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Abstract In this paper, we deal with a special case of the two-machine flow shop
scheduling problem with several availability constraints on the second machine, under
the resumable scenario. We develop an improved algorithm with a relative worst-case
error bound of 4/3.

Keywords Flow shop scheduling · Availability constraint · Approximation
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1 Introduction

While most papers dealing with the scheduling field assume that the machines are
available all the time, a growing number of works are considering that the machines
are subject to breakdown. Authors differentiate between different models, the semi-
resumable (sr) case that if a job cannot be finished before the next down period of
a machine then the job will have to partially restart when the machine has become
available again. This model contains two special cases: namely the resumable(r)

when the job can be continued without any penalty and the nonresumable(nr) case
when the job needs to totally restart.

In this paper, we tackle a special case of the two-machine flow shop scheduling
problem with several availability constraints (holes for short) on the second machine.
In our case, we consider that the last hole starts before the optimal completion time
(C joh) of all the jobs when considering the F2||Cmax problem. The objective is to
find a schedule of n given jobs that minimizes the total completion time (i.e. the
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584 H. Hadda

makespan). Each job Ji is composed by two operations Oi A and Oi B , which have to
be processed on two machines A and B. Each machine can process at most one job
at a time. Machine A is assumed to be always available. While machine B is unavail-
able during q holes and the precise time of each hole is known in advance. Besides,
all jobs are supposed to be resumable. Following Kubzin et al. [7], we will use the
notation F2|h(qA, qB), T |Cmax to denote a two-machine flow shop problem with qA

(respectively qB) holes on machine A(B) under scenario T ∈ {r, sr, nr}. Extending
this notation, we will denote our special case F2|h(0, q), r, sq < C joh|Cmax, where sq

is the start time of the last hole on machine B.
While the well-known two-machine flow shop problem can be solved by Johnson’s

algorithm [5], Lee [8,9] showed that the problem with an availability constraint is
NP-hard, and proposed a ( 3

2 )-approximation algorithm for the F2|h(0, 1), sr |Cmax
problem; and a 2-approximation algorithm for the F2|h(1, 0), sr |Cmax. Better
approximation algorithms have been proposed for the resumable scenario. In this
respect, Breit [1] gives a ( 5

4 )-approximation algorithm for the F2|h(0, 1), r |Cmax

problem, while Cheng and Wang [3] propose a ( 4
3 )-approximation algorithm for the

F2|h(1, 0), r |Cmax. Finally, it has been shown that the two-machine flow shop with a
single hole admits a PTAS under the semiresumable scenario [7] and a FPTAS under
the resumable scenario [10].

Concerning the two-machine flow shop problem with a variable number of holes, it
has been shown to be NP-hard in the strong sense [6]. Furthermore, the problem under
the resumable scenario, has been proven to be non-approximable within a fixed factor
in polynomial time provided that there is at least one hole on the second machine [6,9].
Under the semiresumable and nonresumable scenarios, Breit et al. [2] prove that the
single machine problem with two holes is also non-approximable within a fixed factor
in polynomial time. This means that the F2|h(q, 0), r |Cmax problem is the only con-
figuration of the two-machine flow shop problem with several holes that may admit
a fixed factor approximation algorithm, for which Kubzin et al. [7] propose a ( 3

2 )-
approximation algorithm. In this context, Cheng and Wang [4] propose a ( 5

3 )-approx-
imation algorithm for the particular configuration of the semiresumable two-machine
flow shop problem with consecutive two holes (one on each machine).

The remainder of this paper is organized as follows. Section 2 introduces some
notations and definitions. In Sect. 3, we state our approximation algorithm and analyze
its worst-case behavior.

2 Notation and basic definitions

We will use the following notation.
J = {J1, . . . , Jn}: the set of jobs.
π = 〈π(1), . . . , π(n)〉: a permutation schedule where π(i) is the ith job in π .
ai , bi : processing times for Ji on A and B respectively.
q : number of holes. Without loss of generality we assume that no two holes overlap.
sk, tk : start and finish time of hole k, k ∈ {1, . . . , q}. We assume that s1 <s2 < · · ·<sq .
hk = tk − sk : length of hole k.
Si j (π) and Ci j (π): the start and finish time of operation Oi j , i ∈ {1, . . . , n}, j ∈
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{A, B} in a permutation π . We will drop the reference to the schedule π whenever no
confusion can arise.
Cmax(π): the makespan of π .
π�: an optimal solution.
C�

max: the optimal makespan.
C joh: the optimal makespan for F2||Cmax. It is evident that

C joh ≤ C�
max. (1)

We also define a(Q) = ∑
Jk∈Q ak, b(Q) = ∑

Jk∈Q bk for a non-empty set
Q of jobs.

Furthermore, for a given job π(k) in π we define Hπ(k) = ∑
hi ∈I hi , where I =

{hi | si > Sπ(k)B}, and HT = ∑
1≤i≤q hi .

We note that it is sufficient to consider permutation schedules for the F2|h(0, q), r |
Cmax [7]. Furthermore, we assume that all operations are started as early as possible.

The special case that we consider assumes that sq < C joh, and necessarily, hole q
will affect all schedules. Hence

b(J ) + HT ≤ C�
max. (2)

We also note that the assumed restriction (sq < C joh), is reasonable, as in many
situations, C joh can be considered as an approximation to the scheduling horizon.

In order to calculate the makespan of a given schedule π , we have to search for the
job π(u) which starts the last busy period on machine B. One of the following two
conditions must be realized (see Fig. 1).

Condition1 Cπ(u)A = Sπ(u)B . Hence

Cmax(π) = Cπ(u)A +
n∑

i=u

bπ(i) + Hπ(u). (3)

Fig. 1 Two shapes of schedule π
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Condition2 There exists a hole r such that sr ≤ Cπ(u)A < tr . Hence

Cmax(π) = tr +
n∑

i=u

bπ(i) + Hπ(u). (4)

While the general F2|h(0, q), r |Cmax problem is not polynomially approximable
within a fixed factor [9], the next result shows that it is not the case for our special case.

Theorem 1 If π is a solution to F2|h(0, q), r, sq < C joh|Cmax, then Cmax(π)/C�
max

≤2.

Proof Let π(u) be the job which starts the last busy period on machine B. If π(u)

follows (condition1), then using (2) and (3) we have Cmax(π) = Cπ(u)A+∑n
i=u bπ(i)+

Hπ(u) ≤ a(J ) + b(J ) + HT ≤ 2C�
max.

Otherwise (π(u) follows (condition2)), using (2) and (4), we obtain Cmax(π) =
tr + ∑n

i=u bπ(i) + Hπ(u) ≤ C�
max + b(J ) + HT ≤ 2C�

max. ��
We now recall the following rule for the two-machine flow shop problem.

Ratio Rule (R R) : Ji precedes J j if bi/ai > b j/a j . If bi/ai = b j/a j , we break the
tie arbitrarily.

3 An improved heuristic

We introduce now a ( 4
3 )−approximation algorithm for the F2|h(0, q), r, sq < C joh|

Cmax problem.

Algorithm H:

(i) Let Jx and Jy be two jobs with the largest and the second largest processing
time on A, respectively, i.e. min{ax , ay} ≥ ai for i = 1, . . . , n, i �= x, i �= y,
and ax ≥ ay .

(ii) Sequence the jobs of J according to R R. Call the resulting schedule π0. And
let CH = Cmax(π0).

(iii) For p = 1, . . . , n, sequence the jobs in the same sequence as that in step (ii)
except that Jx is scheduled in the position p. Call the corresponding schedule
πp and let CH = min{CH , Cmax(πp)}. (Note that πp(p) = Jx ).

(iv) Sequence arbitrarily the jobs of J\{Jx , Jy}. Then sequence Jx and Jy as the last
two jobs such that the completion time of the last one is minimized. Call the
resulting schedule πn+1 and let CH = min{CH , Cmax(πn+1)}.

It is clear that Algorithm H can be executed in O(n log n) time.
Before giving the worst-case error bound of algorithm H , we establish the following

two lemmas which will be used in the subsequent analysis.

Lemma 1 For schedule πp(0 ≤ p ≤ n), let Jy = πp(u) be the job which starts the
last busy period on machine B in πp. Given an optimal solution π�, let Jz = π�(u′)
be a job in π� such that Sz A(π�) ≤ Sy A(πp) ≤ Cz A(π�).
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(i) For schedule πp(1 ≤ p ≤ n), assume that Jx = πp(p) = π�(p′). If (p ≥ u and
p′ ≥ u′) or (p < u and p′ < u′) then

n∑

i=u

bπp(i) + Hπp(u) ≤
n∑

i=u′
bπ�(i) + Hπ�(u′).

(ii) For schedule π0 we have

n∑

i=u

bπ0(i) + Hπ0(u) ≤
n∑

i=u′
bπ�(i) + Hπ�(u′).

Proof (i) We note E = {πp(i) | u ≤ i ≤ n}, F = {π�(i) | u′ ≤ i ≤ n} and
G = E ∩ F .
By definition of job Jz , we have a(E) ≤ a(F), then

a(E\G) ≤ a(F\G). (5)

It is clear that whether (p ≥ u and p′ ≥ u′) or (p < u and p′ < u′), we have
Jx /∈ E\G and Jx /∈ F\G. As the jobs in πp, except Jx , are scheduled accord-
ing to R R, then we have by/ay ≥ bi/ai ∀Ji ∈ E\G, and by/ay ≤ bi/ai ∀Ji ∈
F\G. Hence, and using (5), we derive that

∑

Ji ∈E\G

bi =
∑

Ji ∈E\G

ai

(
bi

ai

)

≤
∑

Ji ∈E\G

ai

(
by

ay

)

≤
∑

Ji ∈F\G

ai

(
by

ay

)

≤
∑

Ji ∈F\G

ai

(
bi

ai

)

=
∑

Ji ∈F\G

bi .

Hence b(E\G) ≤ b(F\G) and so

n∑

i=u

bπp(i) ≤
n∑

i=u′
bπ�(i). (6)

As Jy starts a busy period on machine B, then (6) implies that SzB(π�) ≤
Sy B(πp), for otherwise π� is not optimal. Hence Hπp(u) ≤ Hπ�(u′) and we
obtain

n∑

i=u

bπp(i) + Hπp(u) ≤
n∑

i=u′
bπ�(i) + Hπ�(u′).
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Fig. 2 Schedule πp satisfying Lemma 2

(ii) Given that all jobs in π0 are scheduled according to R R, using a similar
argument as in (i), it should be easy to show the result. ��

Lemma 2 One of the following two conditions must be realized.

– Jx is the first job in π�.
– There exists a schedule πp, 2 ≤ p ≤ n, such that Sπp(p−1)A(πp) < Sx A(π�) ≤

Sx A(πp).

Proof Suppose that Jx is not the first job in π�. We consider the schedule πn (where
Jx is scheduled last). Let πn(p) be the first job of πn such that Sπn(p)A(πn) ≥ Sx A(π�)

(see Fig. 2). It is then easy to see that schedule πp obtained by scheduling Jx in position
p is such that Sπp(p−1)A(πp) < Sx A(π�) ≤ Sx A(πp) (see Fig. 2). ��

The worst-case performance of algorithm H is given by Theorem 2.

Theorem 2 For the F2|h(0, q), r, sq < C joh|Cmax problem, the relative worst-case
error bound of algorithm H is given by CH /C�

max ≤ 4/3.

Proof Let Q = {Ji ∈ J |ai ≥ C�
max/3}. Although it is NP-hard to calculate C�

max, it
is obvious that |Q| ≤ 3. Furthermore, the unique configuration that satisfies |Q| = 3,
is to have 3 jobs such that a1 = a2 = a3 = C�

max/3, b3 = 0 and the rest of the jobs
such that ai = 0. Considering that this case is obvious, in the remainder of the proof
we assume that |Q| ≤ 2.

We are going to consider the following 3 cases.

Case 1 |Q| = 0.

We consider the schedule π0. Let Jy = π0(u) be the job which starts the last
busy period on machine B. And let Jz = π�(u′) be a job in π� such that Sz A(π�) ≤
Sy A(π0) ≤ Cz A(π�). From Lemma 1(ii) we have

n∑

i=u

bπ0(i) + Hπ0(u) ≤
n∑

i=u′
bπ�(i) + Hπ�(u′). (7)
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(a) (b)

Fig. 3 Schedules π0 and π�

If Jy satisfies (condition1), then form (3) and (7) we obtain

Cmax(π0) = Cy A(π0) +
n∑

i=u

bπ0(i) + Hπ0(u)

≤ Sy A(π0) + ay +
n∑

i=u′
bπ�(i) + Hπ�(u′)

≤ Cz A(π�) + ay +
n∑

i=u′
bπ�(i) + Hπ�(u′). (8)

Given the position of Jz in π�, we have Cz A(π�)+∑n
i=u′ bπ�(i) + Hπ�(u′) ≤ C�

max.
Hence, using (8) we obtain Cmax(π0) ≤ C�

max + ay . As by assumption ay < C�
max/3,

then Cmax(π0) ≤ 4C�
max/3.

If Jy satisfies (condition2), two cases are to be considered (see Fig. 3)

Case 1-1 SzB(π�) ≥ tr . In this case it is easy to verify that tr + ∑n
i=u′ bπ�(i) +

Hπ�(u′) ≤ C�
max. Hence, and using (4) and (7), we obtain Cmax(π0) = tr+∑n

i=u bπ0(i)+
Hπ0(u) ≤ C�

max.

Case 1-2 SzB(π�) < sr . We note δ = sr − SzB(π�). By construction we have δ ≤
ay ≤ C�

max/3, and tr + ∑n
i=u′ bπ�(i) + Hπ�(u′) − δ ≤ C�

max. Hence and using (4) and
(7) we have

Cmax(π0) = tr +
n∑

i=u

bπ0(i) + Hπ0(u)

≤ tr +
n∑

i=u′
bπ�(i) + Hπ�(u′) − δ + δ

≤ C�
max + δ

≤ 4C�
max/3.
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Case 2 |Q| = 1 (i.e. Q = {Jx }).
We note Jx = π�(p′) = πp(p). We consider step (iii) of the algorithm. According

to Lemma 2, one of the following two cases must be realized.

Case 2-1 There exists a schedule πp, 2 ≤ p ≤ n, such that Sπp(p−1)A(πp) <

Sx A(π�) ≤ Sx A(πp) (see Fig. 2).

Case 2-2 Jx is the first job in π�.

We consider separately each case.

Case 2-1 Let Jy = πp(u) be the job which starts the last busy period on machine B
in schedule πp.

If Jy �= Jx , let Jz = π�(u′) be a job in π� such that Sz A(π�) ≤ Sy A(πp) ≤
Cz A(π�).

It should be clear that if p ≥ u then p′ ≥ u′, and if p < u then p′ < u′. Thus, from
Lemma 1(i) we obtain

∑n
i=u bπp(i) + Hπp(u) ≤ ∑n

i=u′ bπ�(i) + Hπ�(u′). Using exactly
the same argument as in case 1, we derive Cmax(πp) ≤ C�

max + ay ≤ 4C�
max/3.

Otherwise, Jy = Jx = πp(p). Let Jz = Jx = π�(p′). We have Sz A(π�) ≤
Sy A(πp) ≤ Cz A(π�) then from Lemma 1(i) we obtain

n∑

i=p

bπp(i) + Hπp(p) ≤
n∑

i=p′
bπ�(i) + Hπ�(p′). (9)

If Jx follows (condition1) then using (3) and (9) we obtain

Cmax(πp) = Cx A(πp) +
n∑

i=p

bπp(i) + Hπp(p)

≤ Sπp(p−1)A(πp) + aπp(p−1) + ax +
n∑

i=p′
bπ�(i) + Hπ�(p′)

≤ Sx A(π�) + aπp(p−1) + ax +
n∑

i=p′
bπ�(i) + Hπ�(p′). (10)

Given the position of Jx in π�, we have Sx A(π�) + ax + ∑n
i=p′ bπ�(i) + Hπ�(p′) ≤

C�
max. Hence, using (10) we obtain

Cmax(πp) ≤ C�
max + aπp(p−1) ≤ 4C�

max/3.

If Jx follows (condition2), as in case 1, we consider the following two cases:

Case 2-1-1 Sx B(π�) ≥ tr . In this case it is easy to verify that as in case 1-1, tr +∑n
i=p′ bπ�(i) + Hπ�(p′) ≤ C�

max. Hence, and using (4) and (9), we obtain Cmax(πp) =
tr + ∑n

i=p bπp(i) + Hπp(p) ≤ C�
max.
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Case 2-1-2 Sx B(π�) < sr . We again consider δ = sr − Sx B(π�). We have

δ = sr − Sx B(π�)

≤ Cx A(πp) − Cx A(π�)

≤ Sx A(πp) − Sx A(π�)

≤ aπp(p−1) ≤ C�
max/3,

and tr + ∑n
i=p′ bπ�(i) + Hπ�(p′) − δ ≤ C�

max. Hence and using (4) and (9) we have

Cmax(πp) = tr +
n∑

i=p

bπp(i) + Hπp(p)

≤ tr +
n∑

i=p′
bπ�(i) + Hπ�(p′) − δ + δ

≤ C�
max + δ ≤ 4C�

max/3.

Case 2-2 We consider π1 where Jx is scheduled first as in π�. Let Jy = π1(u) be the
job which starts the last busy period on machine B in schedule π1.

If Jy �= Jx then using Lemma 1(i), it can be shown that Cmax(π1) ≤ C�
max+aπ1(u) ≤

4C�
max/3. Otherwise we have Cmax(π1) = ax +b(J )+ Hπ1(1) = ax +b(J )+ Hπ�(1) ≤

C�
max.

Case 3 |Q| = 2.

In this case, we have

a(J\Q) = a(J ) − a(Q) ≤ C�
max/3. (11)

We consider the schedule πn+1. Let Jy = πn+1(u) be the job which starts the last
busy period on machine B.

If Jy /∈ Q, then it should be clear that either Jy follows (condition1) or (condition2)
we have Cmax(πn+1) ≤ a(J\Q) + b(J ) + HT . Hence, using (2) and (11) we obtain
Cmax(πn+1) ≤ 4C�

max/3.
Otherwise Jy ∈ Q. As the jobs of Q are scheduled such as to minimize the total

completion time, then the completion time of jobs in Q considered alone should be
no greater than C�

max. Hence we have Cmax(πn+1) ≤ a(J\Q) + C�
max ≤ 4C�

max/3.
We then conclude that

CH = min
0≤p≤n+1

{Cmax(πp)} ≤ 3C�
max/2

The proof is complete. ��
Although we are not able to show that the bound is tight, the following instance

shows that the bound cannot be better than 5/4. We consider the following problem
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instance with n = z + 2 and q = 1. Let a1 = a2 = a3 = z, b1 = b2 = z, b3 = 1,

ai = bi = 1 for 4 ≤ i ≤ n, s1 = z, t1 = 2z − 1 where z > 2. Without loss of
generality, we set Jx = J2 and Jy = J3.

It is clear that step (ii) may result in schedule π0 = 〈J1, J4, . . . , Jn, J2, J3〉 with
Cmax(π0) = 5z − 1.

For p=1, . . . , n, step (iii) may result in schedules π1 =〈J2, J1, J4, J5, . . . , Jn, J3〉,
π2 = 〈J1, J2, J4, J5, . . . , Jn, J3〉, π3 = 〈J1, J4, J2, J5, . . . , Jn, J3〉, . . . and πn =
〈J1, J4, J5, . . . , Jn, J3, J2〉 with Cmax(πp) = 5z − 1 for p = 1, . . . , n.

Step (iv) may result in schedule πn+1 = π0 with Cmax(πn+1) = 5z − 1. Hence
CH = 5z − 1. However the optimal solution is π� = 〈J4, . . . , Jn, J1, J2, J3〉 with
C�

max = 4z. We see that CH /C�
max goes to 5/4 as z approaches to infinity.
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