steiner triple systems An have relatively large automorphism groups. The
automorphism groups for the instances A3m , m ≥ 1, that is, the affine Steiner triple
systems AG(m, 3), can be found in [2, p. 144]. In designing algorithms for such highly
symmetric instances, it is essential to take the symmetries into account as they have
a direct impact on the size of the search tree and the number of optimal solutions
encountered in a search.

In (i) of the construction of A3n from An , we take three disjoint copies of An . In
the sequel, we refer to the sets of elements of these copies as S1, S2, and S3. If α is an
automorphism of An , then it is a matter of straightforward calculation to verify that

(α, β) : ai, j → aα(i),β(j), (1)

where β permutes {1, 2, 3}, is an automorphism of A3n .
By [1], the largest independent set for A45 is 15. An independent set of size 32 for

A135 was obtained in [10]; this solution is shown to be optimal in [12,13] and here.
By utilizing (1), to prove nonexistence of a solution of size 33 one may assume that a
solution has the largest number of points in S1. The search may then be divided into
subcases by considering, up to isomorphism, all solutions for A45 with 33/3 = 11 to
15 points in S1. This idea is also utilized in [12,13].

The automorphism group of A45 has order 360. The number of feasible solutions
for A45 of size between 11 and 15 are displayed in Table 1. Both the total number
of solutions and the number of nonisomorphic solutions subdivided into classes with
the same orbit length are shown (this makes a partial correctness check based on
the Orbit-Stabilizer Theorem possible). There are altogether 46325619 solutions and
129522 nonisomorphic solutions in the tabulated size range. These solutions were
obtained with a version of the Russian doll search algorithm to be discussed in Sect. 4.
Standard techniques [7, Chap. 4] were employed to extract an exhaustive collection of

123

Russian doll search for the Steiner triple covering problem 635

nonisomorphic solutions. It took less than 9 CPU-minutes to obtain the data presented
in Table 1 on the computer used in the main search (see Sect. 5).

4 Russian doll search

A Russian doll search algorithm [15] solves a problem with n variables through n sub-
problems. The first subproblem includes just the nth variable, the second subproblem
the last two variables, and so on, and the solutions of the prior subproblems are used
for pruning in later subproblems. For A135, we have n = 135 and a subproblem is the
maximum independent set problem in the hypergraph induced by {i, i + 1, . . . , 135}.

A Russian doll search algorithm for the specific case A135 is presented as
Algorithm 1. The size of a maximum independent set in the subgraph induced by
{i, i+1, . . . , 135} is saved in c[i]. Note that c[i−1] = c[i] or c[i−1] = c[i]+1, and
we may immediately abort the calculation of c[i − 1] if a solution of size c[i] + 1 is
found for a subproblem (this is indicated by the boolean variable found). The largest
solution found so far is maintained in the variable record.

In line 20, the first element i of the subproblem is added to a partial solution a[1]
(this is a necessary condition to get c[i] = c[i + 1] + 1). The set of elements that
are candidates to be added to a partial solution a[i], i ∈ {1, 2, . . . , s}, to become
a[i], i ∈ {1, 2, . . . , s + 1}, is updated in line 6. Any element in the candidate list (U ′,
which is then reduced to U) should have the property that the union of the element,
the partial solution, and the fixed elements in S1 should not contain any block of
A135. This forward checking function should be implemented efficiently, for example,
using a precalculated array that for every pair of elements gives the third element that
belongs to the same block.

The algorithm is run for each of the nonisomorphic solutions for A45 in Table 1.
Pruning takes place in lines 7 (whenever the sum of the sizes of the partial solution
and the set of candidates does not exceed the value of record), 8 (based on the values
of c[i]), and 9 (based on the number of elements of a partial solution in the various
sets Si ; see Sect. 3). The variable size gives the number of fixed elements in S1, and
an array p[i], i ∈ {2, 3}, is maintained to count the elements of a partial solution in
S2 and S3. A precalculated array, t[i] ∈ {2, 3}, is used to determine in what set a
particular element i ∈ {46, 47, . . . , 135} lies.

The idea of pruning based on the number of elements of a partial solution in the
sets Si can be extended by considering sets that follow from other automorphisms
than (1). In total 12 different sets can be formed in this manner. However, the best
overall performance was achieved by considering only the sets S2 and S3. As a result
of more advanced pruning in line 9, the importance of pruning in lines 7 and 8 tends
to decrease.

The ordering of the variables has an impact on the performance of a Russian doll
search algorithm. Since our algorithm—for example, pruning in line 9—relies on some
structure of the Steiner triple systems, we do not want to consider arbitrary orderings,
but we only consider orderings within the parts of the A135 corresponding to A15. The
instance A15 was studied exhaustively and the best ordering was duplicated among all
copies of A15.

123

636 P. R. J. Östergård, V. P. Vaskelainen

Algorithm 1 Russian Doll Search Algorithm
procedure rds(U ′: array, s: integer)
1: if s > record then
2: record ← s
3: Save the current solution a[1], a[2], . . . , a[s]
4: found ← true
5: else
6: U ← reduce(U ′, a[1], a[2], . . . , a[s])
7: for u ← 1 to |U | − record + s do
8: if s + c[U [u]] ≤ record then return
9: if p[t[U [u]]] < size then
10: a[s + 1] ← U [u]
11: p[t[U [u]]] ← p[t[U [u]]] + 1
12: rds(U, s + 1)

13: p[t[U [u]]] ← p[t[U [u]]] − 1
14: if found = true then return
15: end if
16: end for
17: end if
end procedure
procedure russiandoll
18: record ← 0, p[2] ← 0, p[3] ← 0
19: for i ← 135 downto 46 do
20: a[1] ← i , p[t[i]] ← 1, U ← (i, i + 1, . . . , 135)

21: found ← false
22: rds(U, 1)

23: c[i] ← record
24: p[t[i]] ← 0
25: end for
end procedure

Table 2 Results, CPU times, and number of calls for A135

Fixed Maximum CPU time Mean ×106 Std ×106 Maximum ×106

15 30 5.6 s (5.6 s) 25.3 (26.7) 25.3 (26.7)

14 32 2.6 min (3.0 min) 16.6 (19.2) 2.83 (2.92) 20.2 (23.0)

13 31 81 min (100 min) 14.3 (18.0) 4.38 (4.90) 29.7 (35.8)

12 32 20 h (26 h) 16.8 (21.7) 5.50 (6.50) 50.1 (66.3)

11 31 86 h (115 h) 17.9 (24.4) 5.02 (6.27) 45.4 (68.0)

5 Computational results

The sizes of maximum independent sets for the five cases are presented in Table 2.
The algorithm was implemented in C++; the times listed apply to an AMD Athlon 64
X2 4400+ PC with Linux operating system. Table 2 also shows the mean, standard
deviation, and the maximum of number of calls in line 12. To demonstrate the gene-
ricity of the algorithm, the values obtained without instance-specific pruning in line 9
are shown in parentheses.

123

Russian doll search for the Steiner triple covering problem 637

Table 3 CPU times for small
instances

Instance CPU time Number of calls

A15 3 ms 619

A27 6 ms 30.6× 103

A45 136 ms 1.44× 106

A81 147 min 51.6× 109

For the instances that led to solutions of size 32, we continued the search to find
all possible solutions (this has a negligible impact on the total time). In total nine
solutions were found for two instances, all isomorphic.

As a partial validation of the result proving uniqueness of the solution of size 32,
we dissected the solution and checked that it indeed was found in all instances where it
should have been found. To this end, it is useful to see how the elements of the solution
are distributed when the sets Si are further subdivided into three sets (corresponding
to copies of A15). One distribution of the solution over the nine sets thereby obtained
is 6+ 6+ 2+ 0+ 2+ 2+ 6+ 2+ 6; by the symmetries of the instance, this shows
that there are solutions with 6+ 6+ 0 = 12 and 6+ 6+ 2 = 14 elements in S1.

If the goal is only to determine the size of an optimal solution, then the fastest
approach is a hybrid approach, where the case with 11 fixed elements is handled by
linear programming [13, Fig. 4] (the optimal solution of the linear program is smaller
than 33), speeding up the total search to 22 CPU-hours, which is about 100 times faster
than with the approach in [12,13].

For comparison, we have considered small instances of the Steiner triple covering
problem, when pruning in line 9 is disabled and no variables are preassigned. Table 3
lists the computational times and the number of calls for the instances A15, A27, A45,
and A81 with this setting. It should be emphasized that the algorithm can be used
in this way for any instance of the Steiner triple covering problem, in fact for any
instance of the maximum independent set problem for hypergraphs. For best possible
performance, it is only necessary to tune the way symmetries are taken into account
for different instances.

The performance of Russian doll search was here compared with that of the inte-
ger linear programming approach used to settle A135 in [12,13]. Future work could
involve further comparisons of these methods against other contemporary techniques,
for example, Max-SAT solvers [5,6].

Acknowledgments The authors thank the referees for helpful comments. The first author was supported
in part by the Academy of Finland, Grants No. 107493, 110196, 130142, and 132122. The second author
was supported by the Academy of Finland under Grant No. 107493 and by the Walter Ahlström Foundation
(Walter Ahlströmin säätiö).

References

1. Avis, D.: A note on some computationally difficult set covering problems. Math. Programm. 18,
138–145 (1980)

2. Colbourn, C.J., Rosa, A.: Triple Systems. Oxford University Press, Oxford (1999)

123

638 P. R. J. Östergård, V. P. Vaskelainen

3. Fulkerson, D.R., Nemhauser, G.L., Trotter, L.E.: Two computationally difficult set covering problems
that arise in computing the 1-width of incidence matrices of Steiner triple systems. Math. Programm.
Stud. 2, 72–81 (1974)

4. Hall, M. Jr.: Combinatorial Theory. Blaisdell, Waltham (1967)
5. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat an efficient weighted Max-SAT solver. J. Artif. Intell.

Res. 31, 1–32 (2008)
6. Heras, F., Larrosa, J.: A Max-SAT inference-based pre-processing for Max-Clique. In: Büning, H.K.,

Zhao, X. (eds.) Theory and Applications of Satisfiability Testing, Proceedings of the 11th International
Conference (SAT 2008), LNCS, vol. 4996, pp. 139–152. Springer, Berlin (2008)

7. Kaski, P., Östergård, P.R.J.: Classification Algorithms for Codes and Designs. Springer, Berlin (2006)
8. Mannino, C., Sassano, A.: Solving hard set covering problems. Oper. Res. Lett. 18, 1–5 (1995)
9. Meseguer, P., Sánchez, M.: Specializing Russian doll search. In: Walsh, T. (ed.) Principles and Practice

of Constraint Programming, Proceedings of the 7th International Conference (CP 2001), LNCS, vol.
2239, pp. 464–478. Springer, Berlin (2001)

10. Odijk, M.A., van Maaren, H.: Improved solutions to the Steiner triple covering problem. Inform.
Process. Lett. 65, 67–69 (1998)

11. Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120,
197–207 (2002)

12. Ostrowski, J.: Symmetry in Integer Programming. PhD thesis, Lehigh University (2009)
13. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Constraint orbital branching. In: Lodi, A.,

Panconesi, A., Rinaldi, G. (eds.) Integer Programming and Combinatorial Optimization, Proceed-
ings of the 13th International Conference (IPCO 2008), LNCS, vol. 5035, pp. 225–239. Springer,
Berlin (2008)

14. Sanchez, M., Allouche, D., de Givry, S., Schiex, T.: Russian doll search with tree decomposition,
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09),
pp. 603–608. Morgan Kaufmann, San Francisco (2009)

15. Verfaillie, G., Lemaître, M., Schiex, T.: Russian doll search for solving constraint optimization
problems. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96),
pp. 181–187. AAAI Press, Menlo Park (1996)

123

	Russian doll search for the Steiner triple covering problem
	Abstract
	1 Introduction
	2 Hitting sets and independent sets in hypergraphs
	3 Automorphisms
	4 Russian doll search
	5 Computational results
	Acknowledgments
	References

