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Abstract We consider the problem of finding the (unconstrained) global minimum
of a real valued polynomial p(x) : Rn −→ R. We study the problem of finding the
bounds of global minimizers. It is shown that the unconstrained optimization reduces
to some constrained optimizations which can be approximated by solving some convex
linear matrix inequality (LMI) problems.

Keywords Global optimizations · Polynomials · Positive semi-definite programs

1 Introduction

Given a real-valued polynomial p(x) : Rn −→ R, we are interested in solving the
problem

P : p∗ := min {p(x) | x ∈ Rn} , (1.1)

that is, finding the global minimum p∗ of p(x) and, if possible, a global minimizer
x∗. In the one-dimensional case, that is, when n = 1, Shor [2](see also [3,4]) first
showed that (1.1) reduces to a convex problem. In [1], J.Lasserre showed that the
unconstrained optimization (1.1) can be approximated as closely as desired (and often
can be obtained exactly) by solving a finite sequence of convex LMI optimization
problems(or positive semi-definite programs). The main theorem in Lasserre [1] says
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that, if a 2m-degree polynomial p(x), with global minimum p∗, has a global mini-
mizer x∗ satisfying ‖x∗‖ ≤ a for some a > 0, then p∗ can be approximated as closely
as desired by solving a finite sequence of convex LMI optimization problems. But
there is no information on how to obtain such a bounds a. In this paper, we study the
problem of finding the bounds a such that there is a global minimizer x∗ staying in
‖x‖ ≤ a. We will obtain the desired positive bounds a by solving some constrained
optimizations. We also show that the global unconstrained minimization (1.1) of a
polynomial reduces to some constrained optimizations which can be approximated by
some convex linear matrix inequality (LMI) problems.

The paper is organized as follows. In Sect. 2, we briefly introduce the main result
in [1] on solving (1.1) by a sequence of convex LMI optimization problems when
there is a positive real a such that a global minimizer x∗ stays in ‖x‖ ≤ a. In Sect. 3,
we study the problem of finding the desired bounds a by solving some constrained
optimizations. We show that solving (1.1) amounts to solving some constrained aux-
iliary problems. In Sect. 4, we give some examples. In the last section, we present an
approach of finding the bounds of global minimizers of (1.1) by some convex LMI
optimization problems.

2 Preliminary results

Let

1, x1, x2, . . . , xn, x2
1 , x1x2, . . . , x1xn, x2x3, . . . , x2

n , . . . , xm
1 , . . . , xm

n (2.1)

be a base for the m-degree real-valued polynomial p(x) : Rn −→ R, and let s(m)

be its dimension. We adopt the notation in [1]. If p(x) : Rn −→ R is an m-degree
polynomial, write

p(x) =
∑

α

pαxα with xα := xα1
1 xα2

2 · · · xαn
n , and

∑

i

αi ≤ m, (2.2)

where p = {pα} ∈ Rs(m) is the coefficient vector of p(x) in the basis (2.1). In [1],
the theory of moments(see also Berg [6], Curto and Fialkow [7,8], Jacobi [9], Putinar
[10], Putinar and Vasilescu [11], Simon [12], Schmudgen [13]) is applied to the study
of solving (1.1). Let y = {yα}(with y{0,...,0} = 1) be the vector of moments up to
order m of some probability measure µy and Mm(y) be the moment matrix Mm(y) of
dimension s(m), with its (i, j) entry being yβ(i, j). For a real-valued polynomial q(x)

of degree w with coefficient vector q ∈ Rs(w), the matrix Mm(qy) is defined by

Mm(qy)(i, j) =
∑

α

qα y{β(i, j)+α}. (2.3)

Then Lasserre [1] discussed the situation in which one knows in advance that a global
minimizer x∗ of p(x) has norm less than a for some a > 0, that is, p(x∗) = p∗ =
min P and ‖x∗‖ ≤ a. With x −→ q(x) = a2 − ‖x‖2, for every N ≥ m, Lasserre [1]
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introduced the following convex LMI problem QN
a :

⎧
⎨

⎩

inf y
∑

α pα yα

MN (y) ≥ 0
MN−1(qy) ≥ 0,

(2.4)

and proved the following main result (see Theorem 3.4(a) in [1]):

Theorem A Let p(x) : Rn −→ R be a 2m-degree polynomial as in (2.2) with global
minimum p∗ = min P and such that ‖x∗‖ ≤ a for some a > 0 at some global
minimizer x∗. Then as N −→ ∞, the sequence {inf QN

a } is monotonously increasing
and

inf QN
a → p∗. (2.5)

In the constrained case, we consider the optimization with a real-valued polynomial
p(x) : Rn → R, that is,

PK → p∗
K := min

x∈K
p(x), (2.6)

where K is a compact set defined by polynomial inequalities gi (x) ≥ 0 with gi (x) :
Rn → R being a real-valued polynomial of degree wi , i = 1, 2, . . . , l. We assume
that K satisfies the following assumption.

Assumption 2.1 The set K is compact and there exists a real-valued polynomial
u(x) : Rn → R such that {u(x) ≥ 0} is compact, and

u(x) = u0(x) +
l∑

k=1

gi (x)ui (x) for all x ∈ Rn, (2.7)

where the polynomials ui (x) are all sums of squares, i = 1, 2, . . . , l.
Let w̃i := [wi/2] be the smallest integer larger than wi/2, and with N ≥ [m/2]

and N ≥ maxi w̃i , Lasserre [1] introduced the following convex LMI problem QN
K :

⎧
⎨

⎩

inf y
∑

α pα yα

MN (y) ≥ 0
MN−w̃i (gi y) ≥ 0, i = 1, 2, . . . , i.

(2.8)

and proved the following result (see Theorem 4.2(a) in [1]):

Theorem B Let p(x) : Rn −→ R be an m-degree polynomial and K be compact
set {gi ≥ 0, i = 1, 2, . . . , l}. Let Assumption 2.1 hold, and let p∗

K := minx∈K p(x).
Then as N −→ ∞, the sequence {inf QN

K } is monotonously increasing and

inf QN
K → p∗

K . (2.9)
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3 The estimation of the bounds of global minimizers of (1.1)

Let p(x) be a m-degree polynomial on Rn . We have the following expression by Taylor
series

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p(x) − p(0) = ∑n
k=1

∂p(0)
∂xk

xk + 1
2!

∑
{1≤k1,k2≤n}

∂2 p(0)
∂xk1∂xk2

xk1 xk2 + · · ·
+ 1

l!
∑

{1≤k1,k2,...,kl≤n}
∂l p(0)

∂xk1 ∂xk2 ···∂xkl
xk1 xk2 · · · xkl + · · ·

+ 1
m!

∑
{1≤k1,k2,...,km≤n}

∂m p(0)
∂xk1 ∂xk2 ···∂xkl

xk1 xk2 · · · xkm .

(3.1)

where in a sum when kµ �= kν the term is counted two times.
For every positive r on {x ∈ Rn | ‖x‖ = r}, with a change of variables sk = xk

r ,

k = 1, 2, . . . , n, by (3.1), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p(x) − p(0) = r
∑n

k=1
∂p(0)
∂xk

sk + r2

2!
∑

{1≤k1,k2≤n}
∂2 p(0)

∂xk1∂xk2
sk1 sk2 + · · ·

+ rl

l!
∑

{1≤k1,k2,...,kl≤n}
∂l p(0)

∂xk1∂xk2 ···∂xkl
sk1 sk2 · · · skl + · · ·

+ rm

m!
∑

{1≤k1,k2,...,km≤n}
∂m p(0)

∂xk1∂xk2 ···∂xkl
sk1 sk2 · · · skm .

(3.2)

Then for each positive integer l : 1 ≤ l ≤ m, we pose a constrained optimization as
follows

min Jl(s) =
∑

{1≤k1,k2,...,kl≤n}

∂ l p(0)

∂xk1∂xk2 · · · ∂xkl

sk1 sk2 · · · skl

(3.3)
s.t. ‖s‖2 = s2

1 + s2
2 + · · · + s2

n = 1.

For each positive integer l : 1 ≤ l ≤ m, let Il denote the minimum of (3.4).
First of all, if there is a positive integer j : 1 ≤ j ≤ m such that Ii ≥ 0 when

j ≤ i ≤ m, we conclude from (3.2) that, for every x on {‖x‖ = r},
⎧
⎪⎨

⎪⎩

p(x) − p(0) ≥ r
∑n

k=1
∂p(0)
∂xk

sk + r2

2!
∑

{1≤k1,k2≤n}
∂2 p(0)

∂xk1∂xk2
sk1 sk2 + · · ·

+ r j−1

( j−1)!
∑

{1≤k1,k2,...,k j−1≤n}
∂ j−1 p(0)

∂xk1∂xk2 ···∂xk j−1
sk1 sk2 · · · sk j−1 .

(3.4)

From (3.4), we immediately see that when I1 = I2 = · · · = Im = 0, the optimum of
(1.1) p∗ = p(0). On the other hand, if there is a positive integer j : 1 ≤ j ≤ m such
that Ii = 0 when j + 1 ≤ i ≤ m and I j > 0, then by (3.4), we have, for r ≥ 1 and
every x on {‖x‖ = r},

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p(x) − p(0) ≥ r
∑n

k=1
∂p(0)
∂xk

sk + r2

2!
∑

{1≤k1,k2≤n}
∂2 p(0)

∂xk1∂xk2
sk1 sk2 + · · ·

+ r j

j !
∑

{1≤k1,k2,...,k j ≤n}
∂ j p(0)

∂xk1∂xk2 ···∂xk j
sk1sk2 · · · sk j

≥ I j
r j

j ! − (n + n2

2! + · · · + n j−1

( j−1)! )M j−1r j−1,

(3.5)
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where

M j−1 = max

{
| ∂ l p(0)

∂xk1∂xk2 · · · ∂xkl

| : 0 ≤ l ≤ j − 1; 1 ≤ k1, . . . , kl ≤ n

}
, (3.6)

noting that M0 = |p(0)|. We define, for r > 1,

�(r) = I j
r j

j ! −
(

n + n2

2! + · · · + n j−1

( j − 1)!
)

M j−1r j−1. (3.7)

If j = 1, we have

�(r) = I1r − |p(0)|. (3.8)

Writing σ1 = max{1,
|p(0)|

I1
}, by (3.5), when ‖x‖ > σ1, we have

p(x) ≥ p(0). (3.9)

It follows that, in this case, i.e., j = 1, the global minimizers of (1.1) should stay in
‖x‖ ≤ σ1. If j ≥ 2, we have

d�(r)

dr
= r j−2

[
I j

jr

j ! − (n + n2

2! + · · · + n j−1

( j − 1)! )( j − 1)M j−1

]
. (3.10)

When

r >σ j :=max

⎧
⎨

⎩1,
j !(n+ n2

2! +· · ·+ n j−1

( j−1)! )( j −1)Mj−1

j I j
,

j !(n+ n2

2! +· · ·+ n j−1

( j−1)! )Mj−1

I j

⎫
⎬

⎭

= max

⎧
⎨

⎩1,
j !(n + n2

2! + · · · + n j−1

( j−1)! )M j−1

I j

⎫
⎬

⎭ , (3.11)

we have

d�(r)

dr
> 0, �(r) > 0. (3.12)

Therefore, when r > σ j , �(r) monotonously increases. By (3.5), (3.12), we have,
when r > σ j ,

p(x) − p(0) ≥ �(r) > 0. (3.13)

It follows that, in this case, i.e., j ≥ 2, the minimizers of (1.1) stays in ‖x‖ ≤ σ j .
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As a conclusion, we have reached the following results.

Theorem 3.1 If there is a positive integer j : 1 ≤ j ≤ m such that Ii = 0 when
j + 1 ≤ i ≤ m and I j > 0, then all of global minimizers of (1.1) stay in ‖x‖ ≤ σ j ,

where σ j := max

{
1,

j !(n+ n2
2! +···+ n j−1

( j−1)! )M j−1

I j

}

Corollary 3.2 If Im > 0, then there is a positive real a such that all of global mini-
mizers of (1.1) stay in ‖x‖ ≤ a = σm.

It is very complicated in the case that a positive integer j : 1 ≤ j ≤ m exists such
that Ii = 0 when j + 1 ≤ i ≤ m and I j < 0. We give several examples in this case
as follows:

p1(x) = x2
1 − 2x1x2 + x2

2 − x1,

p2(x) = x4
1 − 2x2

1 x2
2 + x4

2 + x1x2,
(3.14)

p3(x) = x2
1 − 2x1x2 + x2

2 + 2(x1 − x2),

p4(x) = x2
1 x2

2 (x2
1 + x2

2 − 1).

It is easy to see that there are global minimizers for p3(x), p4(x) and there are no
global minimizers for p1(x), p2(x). But we have following results to deal with these
examples.

Theorem 3.3 If, for a (s∗
1 , s∗

2 , . . . , s∗
n )T with (s∗

1 )2 + (s∗
2 )2 +· · ·+ (s∗

n )2 = 1, there is
a j : 1 ≤ j ≤ m such that J j+1(s∗) = · · · = Jm(s∗) = 0 and J j (s∗) < 0, then there
is no global minimizer for p(x).

Proof By (3.2), the assumption of this theorem implies

p(rs∗) − p(0) = r J1(s
∗) + r2

2! J2(s
∗) + · · · + r j

j ! J j (s
∗). (3.15)

Consequently, limr→∞ p(rs∗) = −∞. Hence there is no global minimizer for the
p(x).

Corollary 3.4 If Im < 0, then there is no global minimizer for p(x).

Proof Clearly there is a (s∗
1 , s∗

2 , . . . , s∗
n )T with (s∗

1 )2 + (s∗
2 )2 + · · · + (s∗

n )2 = 1 such
that Jm(s∗) = min{Jm(s) : ‖s‖ = 1} = Im . Since Jm(s∗) = Im < 0, we see that
there is no global minimizer for the p(x) by Theorem 3.3.

Remark 3.1 We see that p1(x), p2(x) in (3.15) meet the conditions of Theorem 3.3,
therefore there are no global minimizers for p1(x), p2(x).
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Example 3.1 Let’s have a look at the polynomial

p(x) = x4
1 x2

2 + x2
1 x4

2 + x2
1 x2 + x1x2 + x2. (3.16)

Concerning p(x), it’s easy to see that, for s∗ = (1, 0)T, J6(s∗) = · · · = J1(s∗) = 0
and for ŝ = (0, 1)T, J6(ŝ) = · · · = J2(ŝ) = 0, J1(ŝ) > 0. But for s̄ = (0,−1)T, we
have J6(s̄) = · · · = J2(s̄) = 0, J1(s̄) < 0. By Theorem 3.3, we know that there is no
global minimizer for p(x).

Clearly, if there is a global minimizer which stays in ‖x‖ ≤ a for some a > 0, then
(1.1) is equivalent to following constrained optimization

min p(x)

s.t. ‖x‖ ≤ a.
(3.17)

Then we have following results.

Theorem 3.5 If there is a positive integer j : 1 ≤ j ≤ m such that Ii = 0 when
j +1 ≤ i ≤ m and I j > 0, then the global optimization (1.1) is equivalent to following
constrained optimization

min p(x)

s.t. ‖x‖ ≤ σ j
(3.18)

where σ j := max

{
1,

j !(n+ n2
2! +···+ n j−1

( j−1)! )M j−1

I j

}
.

Theorem 3.6 Let p(x) : Rn −→ R be a m-degree polynomial as in (2.2). If there is
a positive integer j : 1 ≤ j ≤ m such that Ii = 0 when j + 1 ≤ i ≤ m and I j > 0,
then as N −→ ∞, the sequence {inf QN

σ j
} is monotonously increasing and

inf QN
σ j

→ p∗ := min p(x), x ∈ Rn . (3.19)

where QN
σ j

is defined as in (2.4) when a = σ j

Proof By Theorem 3.5, we see that the global minimizers of p(x) stay in ‖x‖ ≤ σ j .
On the other hand, the condition “there is a positive integer j : 1 ≤ j ≤ m such that
Ii = 0 when j + 1 ≤ i ≤ m and I j > 0” implies that m is even. Then (3.19) follows
from the conclusion of Theorem A (in Sect. 2).

In next section, we will use Theorems 3.5 and 3.6 to deal with Example 1, 2 in [1]
(see pp. 803–804, [1]).

Now we present the following algorithm as a conclusion.
Algorithm 3.7. Given a polynomial p(x).

Step 1: Input all coefficients of p(x).
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Step 2: Solving (3.4) for I j , 1 ≤ j ≤ m. If I j = 0, 1 ≤ j ≤ m, then p∗ = p(0).
If there exists a j : 1 ≤ j ≤ m such that Ii = 0 when j + 1 ≤ i ≤ m
and I j > 0, go to step 3. If Im < 0, go to step 4. If, for a (s∗

1 , s∗
2 , . . . , s∗

n )T

with (s∗
1 )2 + (s∗

2 )2 + · · · + (s∗
n )2 = 1, there is a j : 1 ≤ j ≤ m such that

J j+1(s∗) = · · · = Jm(s∗) = 0 and J j (s∗) < 0, go to step 4.
Step 3: Compute M j−1 as in (3.6) and σ j as in Theorem 3.1. Solving (3.18).
Step 4: inf p(x) = −∞.

Although not all cases are covered in Algorithm 3.7, these cases in Algorithm 3.7
should cover many problems of interest. For example, we can use Theorem 3.1 and
Corollary 3.2 to deal with the polynomial having the form:

p(x) = x2m
1 + · · · + x2m

n + g(x1, x2, . . . , xn), (3.20)

where g(x1, x2, . . . , xn) is a real-valued polynomial of degree less than or equal to
2m − 1. In next section, we demonstrate this issue by some examples.

4 Some examples

Let p(x) : Rn → R be a 2m-degree polynomial as (2.2) with global minimum
p∗ = min p(x), x ∈ Rn . In [1], after introducing the following convex LMI optimi-
zation problem (or positive semi-definite program) Q:

{
inf y

∑
α pα yα

Mm(y) ≥ 0

Lasserre showed that (i): if p(x) − p∗ is a sum of squares of polynomials then p∗ :=
min p(x) = min Q; (ii): if the dual problem Q∗ of Q has a feasible solution and
min P = min Q, then p(x) − p∗ is a sum of squares of polynomials (see also Neste-
rov [5]). In other words, to check if p(x) − p∗ is a sum of squares of polynomials,
one has to obtain p∗ first. But it is usually hard to obtain p∗. Let’s take a look at
two examples given in [1] (see pp. 803–804, [1]). We present these two polynomials
p1(x), p2(x) : R2 → R as follows.

p1(x) = (x2
1 + 1)2 + (x2

2 + 1)2 + (x1 + x2 + 1)2

p2(x) = (x2
1 + 1)2 + (x2

2 + 1)2 − 2(x1 + x2 + 1)2
(4.1)

Under previously knowing p∗
1 = min p1(x) and p∗

2 = min p2(x) respectively , it is
proved in [1] that p1(x) − p∗

1 can not be written as a sum of squares of polynomials
and p2(x)− p∗

2 can be written as a sum of squares of polynomials. Now we will show
that one can use Theorems 3.5 and 3.6 in last section to obtain p∗

1 and p∗
2 .

Example 4.1 To obtain p∗
1 . Since p1(x) = x4

1 +x4
2 +3x2

1 +3x2
2 +2x1x2+2x1+2x2+3,

we see that for p1(x)
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I4 = 4! min
{
s4

1 + s4
2 : s2

1 + s2
2 = 1

} = 12, (4.2)

M3 = max {6, 2, 2, 3} = 6, (4.3)

and

σ4 = 4!(2 + 22

2 + 23

6 )6

12
= 64. (4.4)

By Corollary 3.2, Theorem 3.5, the global optimization (1.1) for p1(x) is equivalent
to

min (x2
1 + 1)2 + (x2

2 + 1)2 + (x1 + x2 + 1)2

s.t. x2
1 + x2

2 ≤ (64)2.
(4.5)

By Theorem 3.6, with a = 64 and Ka = {‖x‖ ≤ 64}, solving Q4
a , we obtain

p∗
1 = 2.355.

Example 4.2 To obtain p∗
2 . Since p2(x) = x4

1 + x4
2 − 4x1x2 − 4x1 − 4x2, we see that

for p2(x)

I4 = 4! min
{
s4

1 + s4
2 : s2

1 + s2
2 = 1

} = 12, (4.6)

M3 = max{4, 0} = 4, (4.7)

and

σ4 =
4!

(
2 + 22

2 + 23

6

)
4

12
= 128

3
. (4.8)

By Corollary 3.2, Theorem 3.5, the global optimization (1.1) for p1(x) is equivalent
to

min (x2
1 + 1)2 + (x2

2 + 1)2 − 2(x1 + x2 + 1)2

s.t. x2
1 + x2

2 ≤
(

128

3

)2

.
(4.9)

By Theorem 3.6, with a = 128
3 and Ka = {‖x‖ ≤ 128

3

}
, solving Q5

a , we obtain
p∗

2 = −11.4581.

Remark 4.3 In using Theorem 3.1, if I j > 0, we need to know whether Ik = 0, for all
k > j . But this can be done unless one may compute the exact values of Ik for k > j .
The approximation by the methodology in [1] will not work for this process. There-
fore, the only case for which the methodology developed in section 3 is guaranteed to
work, is when Im > 0, in which the approximation procedure in [1] would provide an
approximation Îm > 0, sufficient for computing a valid σm . We present this procedure
in next section.
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5 Solving (1.1) in the case Im > 0

In the case Im > 0, we introduce a way here to deal with the unconstrained optimi-
zation (1.1) of a polynomial, by solving (3.4) with Theorem B first and then solving
(3.18) with Theorem A.

5.1 Approximating Im by Theorem B

By means of Theorem B, we are going to solve

min Jm(s) =
∑

{1≤k1,k2,...,km≤n}

∂ l p(0)

∂xk1∂xk2 · · · ∂xkl

sk1sk2 · · · skm

s.t. ‖s‖2 = s2
1 + s2

2 + · · · + s2
n = 1.

Define

g1(s) = s2
1 + · · · + s2

n − 1,

g2(s) = 1 − (s2
1 + · · · + s2

n ),
(5.1)

and

K = {s : gi (s) ≥ 0, i = 1, 2}. (5.2)

Clearly, K is compact. Take u0(s) ≡ 0 , u1(s) ≡ 1, u2(s) ≡ 2 and define

u(s) := u0(s) + g1(s)u1(s) + g2(s)u2(s)

= 1 − (s2
1 + · · · + s2

n ).
(5.3)

It’s easy to see from (5.3) that {s : u(s) ≥ 0} is compact. Therefore, Assumption 2.1
holds for the following constrained optimization J (m)

K which is equivalent to (3.4),

min
K

Jm(s). (5.4)

We replace p(x) in Theorem B by Jm(s). Then by Theorem B , Im can be approximated
by a sequence of convex LMI problems QN

K :

⎧
⎪⎪⎨

⎪⎪⎩

inf y
∑

α J (m)
α yα

MN (y) ≥ 0

MN−1(gi y) ≥ 0, i = 1, 2,

(5.5)

123



On global optimizations with polynomials 249

where {J (m)
α } with α = (α1, α2, . . . , αn),

∑
i αi ≤ m, is got by rewriting

Jm(s) = ∑
α J (m)

α sα, (5.6)

with sα := sα1
1 · · · sαn

n and
∑

i αi ≤ m.

5.2 Solving (3.18) by Theorem A

Since Im > 0, by Theorem 3.5 we see that solving (1.1) is equivalent to solving (3.18).
Then we use Corollary 3.2 to get

σm = max

⎧
⎨

⎩1,
m!(n + n2

2! + · · · + nm−1

(m−1)! )Mm−1

Im

⎫
⎬

⎭ .

By Theorem 3.6, we can use Theorem A to approximate (3.18) with a = σm . We
approximate (3.18) by a sequence of convex LMI problems QN

a :

⎧
⎪⎪⎨

⎪⎪⎩

inf y
∑

α pα yα

MN (y) ≥ 0

MN−1(qy) ≥ 0,

(5.7)

where a = σm and q(x) = a2 − ‖x‖2.
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