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Abstract It is well known that the sufficient descent condition is very important
to the global convergence of the nonlinear conjugate gradient method. In this paper,
some modified conjugate gradient methods which possess this property are presented.
The global convergence of these proposed methods with the weak Wolfe–Powell
(WWP) line search rule is established for nonconvex function under suitable condi-
tions. Numerical results are reported.

Keywords Unconstrained optimization · Line search · Conjugate gradient method ·
Sufficient descent

1 Introduction

The nonlinear conjugate gradient (CG) method plays a very important role for solving
the unconstrained optimization problem

min
x∈�n

f (x), (1.1)

where f : �n → � is continuously differentiable. The CG method is usually designed
by the iterative form

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (1.2)
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12 G. Yuan

where xk is the current iterate point, αk > 0 is a steplength, and dk is the search
direction defined by

dk =
{

−gk + βkdk−1, if k ≥ 1

−gk, if k = 0,
(1.3)

where gk is the gradient ∇ f (xk) of f (x) at the point xk, and βk ∈ � which determines
the different conjugate gradient methods [1,13,19,23] is a scalar. There are some well-
known formulas which are given as follows

βPRP
k = gT

k (gk − gk−1)

‖gk−1‖2 , [15,16], (1.4)

βFR
k = gT

k gk

‖gk−1‖2 , [7], (1.5)

βCD
k = gT

k gk

−dT
k−1gk−1

, [6], (1.6)

βLS
k = gT

k (gk − gk−1)

−dT
k−1gk−1

, [14], (1.7)

βHS
k = gT

k (gk − gk−1)

(gk − gk−1)T dk−1
, [12], (1.8)

βDY
k = gT

k gk

(gk − gk−1)T dk−1
, [3], (1.9)

where gk−1 and gk are the gradients ∇ f (xk−1) and ∇ f (xk) of f (x) at the point
xk−1 and xk, respectively, ‖.‖ denotes the Euclidian norm of vectors. Although these
methods are equivalent [4,23] when f is a strictly convex quadratic function and αk

is calculated by the following exact minimization rule:

f (xk + αkdk) = min
α≥0

f (xk + αdk), (1.10)

their behaviors for general objective functions may be far different. For general func-
tions, Zoutendjk [25] proved the global convergence of FR method with exact line
search. Although one would be satisfied with its global convergence, the FR method
performs much worse than the PRP (HS, LS) method in real computations. Powell
[18] analyzed a major numerical drawback of the FR method, namely, if a small step is
generated away from the solution point, the subsequent steps may be also very short.
On the other hand, in practical computation, the PRP method, the HS method, and the
LS method are generally believed to be the most efficient conjugate gradient meth-
ods since these methods essentially perform a restart if a bad direction occurs. The
convergences of the CD method, the DY method, and the FR method are established
[3,6,7], however their numerical results are not so well.
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Modified nonlinear conjugate gradient methods 13

Powell [17] gave a counter example which showed that there exist nonconvex
functions on which the PRP method does not converge globally even if the exact
line search is used. He suggested that βk should not be less than zero, which is very
important to the global convergence [4,18]. Considering this suggestion, Gilbert and
Nocedal [8] proved that the modified PRP method β+

k = max{0, βPRP
k } with the WWP

line search is globally convergent under the sufficient descent condition. Over the past
few years, much effort has been put to find out new formulas for conjugate methods
which have not only global convergence property for general functions but also good
numerical performance [4,8]. In resent years, some good results on the nonlinear
conjugate gradient method are given [2,9–11,13,20,22,24].

The sufficient descent condition

gT
k dk ≤ −c‖gk‖2, ∀ k ≥ 0, c > 0 is a constant (1.11)

is very important, and it may be crucial for the global convergence of conjugate gradient
methods [8]. Then it is an interesting task to design a conjugate gradient method which
possesses this condition.

Motivated by the above observations, we present some new conjugate gradient
methods which have sufficient descent condition and the property of the scalar βk ≥ 0.
The global convergence of the new methods is established for nonconvex function
under assumptions. Numerical results show that these methods are interesting.

In the next section, motivation and the new algorithm are given. The sufficient
descent property and the global convergence of the proposed algorithm are proved in
Sect. 3. The generalization of the new technique is proposed in Sect. 4. Numerical
results and one conclusion are presented in Sect. 5 and in Sect. 6, respectively.

2 Algorithm

Yu [21] proposed some modified conjugate gradient formulas and got better results.
Here we state his modified PRP formula as follows:

βDPRP
k = βPRP

k − µ‖yk‖2

‖gk‖4 gT
k+1dk,

where µ > 1
4 is a constant, and yk = gk+1 − gk . Motivated by his idea and the

discussion of the above section, we present our new PRP formula:

βMPRP
k = βPRP

k − min

{
βPRP

k ,
µ‖yk‖2

‖gk‖4 gT
k+1dk

}
. (2.1)

It is easy to see that this formula satisfies the conjugate condition and the scalar
βMPRP

k ≥ 0 is true. In the next section, we will show that our new formula has the
sufficient descent condition (1.11) too.
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14 G. Yuan

Algorithm 1 (The modified PRP algorithm)

Step 0: Choose an initial point x0 ∈ �n, ε ∈ (0, 1), µ> 0. Set d0 = −g0 = −∇ f (x0),

k := 0.

Step 1: If ‖gk‖ ≤ ε, then stop; Otherwise go to the next step.
Step 2: Compute step size αk by some line search rule.
Step 3: let xk+1 = xk + αkdk . If ‖gk+1‖ ≤ ε, then stop.
Step 4: Calculate the search direction

dk+1 = −gk+1 + βMPRP
k dk . (2.2)

Step 5: Set k := k + 1, and go to Step 2.

3 The sufficient descent property and the global convergence

The weak Wolfe–Powell (WWP) line search is designed to find a step length αk

satisfying

f (xk + αkdk) ≤ fk + δαk gT
k dk (3.1)

and

g(xk + αkdk)
T dk ≥ σgT

k dk, (3.2)

where fk = f (xk), δ ∈ (0, 1/2), σ ∈ (δ, 1). Under this line search, the global
convergence of the very effective PRP conjugate gradient method is still open and the
sufficient descent condition (1.11) cannot be satisfied for the PRP method and the FR
method. In this section, we will prove that Algorithm 1 is globally convergent under
this line search rule. Now we give the sufficient descent property of our new formula
without any line search.

Theorem 3.1 Consider (2.2), then the condition (1.11) holds for all k ≥ 0.

Proof If k = 0, then gT
0 d0 = −‖g0‖2, (1.11) holds. Now we prove that (1.11) holds

for all k ≥ 0. By (1.4), (2.1), and (2.2), we have

gT
k+1dk+1 = −‖gk+1‖2 + βMPRP

k dT
k gk+1

= −‖gk+1‖2 +
(

βPRP
k − min

{
βPRP

k ,
µ‖yk‖2

‖gk‖4 gT
k+1dk

})
dT

k gk+1

= −‖gk+1‖2 +
(

gT
k+1 yk

‖gk‖2 − min

{
gT

k+1 yk

‖gk‖2 ,
µ‖yk‖2

‖gk‖4 gT
k+1dk

})
dT

k gk+1

(3.3)

Denote u = ‖gk‖√
2µ

gk, v =
√

2µgT
k+1dk

‖gk‖ yk .We discuss the above equation by the following
two cases.
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Modified nonlinear conjugate gradient methods 15

Case (i) βPRP
k <

µ‖yk‖2

‖gk‖4 gT
k+1dk . By (3.3), we obtain gT

k+1dk+1 = −‖gk+1‖2.

Case (ii) βPRP
k ≥ µ‖yk‖2

‖gk‖4 gT
k+1dk . The Eq. (3.3) can be rewritten as

gT
k+1dk+1 = −‖gk+1‖2 +

(
gT

k+1 yk

‖gk‖2 − µ‖yk‖2

‖gk‖4 gT
k+1dk

)
dT

k gk+1

=
dT

k gk+1gT
k+1 yk − ‖gk+1‖2‖gk‖2 − µ‖yk‖2

‖gk‖2 (gT
k+1dk)

2

‖gk‖2

= uT v − 1
2 (‖u‖2 + ‖v‖2)

‖gk‖2 + −(1 − 1
4µ

)‖gk+1‖2‖gk‖2

‖gk‖2

≤ −(1 − 1

4µ
)‖gk+1‖2,

where the last inequality follows the inequality uT v ≤ 1
2 (‖u‖2 + ‖v‖2). Let c =

min{1, 1 − 1
4µ

}, then the conclusion of this theorem holds. The proof is complete.

In order to prove the convergence of the nonlinear conjugate gradient methods, the
following assumptions are often needed [3,4,23].

Assumption 3.1 (i) The level set � = {x ∈ �n | f (x) ≤ f (x0)} is bounded,
where x0 is a given point.

(ii) In an open convex set �0 that contains �, f has a lower bound, is differentiable,
and its gradient g is Lipschitz continuous, namely, there exists a constants L > 0
such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ �0. (3.4)

Lemma 3.1 Suppose that Assumption 3.1 holds. Let the sequence {gk} and {dk} be
generated by Algorithm 1, and let the stepsize αk be determined by the WWP line
search (3.1) and (3.2). Then the Zoutendijk condition [25]

∞∑
k=0

(gT
k dk)

2

‖dk‖2 < +∞ (3.5)

holds.

Proof By Theorem 3.1 and (3.1), we have

f (xk+1) ≤ fk + δαk gT
k dk ≤ fk ≤ fk−1 ≤ · · · ≤ f (x0),

which implies that the sequence { fk} is bounded. Using Theorem 3.1 again, (3.2), and
Assumption 3.1(ii), we obtain

−(1 − σ)gT
k dk ≤ (gk+1 − gk)

T dk ≤ ‖gk+1 − gk‖‖dk‖ ≤ αk L‖dk‖2,
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16 G. Yuan

combining this with (3.1), we get

δ(1 − σ)

L

(gT
k dk)

2

‖dk‖2 ≤ fk − fk+1.

Since { fk} is bounded, we have

δ(1 − σ)

L

∞∑
k=0

(gT
k dk)

2

‖dk‖2 ≤ ( f0 − f1) + ( f1 − f2) + · · · = f0 − f ∞ < +∞.

This completes the proof.

Theorem 3.2 Let the sequences {gk} and {dk} be generated by Algorithm 1 with the
weak Wolfe–Powell line search. Suppose that there exists a positive constant α∗ that
satisfies αk ≥ α∗. Then

lim
k→∞ ‖gk‖ = 0 (3.6)

holds.

Proof From Assumption 3.1(i), there exists a constant M > 0 such that

‖αkdk‖ = ‖sk‖ ≤ M. (3.7)

Combining (3.7) and αk ≥ α∗, we have

‖dk‖ ≤ M

α∗ . (3.8)

By (3.8), (3.5), and (1.11), we obtain (3.6). The proof is complete.

4 Generalizations of the new technique

Observing the formula βMPRP
k and βPRP

k , we let the numerator be Yk = yk = gk+1−gk

and the denominator be Rk = ‖gk‖2, then

βMPRP
k =βPRP

k −min

{
βPRP

k ,
µ‖yk‖2

‖gk‖4 gT
k+1dk

}
= gT

k+1Yk

Rk
−min

{
gT

k+1Yk

Rk
,
µ‖Yk‖2

R2
k

gT
k+1dk

}
.

So we generalize the choices of Yk = gk+1 and Rk = ‖gk‖2 to the FR formula:

βFR
k = gT

k+1gk+1

‖gk‖2 = gT
k+1Yk

Rk
, the modified FR formula is:

βMFR
k = gT

k+1Yk

Rk
−min

{
gT

k+1Yk

Rk
,
µ‖Yk‖2

R2
k

gT
k+1dk

}
=βFR

k −min

{
βFR

k ,
µ‖gk+1‖2

‖gk‖4 gT
k+1dk

}
.
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Modified nonlinear conjugate gradient methods 17

Motivated by the above generalization and the idea of Yu [21], similarly, we get other
modified formulas as follows:

βMCD
k = βCD

k − min

{
βCD

k ,
µ‖gk+1‖2

(−dT
k gk)2

gT
k+1dk

}
,

βMLS
k = βLS

k − min

{
βLS

k ,
µ‖yk‖2

(−dT
k gk)2

gT
k+1dk

}
,

βMDY
k = βDY

k − min

{
βDY

k ,
µ‖gk+1‖2

(dT
k yk)2

gT
k+1dk

}
,

βMHS
k = βHS

k − min

{
βHS

k ,
µ‖yk‖2

(dT
k yk)2

gT
k+1dk

}
.

Similar to the modified PRP formula (2.1), it is not difficult to prove that the above
modified formulas also have the sufficient descent property (1.11) and the correspond-
ing algorithms satisfy (3.6). Then we state them as follows, but omit the proof.

Theorem 4.1 Let the scalar βk of (1.3) be replaced by βMFR
k , βMCD

k , βMLS
k , βMDY

k ,

and βMHS
k , respectively, then we have the sufficient descent property (1.11). Moreover,

if βPRP
k of (2.2) is replaced by the above formulas, respectively, the conditions in

Theorem 3.2 hold. Then the corresponding algorithms satisfy (3.6) too.

5 Numerical results

In this section, numerical experiments are reported. The unconstrained optimization
problems with the given initial points can be found at:

www.ici.ro/camo/neculai/SC ALCG/testuo.pd f,

which were collected by Neculai Andrei. We test the modified methods with the WWP
line search and compare their performances with the performances of the normal
methods. The stop criterions are given below: the program is stopped if the inequality
‖g(xk)‖ ≤ ε is satisfied or the inequality ‖g(xk)‖ ≤ ε(1+| f (xk)|) is satisfied, where
ε = 1.0D − 5.

All codes were written in Fortran and run on PC with 2.60GHz, CPU processor,
256MB memory, and Windows XP operating system. In the following figures, the
parameters were chosen as δ = 1.0D − 4, σ = 1.0D − 1, and µ = 0.5. The detailed
numerical results are listed on the web site

Http://blog.sina.com.cn/gonglinyuan.
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Fig. 1 Performance profiles of conjugate gradient methods MFR, FR, MPRP, and PRP
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Fig. 2 Performance profiles of conjugate gradient methods MLS, LS, MCD, and CD

In Figs. 1–3, “PRP”, “MPRP”, “FR”, “MFR”, “CD”, “MCD”, “LS”, “MLS”, “DY”,
“MDY”, “HS” and “MHS” stand for the PRP method, the modified PRP method, the
FR method, the modified FR method, the CD method, the modified CD method, the
LS method, the modified LS method, the DY method, the modified DY method, the HS
method and the modified HS method, respectively. Figures 1–3 shows the performance
of these twelve methods relative to NFN that denotes the sum of the iterative number
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Fig. 3 Performance profiles of conjugate gradient methods MHS, HS, MDY, and DY

of the function value and the gradient value, which were evaluated using the profiles
of Dolan and Moré [5].

In Fig. 1, we compare the performance of the MPRP method with the PRP method,
the FR method, and the MFR method. Figure 1 shows that “MPRP” has best perfor-
mance since it solves about 99% of the test problems successfully, and “PRP” has
second best performance since it solves about 98% of the test problems successfully.
“MFR” and “FR” can solve about 83 and 79% of the test problems successfully,
respectively.

In Fig. 2, we compare the performance of the MCD method with the CD method,
the LS method, and the MLS method. From Fig. 2, we see that “MLS” has the best
performance and it can solve about 97% of the test problems successfully. The “MCD”
outperforms “LS” and “CD” about 32 and 30%, respectively. Moreover, “MCD” and
“CD” solve about 93 and 63% of the test problems, respectively. The “LS” performs
worst since it cannot solve many problems. However, the “LS” is better than “CD” for
2 ≤ t ≤ 8.

In Fig. 3, we compare the performance of the MHS method with the HS method,
the DY method, and the MDY method. From Fig. 3, it is not difficult to see that the
“MHS” performs best among these four methods and it can solve about 99% of the
test problems successfully. The performance of “HS” is better than that of “DY” for
1 ≤ t ≤ 5, and the “MDY” is better than “DY”. The DY method, the HS method,
and the MDY method solves about 95, 80, and 95% of the test problems successfully,
respectively.

6 Conclusion

In this paper, we propose a modified PRP formula which possesses the sufficient
descent condition without carrying out any line search. We generalize this technique
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20 G. Yuan

to other conjugate gradient methods and get some modified conjugate gradient meth-
ods which have the sufficient descent property too. The global convergence of these
methods is established under the weak Wolfe–Powell line search for nonconvex func-
tions. Numerical results show that these given methods are competitive to the normal
ones.

For further research, we should study the convergence of the new methods with
other line search rules. Moreover, more numerical experiments for large practical
problems and for the choice of the constant µ should be done in the future.

Acknowledgments We would like to thank Professor X. W. Lu and Z. X. Wei for their helpful conver-
sations. We are also very grateful to anonymous referees and the editors for their valuable suggestions and
comments, which improve our paper greatly.

References

1. Dai, Y.: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. Syst. Sci.
Complex. 15, 139–145 (2002)

2. Dai, Y., Liao, L.Z.: New conjugacy conditions and related nonlinear conjugate methods. Appl. Math.
Optim. 43, 87–101 (2001)

3. Dai, Y., Yuan, Y.: A nonlinear conjugate gradient with a strong global convergence properties. SIAM
J. Optim. 10, 177–182 (2000)

4. Dai, Y., Yuan, Y.: Nonlinear conjugate gradient Methods. Shanghai Scientific and Technical Publishers
(1998)

5. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math.
Program. 91, 201–213 (2002)

6. Fletcher, R.: Practical method of optimization, vol I: unconstrained optimization, 2nd edn. Wiley,
New York (1997)

7. Fletcher, R., Reeves, C.: Function minimization bu conjugate gradients. Comput. J. 7, 149–154 (1964)
8. Gibert, J.C., Nocedal, J.: Global convergence properties of conugate gradient methods for optimiza-

tion. SIAM J. Optim. 2, 21–42 (1992)
9. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient

line search. SIAM J. Optim. 16, 170–192 (2005)
10. Hager, W.W., Zhang, H.: Algorithm 851: CG D E SC E N T, A conjugate gradient method with guar-

anteed descent. ACM Trans. Math. Softw. 32, 113–137 (2006)
11. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58

(2006)
12. Hestenes, M.R., Stiefel, E.: Method of conjugate gradient for solving linear equations. J, Res. Nat.

Bur. Stand. 49, 409–436 (1952)
13. Li, G., Tang, C., Wei, Z.: New conjugacy condition and related new conjugate gradient methods for

unconstrained optimization problems. J. Comput. Appl. Math. 202, 532–539 (2007)
14. Liu, Y., Storey, C.: Effcient generalized conjugate gradient algorithms part 1: theory. J. Comput. Appl.

Math. 69, 17–41 (1992)
15. Polak, E., Ribiere, G.: Note sur la xonvergence de directions conjugees. Rev. Francaise Informat

Recherche Operatinelle, 3E Annee 16, 35–43 (1969)
16. Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9,

94–112 (1969)
17. Powell, M.J.D.: Nonconvex minimization calculations and the conjugate gradient method. Lecture

Notes in Mathematics, vol. 1066, pp. 122–141. Spinger, Berlin (1984)
18. Powell, M.J.D.: Convergence properties of algorithm for nonlinear optimization. SIAM Rev. 28, 487–

500 (1986)
19. Wei, Z., Li, G., Qi, L.: New nonlinear conjugate gradient formulas for large-scale unconstrained

optimization problems. Appl. Math. Comput. 179, 407–430 (2006)
20. Wei, Z., Yao, S., Liu, L.: The convergence properties of some new conjugate gradient methods. Appl.

Math. Comput. 183, 1341–1350 (2006)

123



Modified nonlinear conjugate gradient methods 21

21. Yu, G.H.: Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems.
Thesis of Doctor’s Degree, Sun Yat-Sen University (2007)

22. Yu, G., Guan, L.: Chen Spectral conjugate gradient methods with sufficient descent property for large-
scale unconstrained optimization. Optimization methods and software (in press, 2007)

23. Yuan, Y., Sun, W.: Theory and methods of optimization. Science Press of China, Beijing (1999)
24. Zhang, L., Zhou, W., Li, D.: A descent modified Polak-Ribière-Polyak conjugate method and its global

convergence. IMA J. Numer. Anal. 26, 629–649 (2006)
25. Zoutendijk, G.: Nonlinear programming computational methods. In: Abadie J. (ed.) Integer and non-

linear programming, pp. 37–86. North-Holland, Amsterdam (1970)

123


	Modified nonlinear conjugate gradient methodswith sufficient descent property for large-scaleoptimization problems
	Abstract
	1 Introduction
	2 Algorithm
	3 The sufficient descent property and the global convergence
	4 Generalizations of the new technique
	5 Numerical results
	6 Conclusion
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


