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Abstract In this paper we develop the time-dependent pollution control problem
in which different countries aim to determine the optimal investment allocation in
environmental projects and the tolerable pollutant emissions, so as to maximize their
welfare. We provide the equilibrium conditions governing the model and derive the
evolutionary variational inequality formulation. The existence of solutions is investi-
gated and a numerical example is also presented.
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1 Introduction

The 1997 Kyoto Protocol, the international agreement linked to the United Nations
Framework Convention on Climate Change, prescribes that 37 industrialized coun-
tries and the European Community, labeled as “Annex I Parties”, must reduce their
greenhouse gas emissions at least 5% below the 1990 levels for the 2008–2012 period.
Under the Treaty countries must meet their targets primarily through national mea-
sures. However, some other market-based mechanisms are offered: the emissions trad-
ing, known as “the carbon market”; the clean development mechanism and the joint
implementation (JI). In this paper we focus on the JI which, in the Kyoto Protocol, is
described as follows (see [35]): “for the purpose of meeting its commitments under
Article 3, any Party included in Annex I may transfer to, or acquire from, any other
such Party emission reduction units (ERUs) resulting from projects aimed at reducing
anthropogenic emissions by sources or enhancing anthropogenic removals by sinks of
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260 L. Scrimali

greenhouse gases in any sector of the economy...”. In other words, it allows countries
with emission reduction or limitation commitments to collect rewards in the form
of ERUs from an emission-reduction or emission removal project in another Annex I
Party, where the abatement costs are lower. Therefore, joint implementation offers Par-
ties a flexible and cost-efficient means of fulfilling a part of their Kyoto commitments,
while the host country benefits from foreign investment and technology transfer. In
addition, JI mechanism provides additional incentives for research into environmen-
tal projects and promotes sustainable economic growth in countries in transition to a
market economy.

The larger number of papers concerning the environmental defence issues suggest
a game-theoretic approach. The static game theoretic literature is too vast to list here
all the results achieved up to now, hence we just refer to those that mainly inspired
this paper and address the reader to the references therein for further discussions.
In [5] investment strategies in the context of the JI mechanism are investigated. In
particular, a two-player game is considered and solved under three possible scenar-
ios: the autarky model, the non-cooperative joint implementation and the cooperative
joint implementation. The underlying equilibrium concepts are the Nash equilibrium
and the generalized Nash equilibrium (see [12,13,16,24,25,28] for both an overview
on Nash equilibria and some applications). The equilibrium investment strategies are
then characterized by means of the Lagrangian approach. In [13] the environmental
pollution control model as in [5] is generalized to the case of N players. In addition,
a formulation in terms of a quasi-variational inequality is suggested (see [1] for a sur-
vey on theory and applications on quasi-variational inequalities). Several papers have
been devoted to environmental problems under a dynamic game perspective, however
much less has been done about the Kyoto mechanisms. In [3] a differential game is
proposed in order to analyze the hot-air effect. In [4,6] a two-player finite-horizon
differential game model of JI is analyzed using nonlinear damage cost function and
different possible scenarios are described.

The purpose of this paper is to present a new approach in the study of investment
strategies in Kyoto’s mechanism, based on the variational inequality theory. In fact,
to-date, no variational inequality framework has been applied to such a model. In addi-
tion, we attempt to refine models in the literature, taking into account the evolution of
the system with respect to time, and hence assuming that all data are time-specific. It
is indeed well-recognized (see for instance [2,8,11,14,22,23,29–33]) the importance
of studying dynamic problems in order to represent model adjustment processes and
equilibrium with lags. The mathematical framework chosen for the study of the model
is that of infinite dimensional variational inequalities (see the fundamental manu-
scripts [17,34] and the books [9,15,21] for both theory and applications on finite and
infinite dimensional variational inequalities). We emphasize that we will not develop
novel mathematical techniques, but we will show how existing abstract results can
be concretely applied in order to analyze and tackle the pollution control problem. In
particular, we study the case in which the JI mechanism collapses to the autarky model,
namely when countries seek to fulfill the Kyoto commitments investing only in local
environmental projects. We suppose that different countries simultaneously aim to
determine the optimal investment allocation in environmental projects and the tolera-
ble pollutant emissions so as to maximize their welfare. Countries follow multicriteria
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decision-making processes since they seek to maximize their revenue and minimize
both the investments in environmental projects and the damage from pollution. We
show how the optimal solution of the multiobjective problem of each country solves
an evolutionary variational inequality, for which we are able to ensure the existence of
solutions. Moreover, we state the equilibrium conditions governing the model, which
are proved to identify a solution to the evolutionary variational inequality.

The paper is organized as follows. In Sect. 2 the multicriteria decision-making
behaviors of countries are investigated and the equilibrium conditions are stated.
Section 3 presents the variational inequality formulation, while Sect. 4 contains a dis-
cussion on existence results. In Sect. 5 a numerical example is provided and, finally,
Sect. 6 summarizes our findings and presents some further research issues.

2 The multicriteria decision-making problem and the equilibrium conditions

In this section we present the evolutionary environmental pollution control problem
and give the corresponding equilibrium conditions. We study the system in the finite
time horizon [0, t], with t > 0. Let N be the number of countries involved in the
Treaty. Let ei (t) denote the gross emissions resulting from the industrial production
of country i at time t ∈ [0, t] and let e(t) = (e1(t), . . . , eN (t))T be the total gross
emission vector. We assume that the emissions of each country are proportional to the
industrial output, thus we can define the revenue Ri as follows

Ri (t, ei (t)) : [0, t] × R+ → R+.

Emissions can be reduced by investing in environmental projects. Let I i (t) be the
amount of environmental investments held by country i in local projects at time
t ∈ [0, t] and let I (t) = (I 1(t), . . . , I N (t))T . The benefit of this investment lies
in the acquisition of emission reduction units, which are assumed to be proportional to
the investment, namely, γi (t)I i (t), where γi (t) is a positive technological efficiency
parameter that depends on the technologies and laws of the country. The net emission
in country i is given by the difference between the gross emissions and the reduction
resulting from local investments, namely

ei (t) − γi (t)I i (t) ≥ 0 a.e. in [0, t].

Moreover, the net emissions are assumed to be equal to a prescribed threshold Ei (t),
with Ei (t) > 0 a.e.in [0, t], in other words the following environmental constraint
must hold

ei (t) − γi (t)I i (t) = Ei (t) a.e. in [0, t]. (1)

The above constraint describes an instantaneous relationship, in the sense that a tolera-
ble level Ei (t) is requested at time t and is satisfied at the same time. Clearly, a delayed
reaction, namely requested at time t and verified at time t + δ(t), where δ(t) is a non
negative delay factor, would be more realistic. However, the instantaneous approach
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appears as necessary in order to capture basic features of the model, especially in view
of further improvements.

Let the local investment cost of country i be given by

Ci (t, I i (t)) : [0, t] × R+ → R+.

We also assume that pollution in one country can affect also other countries, hence
damages from pollution in one country depend on the net emissions of all countries
according to the function

Di (t, e(t), I (t)) = Di

(
t,

N∑
i=1

(ei (t) − γi (t)I i (t))

)
: [0, t] × R

2N+ → R+.

We choose as our functional setting the Hilbert space L2([0, t], R
2) of square-

integrable functions defined in the closed interval [0, t], endowed with the scalar

product 〈·, ·〉L2 = ∫ t
0 〈·, ·〉dt and the usual associated norm ‖ · ‖L2 .

We assume that Ri (t, ei (t)) is measurable in t ∀ei ∈ R+ and continuous in ei ;
Ci (t, I i (t)) is measurable in t ∀I i ∈ R+ and continuous in I i ; Di (t, e(t), I (t)) is
measurable in t ∀e, I ∈ R

N+ and continuous with respect to e and I . Moreover, we

assume that there exist ∂ Ri (t,ei )

∂ei measurable in t ∀ei ∈ R+ and continuous in ei ;
∂Ci (t,I i )

∂ I i measurable in t ∀I i ∈ R+ and continuous in I i ; ∂ Di (t,e,I )
∂ei (t)

and ∂ Di (t,e,I )
∂ I i (t)

measurable in t and continuous with respect to e and I . In addition, we require the
following conditions:

∃δi
1 ∈ L2([0, t]) :

∣∣∣∣∂ Ri (t, ei )

∂ei

∣∣∣∣ ≤ δi
1(t) + |ei |, (2)

∃δi
2 ∈ L2([0, t]) :

∣∣∣∣∂Ci (t, I i )

∂ I i

∣∣∣∣ ≤ δi
2(t) + |I i |, (3)

∃δi
3 ∈ L2([0, t]) :

∣∣∣∣∂ Di (t, e, I )

∂ei (t)

∣∣∣∣ ≤ δi
3(t) + |e|, (4)

∃δi
4 ∈ L2([0, t]) :

∣∣∣∣∂ Di (t, e, I )

∂ I i (t)

∣∣∣∣ ≤ δi
4(t) + |I |. (5)

We denote by I −i (t) the vector of all the investments held by all the countries except
for i . Analogously e−i (t) is the vector of the gross emissions of countries different from
i . Sometimes we will write e(t) = (ei (t), e−i (t)) and I (t) = (I i (t), I −i (t)). The goal
of country i consists in maximizing the welfare function, namely maximizing the rev-
enue, minimizing the investments in emission reduction as well as the damage from
pollution. Therefore, the corresponding optimization problem with (e−i (t), I −i (t))
fixed at (e∗−i (t), I ∗−i (t)) is given by
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max
(ei (t),I i (t))∈Ki

t∫
0

Wi (t, ei (t), I i (t), e∗−i (t), I ∗−i (t))dt, (6)

where

Wi (t, ei (t), I i (t), e∗−i (t), I ∗−i (t)) = Ri (t, ei (t)) − Ci (t, I i (t))

−Di

⎛
⎝t, ei (t) − γi (t)I i (t) +

∑
j �=i

(e∗ j (t) − γ j (t)I ∗ j (t))

⎞
⎠

and

Ki =
{
(ei (t), I i (t)) ∈ L2([0, t], R

2) : ei (t) ≥ 0, I i (t) ≥ 0 a.e. in [0, t] ,

0 ≤ ei (t) − γi (t)I i (t) = Ei (t) a.e. in [0, t]
}

. (7)

Remark 1 Conditions (2)–(5) ensure that
∫ t

0 Wi (t, ei (t), I i (t), e∗−i (t), I ∗−i (t))dt is
well-defined. In fact, from the Lagrange Theorem, given (t0, ei (t0)) ∈ [0, t] × R+ it
follows that

Ri (t, ei (t)) =
1∫

0

∂ Ri (t, τei (t) + (1 − τ)ei (t0))

∂ei
(ei (t) − ei (t0))dτ + Ri (t0, ei (t0)),

hence

t∫
0

|Ri (t, ei (t))|2dt ≤
T∫

0

⎛
⎝ 1∫

0

∣∣∣∣∂ Ri (t, τei (t)+(1 − τ)ei (t0))

∂ei

∣∣∣∣ |ei (t)−ei (t0)|dτ

⎞
⎠

2

dt

+t |Ri (t0, ei (t0))|2

≤
t∫

0

⎛
⎝ 1∫

0

(δ1(t)+|τei (t)+(1−τei (t0))

∣∣∣∣∣∣)||ei (t)−ei (t0)|dτ

⎞
⎟⎠

2

dt

+t |Ri (t0, ei (t0))|2.

The last terms can be immediately estimated by means of constants. In other words,

the integral
∫ t

0 |Ri (t, ei (t))|2dt is finite and, as a consequence, Ri (t, ei (t)) is square-
integrable. With a similar reasoning we are able to prove that also Ci (t, I i (t))

and Di

(
t, ei (t) − γi (t)I i (t) + ∑

j �=i (e
j∗(t) − γ j (t)I j∗(t))

)
are square-integrable,

hence Wi belongs to L2. In addition, Wi belongs to the class of Nemytskii operators
(see Example 2.5.5 p. 159 and Example 4.7.3 p. 341 in [27] for definitions and main
properties), therefore Wi is continuous with respect to the strong topology.
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The equilibrium concept underlying the model is that of Nash equilibrium, which
we recall as follows.

Definition 1 A vector of emissions and investments (e∗(t), I ∗(t)) ∈ ∏N
i Ki is a Nash

equilibrium if, for each i = 1, . . . , N , (e∗i (t), I ∗i (t)) is an optimal solution of problem
(6) in the variables (ei (t), I i (t)), with (e−i (t), I −i (t)) fixed at (e∗−i (t), I ∗−i (t)).

We are also able to give equivalent equilibrium conditions in an implicit manner,
namely in terms of marginal welfare and marginal gap from the optimal solution.

Definition 2 A vector of emissions and investments (e∗(t), I ∗(t)) ∈ ∏N
i Ki is an

equilibrium of the evolutionary environmental pollution control problem if and only
if for each i = 1, . . . , N and a.e. in [0, t] it satisfies the system of inequalities

−∂ Ri (t, e∗i (t))

∂ei
+ ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei
+ νi (t) − τi (t) ≥ 0, (8)

∂Ci (t, I ∗i (t))

∂ I i
+ ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ I i
− νi (t) + τi (t) ≥ 0, (9)

and equalities

(
−∂ Ri (t, e∗i (t))

∂ei (t)
+ ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei
+ νi (t) − τi (t)

)

×e∗i (t) = 0, (10)(
∂Ci (t, I ∗i (t))

∂ I i
+ ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ I i
− νi (t) + τi (t)

)

×γi (t)I ∗i (t) = 0, (11)

simultaneously, where νi (t) ∈ L2([0, t]) is the Lagrange multiplier attached to the
environmental constraint and can be viewed as the marginal abatement cost to be
borne by country i ; whereas τi (t) ∈ L2([0, t]) is the Lagrange multiplier attached to
the non-negativity constraint of net emissions and can be viewed as the shadow price
associated with this constraint.

Systems (8) and (10) have the following interpretation. A typical country will only
emit if the marginal damage cost of emitting minus the marginal revenue of emitting
equals the shadow price of net emissions minus the marginal abatement cost. In other
words, the intuitive rule so that marginal costs equal marginal revenues holds, where
the marginal cost is given by the marginal damage cost of emitting plus the marginal
abatement cost, whereas the marginal revenue is represented by the marginal revenue
of emitting plus the shadow price of emitting. If the marginal damage cost of emitting
minus the marginal revenue of emitting is greater than the shadow price of net emis-
sions minus the marginal abatement cost, then it will be unfeasible for the country to
emit.
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Systems (9) and (11) have the following interpretation. If the marginal damage cost
of investing plus the marginal cost of investing equals the marginal abatement cost
minus the shadow price of net emissions, then the investments are positive. Also in this
situation marginal costs equal marginal revenues. In fact, we consider as the marginal
cost the marginal damage cost of investing plus the marginal cost of investing plus
the marginal abatement cost, and as marginal revenue the shadow price of emitting.
If the marginal damage cost of investing plus the marginal cost of investing is greater
than the marginal abatement cost minus the shadow price of net emissions, it will be
unfeasible for the country to invest.

Finally, we observe that τi (t) − νi (t) can also be regarded as the marginal gap
between the optimal marginal damage cost and the optimal marginal revenue.

We note that in Definition 2 unknown multipliers νi (t) and τi (t) appear, however
we will show that the equilibrium conditions are equivalent to a variational inequality
in which they do not appear.

3 The variational inequality formulation

In this section we prove that the optimal solution of problem (6) is also a solution to an
evolutionary variational inequality problem, which in turn is equivalent to equilibrium
conditions (8)–(11).

Theorem 1 Let us assume that, for i = 1, . . . , N, Wi (t, ei (t), I i (t), e∗−i (t), I ∗−i (t))
is concave and weakly upper semicontinuous with respect to (ei (t), I i (t)). Let us fur-

ther suppose that
∫ t

0 Wi (t, ei (t), I i (t), e∗−i (t), I ∗−i (t))dt is Fréchet differentiable for
all i with respect to (ei , I i ) (it suffices that the Wi (t, ei (t), I i (t), e∗−i (t), I ∗−i (t)) is
continuously differentiable with respect to (ei (t), I i (t))). Then a vector (e∗i (t), I ∗i (t))
∈ Ki is an optimal solution of problem (6) if and only if it is a solution of the evolu-
tionary variational inequality:

t∫
0

{(
−∂ Ri (t, e∗i (t))

∂ei
+ ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei

)
(ei (t) − e∗i (t))

+
(

∂Ci (t, I ∗i (t))

∂ I i
+ ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ I i

)

× γi (t)(I i (t) − I ∗i (t))

}
dt ≥ 0,∀(ei (t), I i (t)) ∈ Ki . (12)

Proof Let us assume that (e∗i (t), I ∗i (t)) is a solution to problem (6). Then for all
(ei (t), I i (t)) ∈ Ki the function

G(λ) =
t∫

0

Wi (t, λe∗i (t) + (1−λ)ei (t), λI ∗i (t) + (1−λ)I i (t), e∗−i (t), I ∗−i (t)) dt,

λ ∈ [0, 1],
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admits a maximal solution at λ = 1 and G ′(1) ≥ 0. We now consider the derivative
with respect to λ

G ′(λ) = ∂

∂λ

t∫
0

⎧⎨
⎩Ri (t, λe∗i (t) + (1 − λ)ei (t)) − Ci (t, λI ∗i (t) + (1 − λ)I i (t))

−Di

⎛
⎝t,

∑
j �=i

(e∗ j (t) − γ j (t)I ∗ j (t)) + λe∗i (t) + (1 − λ)ei (t)

−λγi (t)I ∗i (t) − (1 − λ)γi (t)I i (t)

⎞
⎠

⎫⎬
⎭ dt

=
t∫

0

⎧⎨
⎩

⎛
⎝∂ Ri (t, λe∗i (t) + (1 − λ)ei (t))

∂ei
− ∂

∂ei
Di

⎛
⎝t,

∑
j �=i

(e∗ j (t) − γ j (t)I ∗ j (t))

+ λe∗i (t) + (1 − λ)ei (t) − γi (t)(λI ∗i (t) − (1 − λ)I i (t))

⎞
⎠

⎞
⎠ (e∗i (t) − ei (t))

+
⎛
⎝−∂Ci (t, I ∗i (t))

∂ I i
− ∂

∂ei
Di

⎛
⎝t,

∑
j �=i

(e∗ j (t) − γ j (t)I ∗ j (t)) + λe∗i (t)

+(1−λ)ei (t)−γi (t)(λI ∗i (t) − (1 − λ)I i (t))

⎞
⎠
⎞
⎠ γi (t)(I ∗i (t) − I i (t))

⎫⎬
⎭dt ≥ 0.

Therefore, we have

G ′(1) =
t∫

0

{(
∂ Ri (t, e∗i (t))

∂ei
− ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei

)

×(e∗i (t) − ei (t)) +
(

−∂Ci (t, I ∗i (t))

∂ I i
− ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ I i

)

×γi (t)(I ∗i (t) − I i (t))

}
dt ≥ 0,

which is nothing but the variational inequality.
Conversely, let us assume that (e∗i (t), I ∗i (t), e∗−i (t), I ∗−i (t)) satisfies variational

inequality (12). Since Wi (t, ei (t), I i (t), e∗−i (t), I ∗−i (t)) is concave a.e. in [0, t], the
functional

W̃i (e
i , I i , e∗−i , I ∗−i ) =

t∫
0

Wi (t, ei (t), I i (t), e∗−i (t), I ∗−i (t))dt,
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is concave. Hence, by the characterization of concave function via the Fréchet deriv-
ative we have

W̃i (e
i , I i , e∗−i , I ∗−i ) − W̃i (e

∗i , I ∗i , e∗−i , I ∗−i )

≤ ∂W̃i (e∗i , I ∗i , e∗−i , I ∗−i )

∂ei
(ei − e∗i )

+∂W̃i (e∗i , I ∗i , e∗−i , I ∗−i )

∂ I i
γi (I i − I ∗i ) ≤ 0,

and hence (e∗i , I ∗i ) is a maximal solution.

Remark 2 Since the feasible sets Ki , i = 1, . . . , N , are separate, it is possible to
express the problem as the following single variational inequality

T∫
0

N∑
i=1

{(
−∂ Ri (t, e∗i (t))

∂ei
+ ∂ Di (

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei

)
(ei (t) − e∗i (t))

+
(

∂Ci (t, I ∗i (t))

∂ I i
+ ∂ Di (

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ I i

)

× γi (t)(I i (t) − I ∗i (t))

}
dt ≥ 0, (13)

∀(e(t), I (t)) = (ei (t), I i (t))i=1,..., N ∈ K , where K = ∏N
i=1 Ki .

We now prove that the pollution control equilibrium vector satisfying conditions
(8)–(11) is also a solution to variational inequality problem (13).

Theorem 2 A vector of emissions and investments (e∗(t), I ∗(t)) ∈ K is an equilib-
rium of the evolutionary environmental pollution control problem if and only if it is
solution to variational inequality problem (13).

Proof Let (e∗(t), I ∗(t)) ∈ K be an equilibrium pattern according to Definition 2.
Therefore, from (8) and (10), for all (e(t), I (t)) ∈ K , for each i = 1, . . . N and a.e.
in [0, t] we have

(
−∂ Ri (t, e∗i (t))

∂ei
+ ∂ Di (t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei
+ νi (t) − τi (t)

)

×(ei (t) − e∗i (t)) ≥ 0.

Analogously, from (9) and (11) we obtain

(
∂Ci (t, I ∗i (t))

∂ I i
+ ∂ Di (

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ I i
− νi (t) + τi (t)

)

×γi (t)(I i (t) − I ∗i (t)) ≥ 0.
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Summing up the above inequalities and taking into account (1), we find a.e. in [0, t]

N∑
i=1

{(
−∂ Ri (t, e∗i (t))

∂ei
+ ∂ Di (

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei

)
(ei (t) − e∗i (t))

+
(
∂Ci (t, I ∗i (t))

∂ I i
+ ∂ Di (

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ I i

)
γi (t)(I i (t) − I ∗i (t))

}
≥0,

and hence (13).
Conversely, let (e∗(t), I ∗(t)) ∈ K be a solution to the variational inequality prob-

lem. By contradiction we assume that the equilibrium conditions are not verified.
Without loss of generality we can suppose that conditions (8)–(10) are not satisfied
(the other possible situations can be proved with a similar reasoning). Hence, there
exist an index s ∈ {1, . . . , N } and a set U ⊂ [0, t] with positive measure, such that

− ∂ Rs(t, e∗s(t))

∂es
+ ∂ Ds(t,

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂es
< τs(t) − νs(t), on U.

(14)

Taking into account constraint (1), variational inequality (13) may be written as

0≤
T∫

0

N∑
i=1

{(
−∂ Ri (t, e∗i (t))

∂ei
+ ∂ Di (

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei

)
(ei (t)−e∗i (t))

+
(

∂Ci (t, I ∗i (t))

∂ I i
+ ∂ Di (

∑N
j=1 e∗ j (t)−γ j (t)I ∗ j (t))

∂ I i

)
γi (t)(I i (t)− I ∗i (t))

}
dt

=
T∫

0

N∑
i=1

{(
−∂ Ri (t, e∗i (t))

∂ei
+ ∂ Di (

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ei
+νi (t) − τi (t)

)

×(ei (t) − e∗i (t))

+
(

∂Ci (t, I ∗i (t))

∂ I i
+ ∂ Di (

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂ I i
− νi (t) + τi (t)

)

×γi (t)(I i (t) − I ∗i (t))

}
dt.

Let us choose I i (t) = I ∗i (t), for i = 1, . . . , N , ei (t) = e∗i (t) for i �= s in [0, t]
and

es(t)

{= e∗s(t) if t ∈ [0, t] \ U,

> e∗s(t) if t ∈ U.
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In virtue of the choices of e(t) and I (t) and due to condition (14), the above varia-
tional inequality reduces to

∫
U

(
−∂ Rs(t, e∗s(t))

∂es
+ ∂ Ds(

∑N
j=1 e∗ j (t) − γ j (t)I ∗ j (t))

∂es
+ νs(t) − τs(t)

)

× (es(t) − e∗s(t))dt < 0,

which is an absurd assertion.

4 Existence of solutions

The existence of solutions can be ensured under suitable assumptions as in [19], where a
comprehensive study on necessary conditions for the solvability of variational inequal-
ity problems is presented. We now recall some useful definitions adapted to our case.
In order to simplifying notation, we set for i = 1, . . . , N

−∇Wi (t, ei , I i , e∗−i , I ∗−i ) =
⎛
⎝ ∂ Ri (t,e∗i (t))

∂ei − ∂ Di (t,
∑N

j=1 e∗ j (t)−γ j (t)I ∗ j (t))

∂ei

− ∂Ci (t,I ∗i (t))
∂ I i − ∂ Di (t,

∑N
j=1 e∗ j (t)−γ j (t)I ∗ j (t))

∂ I i

⎞
⎠

T

.

Definition 3 −∇Wi (t, ei , I i , e∗−i , I ∗−i ) is said to be Fan-hemicontinuous iff for all
(ηi , �i ) ∈ Ki the function

(ei , I i ) �→ 〈−∇Wi (t, ei , I i , e∗−i , I ∗−i ), (ηi , �i ) − (ei , I i )〉L2

is weakly lower semicontinuous on K .

Definition 4 The map −∇Wi (t, ei , I i , e∗−i , I ∗−i ) is said to be pseudomonotone in

the sense of Karamardian (K-pseudomonotone) iff for all (ei , I i ), (ei , I
i
) ∈ Ki

〈−∇Wi (t, ei , I
i
, e∗−i , I ∗−i ), (ei , I

i
) − (ei , I i )〉L2 ≥ 0

→ 〈−∇Wi (t, ei , I i , e∗−i , I ∗−i ), (ei , I
i
) − (ei , I i )〉L2 ≥ 0.

Definition 5 The map −∇Wi (t, ei , I i , e∗−i , I ∗−i ) is said to be lower hemicontinuous
along line segments, iff the function:

(ηi , �i ) �→ 〈−∇Wi (t, η
i , �i , e∗−i , I ∗−i ), (ei , I i ) − (ei , I

i
)〉L2

is lower semicontinuous for all (ei , I i ), (ei , I
i
) ∈ Ki on the line segments

[(ei , I i ), (ei , I
i
)].
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Theorem 3 Let us assume that for every player i and every (ei , I i ) ∈ Ki function

−∇Wi (t, ei , I i , e∗−i , I ∗−i ) is Fan-hemicontinuous and there exist (ei , I
i
) ∈ Ki and

R > ‖(ei , I
i
)‖L2 such that

〈−∇Wi (t, ei , I i , e∗−i , I ∗−i ), (ei , I
i
) − (ei , I i )〉L2 ≥ 0,

(15)∀(ei , I i ) ∈ Ki ∩ {(ei , I i ) ∈ L2([0, T ], R
2) : ‖(ei , I i )‖L2 = R}.

Then the variational inequality problem (12) admits solutions.

Remark 3 As proved in [7], relationship (15) is ensured under condition that there
exists (̃ei , Ĩ i ) ∈ Ki

lim
‖(ei ,I i )‖L2 →∞,(ei ,I i )∈Ki

〈−∇Wi (t, ei , I i , e∗−i , I ∗−i ), (ei , I i ) − (̃ei , Ĩ i )〉L2

‖(ei , I i )‖L2
= +∞.

Other existence results can be given assuming a certain kind of monotonicity. In par-
ticular, we have the following outcome

Theorem 4 Let us assume that for every player i and every (ei , I i ) ∈ Ki function
−∇Wi (t, ei , I i , e∗−i , I ∗−i ) is K-pseudomonotone and lower hemicontinuous along
line segments. Let us further suppose that (15) is satisfied. Then the variational inequal-
ity problem (12) admits solutions.

We note that the advantage of using Theorem 4 lies in the fact that the lower hemi-
continuity is ensured by assumptions (2)–(5).

Finally, we note that, in virtue of Remark 2, the existence of solutions to problem
(13) is also established.

5 A numerical example

In this section, for illustrative purposes, we present a numerical example. In the time
interval [0, t] = [0, 1], we consider three countries (labeled as 1, 2 and 3, respectively)
characterized by the functions:

Ri (t, ei (t)) = −1

2
(ei (t))2 + 300ei (t),

Ci (t, I i (t)) = 150

2
(I i (t))2,

Di (t, e(t), I (t)) = (e1(t) − γ1(t)I 1(t) + e2(t) − γ2(t)I 2(t)

+e3(t) − γ3(t)I 3(t))2, i = 1, 2, 3,

and the quantities: γ1(t) = 1
2 t , γ2(t) = 2t , γ3(t) = t , E1(t) = 50t + 1, E2(t) = 30t

and E3(t) = 25t + 2. After some calculations, it is easy to verify that the pollu-
tion control problem with the above data is described by the evolutionary variational
inequality:
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1∫
0

{(
3e1(t) + 2e2(t) + 2e3(t) − 2γ1(t)I 1(t) − 2γ2(t)I 2(t) − 2γ3(t)I 3(t)

−300
)

(e1(t) − e∗1(t))

+
(
−2γ1(t)e

1(t) − 2γ1(t)e
2(t) − 2γ1(t)e

3(t) + (150 + 2(γ1(t))
2)I 1(t)

+2γ1(t)γ2(t)I 2(t) + 2γ1(t)γ3(t)I 3(t)
)

γ1(t)(I 1(t) − I ∗1(t))

+
(

2e1(t) + 3e2(t) + 2e3(t) − 2γ1(t)I 1(t) − 2γ2(t)I 2(t) − 2γ3(t)I 3(t)

−300
)

(e2(t) − e∗2(t))

+
(
−2γ2(t)e

1(t) − 2γ2(t)e
2(t) − 2γ2(t)e

3(t) + (150 + 2(γ2(t))
2)I 2(t)

+ 2γ1(t)γ2(t)I 1(t) + 2γ2(t)γ3(t)I 3(t)
)

γ2(t)(I 2(t) − I ∗2(t))

+
(

2e1(t) + 2e2(t) + 3e3(t) − 2γ1(t)I 1(t) − 2γ2(t)I 2(t) − 2γ3(t)I 3(t)

−300
)

(e3(t) − e∗3(t))

+
(
−2γ3(t)e

1(t) − 2γ3(t)e
2(t) − 2γ3(t)e

3(t) + (150 + 2(γ3(t))
2)I 3(t)

+ 2γ1(t)γ3(t)I 1(t) + 2γ2(t)γ3(t)I 2(t)
)

γ3(t)(I 3(t) − I ∗3(t))
}

dt ≥ 0,

∀(e(t), I (t)) ∈ K1 × K2 × K3,

where

Ki =
{
(ei (t), I i (t)) ∈ L2([0, 1], R

2) : ei (t) ≥ 0, I i (t) ≥ 0, a.e. in [0, 1]
0 ≤ ei (t) − γi (t)I i (t) = Ei (t), a.e. in [0, 1]

}
, i = 1, 2, 3.

Under regularity assumptions, see [20] and references therein, solutions are contin-
uous, hence we are led to solve a sequence of finite-dimensional variational inequality
problems. We omit the statements of the example, implemented as an M-script file of
MatLab and solved by applying the extragradient method with constant steplength as
in [18] (see also [26] for further discussions on efficient computational procedures),
and directly provide numerical results in graphical form.

Figure 1 shows the time evolution of emissions and investments and the differ-
ent investment policies adopted by the countries. We observe that investments are
much higher in country 2 where the efficiency coefficient is higher. This means that
country 2 is able to bear a higher investment effort in order to control the emission
levels. Moreover, for all the countries both emissions and investments increase until
a maximum value is reached. In other words, the investment curve reaches its max-
imum when emissions reach their higher level. After that time, both emissions and
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Fig. 1 Curves of equilibria

investments reduce with time along the equilibrium trajectories. The results also con-
firm the behaviors of emissions and investments at equilibrium (see Definition 2). In
fact, the emissions e∗1(t), e∗2(t), e∗3(t) are positive almost everywhere, so that, for
all the countries, the marginal damage cost of emitting minus the marginal revenue
of emitting equals the shadow price of net emissions minus the marginal abatement
cost (see (8) and (10)). In addition, I ∗2(t) is positive almost everywhere, so that, for
country 2, the marginal damage cost of investing plus the marginal cost of investing
equals the marginal abatement cost minus the shadow price of net emissions (see (9)
and (11)). Finally, since after a certain time investments I ∗1(t) and I ∗3(t) vanish,
inequality (9) tends to be strictly satisfied for countries 2 and 3. It is worth noting
that different scenarios are possible, depending on the values of the model parameters
γi (t), Ei (t), i = 1, 2, 3.

6 Conclusions

In this paper we presented an evolutionary variational inequality framework for the
study of the environmental pollution control problem, with particular regard to Kyoto
Protocol’s commitments. We examined multicriteria decision-making problems of
countries involved in the Treaty, aiming at maximizing their revenue and minimizing
both the investments in environmental projects and the damage from pollution. We
showed how the optimal solution of the optimization problem of each country satisfies
an evolutionary variational inequality, for which we were able to ensure the existence
of solutions. Moreover, we stated the equilibrium conditions that we characterized in
terms of the evolutionary variational inequality. To the best of our knowledge for the
first time, an evolutionary variational inequality approach was applied to the study of
investment strategies in Kyoto’s mechanisms.

Future extensions of the work may include the following issues. First, the model
could be refined by introducing delay effects in the environmental constraint ei (t) −
γi (t)I i (t) ≤ Ei (t), so that real reactions to environmental projects could be studied.
Second, a memory term which shows how the current equilibrium situation is affected
by the equilibrium distributions of the previous observation times (see [20]) could be
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introduced. Third, the infinite dimensional duality theory (see [10]) could be applied to
our problem in order to shed light on intrinsic properties and economic interpretation
of the model.
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