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Abstract In this paper, we propose the first network performance measure that can
be used to assess the efficiency of a network in the case of either fixed or elastic
demands. Such a measure is needed for many different applications since only when
the performance of a network can be quantifiably measured can the network be appro-
priately managed. Moreover, as we demonstrate, the proposed performance measure,
which captures flow information and behavior, allows one to determine the criticality
of various nodes (as well as links) through the identification of their importance and
ranking. We present specific networks for which the performance/efficiency is com-
puted along with the importance rankings of the nodes and links. The new measure
can be applied to transportation networks, supply chains, financial networks, electric
power generation and distribution networks as well as to the Internet and can be used
to assess the vulnerability of a network to disruptions.

Keywords Network performance · Network efficiency measure · Network
vulnerability · Network component importance ranking · Network equilibrium
problems

1 Introduction

Recently, the study of networks, and especially complex networks, has drawn a
great deal of interest among researchers from different disciplines; see, for example,
Barabási and Albert [1], Newman [23], Boginski et al. [3], and O’Kelly et al. [24].
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128 Q. Qiang, A. Nagurney

Three types of networks, in particular, have received intense attention, especially in
regards to the study of reliability and we note the Erdös-Rényi [10] random net-
work model, the Watts-Strogatz [28] small-world model, and the Barabási-Albert [1]
scale-free networks.

The importance of studying and identifying the vulnerable components of a network
has been linked to events such as 9/11 and to Hurricane Katrina, as well as the big-
gest blackout in North America that occurred on August 14, 2003. In order to hedge
against terrorism and natural disasters [25], a majority of the associated complex net-
work (sometimes also referred to as network science) literature focuses on the graph
characteristics (e.g. connectivity between nodes) of the associated application in order
to evaluate the network vulnerability; see, for example, Chassin and Posse [5].

However, in order to be able to evaluate the vulnerability and the reliability of
a network, a measure that can quantifiably capture the efficiency/performance of a
network must be developed. For example, in a series of papers, Latora and Marchiori
[12–14] discussed the network performance issue by measuring the “global efficiency”
in a weighted network as compared to that of the simple non-weighted small-world
network. In a weighted network, the network is not only characterized by the edges
that connect different nodes, but also by the weights associated with different edges
in order to capture the relationships between different nodes. The network efficiency
E(G) of a network G is defined by Latora and Marchiori [12–14] as E = E(G) =

1
n(n−1)

∑
i �= j∈G

1
di j

, where n is the number of nodes in G and di j is the shortest path
length (the geodesic distance) between nodes i and j . For simplicity, in this paper, we
refer to the above Latora and Marchiori measure as the L–M measure.

We believe that the flow on a network is an additional important indicator of net-
work performance as well as network vulnerability. Indeed, flows represent the usage
of a network and which paths and links have positive flows and the magnitude of
these flows are relevant in the case of network disruptions. However, to the best of our
knowledge, there are very few papers to-date that consider network flows in assessing
network performance. The results in Zhu et al. [30] are notable since they demonstrate
empirically through an application to the airline network of China how a measure
with flows and costs outperforms existing measures in yielding more realistic results
in terms of, for example, which cities are critical and their rankings in the network.
Nevertheless, as we demonstrate in Sect. 3, their measure is only applicable to networks
with fixed demands. It is well-known that in many network applications, consumers
may be sensitive to prices/costs and, therefore, the demand will no longer be fixed,
but will, rather, be elastic, that is, price-dependent. Therefore, a unified network per-
formance measure that is consistent across fixed demand as well as elastic demand
networks is needed. Moreover, in the case of a disaster, users of the network may be
sensitive to the increased associated costs of using the network and the demand may,
as a consequence, change.

We note that, recently, Jenelius et al. [11] proposed several link importance indi-
cators and applied them to the road transportation network in northern Sweden. Their
indicators, however, are distinct, depending upon whether or not the network becomes
disconnected or not. Murray–Tuite and Mahmassani [16] also focused on identifying
indices for the determination of vulnerable links in transportation networks but our
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A unified network performance measure 129

measure is unified and can be applied to assess the importance of either links or
nodes or both and is applicable to both fixed demand and to elastic demand network
equilibrium problems.

In this paper, we propose a network performance measure that can be used to eval-
uate the efficiency of different networks in the case of either fixed or elastic demands.
The formal network performance/efficiency measure is presented in the context of
network equilibrium, which captures prices and costs and the underlying behavior of
“users” of the network.

The paper is organized as follows. In Sect. 2, an elastic demand network model and
a fixed demand network model, which is a special case of the former, are recalled.
In Sect. 3, the network performance measure is introduced, and its relationships to
several existing measures identified. In Sect. 4, the new measure is applied to three
network examples. The paper concludes with a summary and future research directions
in Sect. 5.

2 The network equilibrium models with elastic and fixed demands

In this Section, we recall the network equilibrium model with elastic demands with
given inverse demand or disutility functions (see [7]). We then provide a special case
in which the demands are assumed fixed and known. These models were originally
proposed in the context of transportation but, given their wide applicability, the pre-
sentation below is for any network equilibrium problem. Indeed, Nagurney [19], Liu
and Nagurney [15], and Wu et al. [29] have shown, respectively, that supply chain
networks, financial networks, and electric power generation and distribution networks
can be reformulated and solved as transportation network problems over appropriately
constructed abstract networks or supernetworks [20]. Moreover, it has been realized
(cf. [21] and the references therein) that the Internet also exhibits behavior similar to
that of transportation network equilibrium problems, including the occurrence of the
Braess [4] paradox.

2.1 Network equilibrium model with elastic demands

We consider a network G with the set of directed links L with K elements, the set
of origin/destination (O/D) pairs W with nW elements, and the set of acyclic paths
joining the O/D pairs by P with n P elements.

We denote the set of paths joining O/D pair w by Pw. Links are denoted by a, b,
etc; paths by p, q, etc., and O/D pairs by w1, w2, etc.

We denote the nonnegative flow on path p by x p and the flow on link a by fa and we
group the path flows into the vector x ∈ Rn P+ and the link flows into the vector f ∈ RK+ .
The link flows are related to the path flows through the following conservation of flow
equations:

fa =
∑

p∈P

x pδap, ∀a ∈ L , (1)
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where δap = 1 if link a is contained in path p, and δap = 0, otherwise. Hence, the
flow on a link is equal to the sum of the flows on paths that contain that link.

The user cost on a path p is denoted by C p and the user cost on a link a by ca . We
denote the demand associated with using O/D pair w by dw and the disutility by λw.

The user costs on paths are related to user costs on links through the following
equations:

C p =
∑

a∈L

caδap, ∀p ∈ P, (2)

that is, the user cost on a path is equal to the sum of user costs on links that make up
the path.

For the sake of generality, we allow the user link cost function on each link to
depend upon the entire vector of link flows, so that

ca = ca( f ), ∀a ∈ L . (3)

We also assume that the link cost functions are continuous.
The following conservation of flow equations must also hold:

∑

p∈Pw

x p = dw, ∀w ∈ W, (4)

which means that the sum of path flows on paths connecting each O/D pair must be
equal to the demand for that O/D pair.

Also, we assume, as given, the disutility (that is, the inverse demand) functions for
the O/D pairs, which are assumed to be continuous, such that

λw = λw(d), ∀w ∈ W, (5)

where d is the vector of demands.

Definition 1 Network equilibrium–elastic demands
A path flow and demand pattern (x∗, d∗) ∈ K1, where K1 ≡ {(x, d)|(x, d) ∈

Rn P+nW+ and (4) holds}, is said to be a network equilibrium, in the case of elastic
demands, if, once established, no user has any incentive to alter his “travel” decisions.
The state is expressed by the following condition which must hold for each O/D pair
w ∈ W and every path p ∈ Pw:

C p(x∗)
{= λw(d∗), if x∗

p > 0,
≥ λw(d∗), if x∗

p = 0.
(6)

Condition (6) states that all utilized paths connecting an O/D pair have equal and
minimal user costs and these costs are equal to the disutility associated with using
that O/D pair. As established in Dafermos [7], the network equilibrium condition (6)
is equivalent to the following variational inequality problem.
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A unified network performance measure 131

Theorem 1 A path flow and demand pattern (x∗, d∗) ∈ K1 is an equilibrium accord-
ing to Definition 1 if and only if it satisfies the variational inequality: determine
(x∗, d∗) ∈ K1 such that

∑

w∈W

∑

p∈Pw

C p(x∗) ×
[
x p − x∗

p

]
−

∑

w∈W

λw(d∗) × [
dw − d∗

w

] ≥ 0, ∀(x, d) ∈ K1.

(7)

2.2 Network equilibrium model with fixed demands

Assume now that the demands are fixed and known. We then have that Definition 1
simplifies to:

Definition 2 Network equilibrium–fixed demands
A path flow pattern x∗ ∈ K2, where K2 ≡ {x |x ∈ Rn P+ and (4) holds with dw known

and fixed for each w ∈ W }, is said to be a network equilibrium, in the case of fixed
demands, if the following condition holds for each O/D pair w ∈ W and each path
p ∈ Pw:

C p(x∗)
{= λw, if x∗

p > 0,
≥ λw, if x∗

p = 0.
(8)

The interpretation of condition (8) is that all used paths connecting an O/D pair
have equal and minimal costs (see also [2,27]). As proved in [6,26], the fixed demand
network equilibrium condition (8) is equivalent to the following variational inequality
problem.

Theorem 2 A path flow pattern x∗ ∈ K2 is a network equilibrium according to
Definition 2 if and only if it satisfies the variational inequality problem: determine
x∗ ∈ K2 such that

∑

w∈W

∑

p∈Pw

C p(x∗) ×
[
x p − x∗

p

]
≥ 0, ∀x ∈ K2. (9)

Clearly, (9) can be obtained directly from (7) by noting that d∗
w = dw, with the dw’s

being fixed and known a priori for all w ∈ W .
Existence of a solution to variational inequality (9) is guaranteed from the standard

theory of variational inequalities (see e.g. [18]) under the assumption that the link cost
functions and, hence, the path cost functions are continuous since the feasible set K2

is compact. Uniqueness of an equilibrium link flow pattern, in turn, is then guaranteed
under the assumption that the user link cost functions are strictly monotone. In the
case of variational inequality (7) stronger conditions need to be imposed to obtain
existence of a solution. We note that, in particular, strong monotonicity of the link
cost functions and minus the disutility functions will guarantee uniqueness of the cor-
responding equilibrium link flow and demand pattern (see also [18]). Algorithms for
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the solution of variational inequalities (7) and (9) can be found in [18,22], and the
references therein.

Thus, an appropriate and unified network performance/efficiency measure should
be as appropriate for the case of elastic demands as it is for fixed demands.

3 A unified network performance measure

Before we introduce a unified network performance measure we first state an impor-
tant property that such a measure should have.

Network performance property
The performance/efficiency measure for a given network should be nonincreasing

with respect to the equilibrium disutility for each O/D pair, holding the equilibrium
disutilities for the other O/D pairs constant.

Given this desirable property of a network performance measure, we propose a
new, unified network performance measure as follows:

Definition 3 A unified network performance measure
The network performance/efficiency measure, E(G, d), for a given network topol-

ogy G and the equilibrium (or fixed) demand vector d, is defined as follows:

E = E(G, d) =
∑

w∈W
dw

λw

nW
, (10)

where recall that nW is the number of O/D pairs in the network, and dw and λw denote,
for simplicity, the equilibrium (or fixed) demand and the equilibrium disutility for O/D
pair w, respectively.

Interestingly, we demonstrate in the following theorem that, under certain assump-
tions, our measure collapses to the L–M measure, which, however, considers neither
explicit demands nor flows!

Theorem 3 If positive demands exist for all pairs of nodes in the network G, and each
of these demands is equal to 1 and if di j is set equal to λw, where w = (i, j), for all
w ∈ W then the proposed network efficiency measure (10) and the L–M measure are
one and the same.

Proof Let n be the number of nodes in G. Hence, the total number of O/D pairs, nW ,
is equal to n(n − 1) given the assumption that there exist positive demands for all
pairs of nodes in G. Furthermore, by assumption, we have that dw = 1, ∀w ∈ W ,
w = (i, j), and di j = λw, where i �= j, ∀i, j ∈ G. Then the L–M measure becomes
as follows:

E = E(G) = 1

n(n − 1)

∑

i �= j∈G

1

di j
=

∑
i �= j∈G

1
di j

nW
=

∑
w∈W

dw

λw

nW
= E(G, d) = E .

(11)

The conclusion, thus, follows. ��
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Note that, from the definition, λw is the equilibrium disutility or “shortest path” for
O/D pair w and di j is the shortest path length (the geodesic distance) between nodes i
and j . Therefore, the assumption of di j being equal to λw is reasonable. Our measure,
however, is a more general measure since it also captures the flows on the network
through the disutilities, costs, and the demands.

Furthermore, we note that in the L–M measure, there is no information regarding the
demand for each O/D pair. Therefore, n(n − 1) can be interpreted as the total possible
number of O/D pairs regardless of whether there exists a demand for a pair of nodes or
not. However, because our measure is an average network efficiency measure, it does
not make sense to count a pair of nodes which has no associated demand in the com-
putation of the network efficiency. Therefore, the number of O/D pairs, nW , is more
appropriate as a divisor in our measure than n(n − 1). Of course, if there is a positive
associated demand between all pairs of nodes in the network then nW = n(n − 1).

Zhu et al. [30] introduced another measure, which we denote by Ê(G), which they
then applied to gauge the efficiency of the Chinese airline transportation network with
fixed demands. Their network performance measure is characterized by the average
social travel cost, which is represented below (with their notation adapted to ours, for
clarity):

Ê(G) =
∑

w∈W λwdw
∑

w∈W dw

. (12)

The Zhu et al. [30] measure is an average disutility weighted by the demands. It
can be used for networks with fixed demands, provided that the network does not get
disconnected, in which case the measure becomes undefined. Indeed, a very important
feature of our measure is that there is no assumption made that the network needs to
be connected. In contrast, the Zhu et al. [30] measure requires such an assumption
because, otherwise, their network performance measure will become infinity. In our
measure, the elimination of a link is treated by removing that link from the network
while the removal of a node is managed by removing the links entering or exiting that
node. In the case that the removal results in no path connecting an O/D pair, we simply
assign the demand for that O/D pair (either fixed or elastic) to an abstract path with a
cost of infinity.

For a network with fixed demands, it is easy to verify that the above approach
makes our measure well-defined. Now, let’s check if our measure works for a network
with elastic demands. In a network with elastic demands, when there is a disconnected
O/D pair w, we have, from the above discussion, that the associated “path cost” of the
abstract path, say, r , Cr (x∗), is equal to infinity. If the disutility functions are known
as discussed in Sect. 2.1, according to equilibrium condition (6), we then have that
Cr (x∗) > λw(d∗), and, hence, x∗

r = 0, so that d∗
w = 0, which leads to the conclusion

of d∗
w/λw = 0. Therefore, the disconnected O/D pair w makes zero “contribution”

to the efficiency measure and our measure is well-defined in both the fixed and elas-
tic demand cases. The above procedure(s) to handle disconnected O/D pairs, will be
illustrated in the examples in Sect. 4, when we compute the importance of the network
components and their rankings.
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134 Q. Qiang, A. Nagurney

We believe that this feature of the unified performance measure is important. In
reality, it is relevant to investigate the efficiency of a large-scale network even in the
case of disconnected O/D pairs. A measure with such adaptability and flexibility can
enable the study of the performance of a wider range of networks, especially when
evaluating networks under disruptions. Moreover, it also allows us to investigate the
criticality of various network components without worrying about the connectivity
assumption. Notably, Latora and Marchiori [12] also mentioned this important char-
acteristic which gives their measure an attractive property over the measure used for
the small-world model.

Furthermore, as will be shown in the analysis in Sect. 3.1, the Zhu et al. [30] measure
cannot capture network performance/efficiency in the case of elastic demands.

3.1 A property of an earlier network performance measure

A network, be it a transportation network, or a supply chain network, or an economic/
financial network, is characterized by its topology, its demand, and associated costs.
In order to evaluate the importance of nodes and links of a network, the examination
of only the topology of the network is insufficient. We also need to evaluate the flows
and the induced costs in the network.

A reasonable measure should capture the efficiency deterioration with the increase
of path costs in a network. Let’s first examine if the measure in (12) has such a feature,
even in the simplest separable case in which λw is a function only of dw for all w ∈ W .

Assume that the disutility functions are known as described in Sect. 2.1. Let’s take
the partial derivative of Ê(G) in (12) with respect to λw for a network with elas-
tic demands with the equilibrium disutilities for all the other O/D pairs being held
constant, which yields the following:

∂ Ê(G)

∂λw

= dw · (
∑

w∈W dw) − (
∑

w∈W λw(dw)dw) · (λ
′
w(dw))−1

(
∑

w∈W dw)2

+λw(dw) · (λ
′
w(dw))−1

∑
w∈W dw

. (13)

It is reasonable to assume that λw(dw) ≥ 0, dw ≥ 0, and λ
′
w(dw) < 0, ∀w ∈ W .

Obviously, the first term in (13) is nonnegative and the second term is nonpositive.

Therefore, the sign of ∂ Ê(G)
∂λw

depends on the equilibrium demand and the disutility
function for each w, which leads to the conclusion that the measure presented in (12)
is not appropriate for elastic demand networks.

Now let’s check if the new measure given by (10) has the desired network perfor-
mance property specified earlier. Let’s assume that the disutility functions are known
as introduced in Sect. 2.1. The disutility function for each w ∈ W is assumed to
depend, for the sake of generality, on the entire demand vector. With the assumption
of the equilibrium disutilities for all the other O/D pairs being held constant, the partial
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derivative of E(G, d) in (10) with regard to λw for the network with elastic demands
is then given as follows:

∂E(G, d)

∂λw

=
−dw

(λw(d))2 + ∑
v∈W

(
∂λw(d)

∂dv
)−1

λv(d)

nW
. (14)

Given the assumption that dw ≥ 0, λw ≥ 0, and ∂λw

∂dv
< 0, ∀v ∈ W , it is obvious

that E(G, d) in (14) is a nonincreasing function of λw, ∀w ∈ W .
Let’s now interpret the new proposed measure given by (10) in terms of transporta-

tion networks. The equilibrium O/D pair disutility, λw, is proportional to the (travel)
time between each O/D pair w. dw is the equilibrium demand (in terms of total vehi-
cles) between each O/D pair w. Therefore, dw/λw is the (vehicle) throughput between
O/D pair w. E(G, d) is the average (vehicle) throughput on the network G with demand
vector d. Here, instead of using the average social travel disutility/cost as in (12) to
quantify the performance of the network, an average throughput measure is proposed.
The higher the throughput that a network has, the better its performance and the more
efficient it is. For general networks, the performance/efficiency measure E defined in
(10) is actually the average demand to price ratio. When G and d are fixed, a network
is more efficient if it can satisfy a higher demand at a lower price!

3.2 The importance of network components

With our network performance/efficiency measure, we are ready to investigate the
importance of network components by studying their impact on the network effi-
ciency through their removal. The network efficiency can be expected to deteriorate
when a critical network component is eliminated from the network. Such a component
can include a link or a node or a subset of nodes and links depending on the network
problem under study. Furthermore, the removal of a critical network component will
cause more severe damage than that of a trivial one. Hence, similar to the definition
of importance of network components in the paper of Latora and Marchiori [14], we
define the importance of a network component as follows:

Definition 4 Importance of a network component
The importance of a network component g ∈ G, I (g), is measured by the relative

network efficiency drop after g is removed from the network:

I (g) = 
E
E = E(G, d) − E(G − g, d)

E(G, d)
(15)

where G − g is the resulting network after component g is removed from network G.

The upper bound of the importance of a network component is 1. The higher the
value, the more important a network component is.
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Fig. 1 Network for Examples 1
and 3

1

0

2

3 4

a b

c f

d e

4 Numerical examples

In this section, three examples of networks are presented for which the unified net-
work performance/efficiency measure is computed. The first two examples, reported
in Sect. 4.1, are fixed demand examples, whereas the third example, given in Sect. 4.2,
is an elastic demand example. Moreover, the importance of individual nodes and links
are determined, ranked, and compared by using our measure, the L–M measure, and
the Zhu et al. [30] measure for Example 1. In addition, for completeness, the impor-
tance of individual nodes and links are determined and their rankings are reported by
using our measure and the L–M measure for Example 3. In the following examples,
we assume that di j in the L–M measure is equal to λw where w = (i, j) for w ∈ W .
(Note that if a pair of nodes i, j becomes disconnected, then according to the L–M
measure, di j = ∞ and, hence, 1

di j
= 0, in this case.) Example 2 is a larger example

for which we compute the importance values and the importance rankings of the links.

4.1 Fixed demand examples

We now present two fixed demand network examples.

Example 1 A network with fixed demands
Example 1 is a fixed demand network problem as described in Sect. 2.2 and with

the topology given in Fig. 1.
There are two O/D pairs in the above network given by w1 = (0, 3) and w2 = (0, 4).

There are two paths connecting each O/D pair:

for O/D pair w1:

p1 = (a, c), p2 = (b, e),

for O/D pair w2:

p3 = (a, d), p4 = (b, f ).

The link cost functions are as follows:

ca( fa) = fa, cb( fb) = fb, cc( fc) = fc, cd( fd) = fd , ce( fe) = fe, c f ( f f ) = f f .
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The demands for the O/D pairs w1 and w2 are: dw1 = 100 and dw2 = 20. The
equilibrium solution (cf. (8)) for this network is:

x∗
p1

= 50, x∗
p2

= 50, x∗
p3

= 10, x∗
p4

= 10,

λw1 = 110, λw2 = 70.

Our network performance/efficiency measure for Example 1 is then given by:

E(G, d) = 1

nW

[
dw1

λw1

+ dw2

λw2

]

=
100
110 + 20

70

2
= 0.5974.

The L–M measure for Example 1 is:

E(G) = 1

n(n − 1)

[
1

d01
+ 1

d02
+ 1

d03
+ 1

d04
+ 1

d13
+ 1

d14
+ 1

d23
+ 1

d24

]

= 1

20

[
1

60
+ 1

60
+ 1

110
+ 1

70
+ 1

50
+ 1

10
+ 1

50
+ 1

10

]

= 0.0148.

The Zhu et al. (2006) measure, in turn, is:

Ê(G) = (dw1λw1 + dw2λw2)

(dw1 + dw2)
= (100 × 110 + 20 × 70)

(20 + 100)
= 103.33.

The importance of links and nodes and their ranking are reported, respectively, in
Tables 1 and 2; see also Latora and Marchiori [14] and Zhu et al. [30]. Note that the
importance of network components according to Zhu et al. [30] is similar to that in (15)
but with Ê(G) substituted for E(G, d), Ê(G − g) for E(G − g, d) and the deduction
order being changed, whereas Latora and Marchiori [14] define the importance of a
network component as: I (g) = E(G) − E(G − g) = �E but they use I (g) = �E

E
in their calculations and we do, as well, below, when we compare our measure to the
L–M measure.

Example 2 A larger fixed demand network
The second example consisted of 20 nodes, 28 links, and 8 O/D pairs, and is depicted

in Fig. 2.
A similar transportation network had been used previously in [17] where it is

referred to as Network 20; see also Dhanda et al. [9]. For simplicity, and easy repro-
ducibility, we considered separable user link cost functions, which were adapted from
Network 20 in [17] with the cross-terms removed.

The O/D pairs were: w1 = (1, 20) and w2 = (1, 19) and the travel demands:
dw1 = 100, and dw2 = 100. The link cost functions are given in Table 3.

We utilized the projection method [6,18] with the embedded Dafermos and Sparrow
[8] equilibration algorithm (see also, e.g., [17]) to compute the equilibrium solutions
and to determine the network efficiency according to (10) and well as the importance
values and the importance rankings of the links according to (15).
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Table 1 Importance and ranking of links in example 1

Link Importance Importance Importance Importance Importance Importance
value from ranking from value from the ranking from value from the ranking
our measure our measure L–M measure L–M measure Zhu et al. from the

measure Zhu et al.
measure

a 0.5000 1 N/A N/A 1.0000 1

b 0.5000 1 N/A N/A 1.0000 1

c 0.1630 2 N/A N/A 0.6774 2

d 0.0422 3 0.5119 1 0.0242 3

e 0.1630 2 N/A N/A 0.6774 2

f 0.0422 3 0.5119 1 0.0242 3

Table 2 Importance and ranking of nodes in Example 1

Node Importance Importance Importance Importance Importance Importance
value from ranking from value from the ranking from value from the ranking
our measure our measure L-M measure L–M measure Zhu et al. from the

measure Zhu et al.
measure

0 1.0000 1 N/A N/A N/A N/A

1 0.5000 2 0.7303 1 1.0000 1

2 0.5000 2 0.7303 1 1.0000 1

3 0.1630 3 -0.5166 3 N/A N/A

4 0.1630 3 0.6967 2 N/A N/A

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28

Fig. 2 Network for Example 2

The computed efficiency measure for this network is: E = 0.002518. The computed
importance values of the links and their rankings for this transportation network are
reported in Table 3.

From the results in Table 3, it is clear that transportation planners and network secu-
rity officials should pay most attention to links: 1, 2, and 26, 27, since these are the top
four links in terms of importance rankings. On the other hand, the elimination of links:
11, 13, 14, 15, and 17 should have no impact on the network performance/efficiency.

4.2 An elastic demand network example

Example 3 A network with elastic demands
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Table 3 Example 2 - Links, link cost functions, importance values, and importance rankings

Link a Link cost function ca( fa) Importance value Importance ranking

1 0.00005 f 4
1 + 5 f1 + 500 0.9086 3

2 0.00003 f 4
2 + 4 f2 + 200 0.8984 4

3 0.00005 f 4
3 + 3 f3 + 350 0.8791 6

4 0.00003 f 4
4 + 6 f4 + 400 0.8672 7

5 0.00006 f 4
5 + 6 f5 + 600 0.8430 9

6 7 f6 + 500 0.8226 11

7 0.00008 f 4
7 + 8 f7 + 400 0.7750 12

8 0.00004 f 4
8 + 5 f8 + 650 0.5483 15

9 0.00001 f 4
9 + 6 f9 + 700 0.0362 17

10 4 f10 + 800 0.6641 14

11 0.00007 f 4
11 + 7 f11 + 650 0.0000 22

12 8 f12 + 700 0.0006 20

13 0.00001 f 4
13 + 7 f13 + 600 0.0000 22

14 8 f14 + 500 0.0000 22

15 0.00003 f 4
15 + 9 f15 + 200 0.0000 22

16 8 f16 + 300 0.0001 21

17 0.00003 f 4
17 + 7 f17 + 450 0.0000 22

18 5 f18 + 300 0.0175 18

19 8 f19 + 600 0.0362 17

20 0.00003 f 4
20 + 6 f20 + 300 0.6641 14

21 0.00004 f 4
21 + 4 f21 + 400 0.7537 13

22 0.00002 f 4
22 + 6 f22 + 500 0.8333 10

23 0.00003 f 4
23 + 9 f23 + 350 0.8598 8

24 0.00002 f 4
24 + 8 f24 + 400 0.8939 5

25 0.00003 f 4
25 + 9 f25 + 450 0.4162 16

26 0.00006 f 4
26 + 7 f26 + 300 0.9203 2

27 0.00003 f 4
27 + 8 f27 + 500 0.9213 1

28 0.00003 f 4
28 + 7 f28 + 650 0.0155 19

We return now to Example 1 except that, now, we let the demand for O/D pairs w1
and w2 be elastic, so that the problem is as described in Sect. 2.1, where, specifically,
we have that:

λw1(dw1) = 100 − dw1 , λw2(dw2) = 40 − dw2 .

It is easy to calculate the following equilibrium solution (cf. (6)):

x∗
p1

= 24, x∗
p2

= 24, x∗
p3

= 4, x∗
p4

= 4,

d∗
w1

= 48, d∗
w2

= 8
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Table 4 Importance and ranking of links in Example 3

Link Importance value Importance ranking Importance value Importance ranking
from from from the from the
our measure our measure L–M measure L–M measure

a 0.5327 1 N/A N/A

b 0.5327 1 N/A N/A

c 0.1475 2 N/A N/A

d 0.0533 3 0.4516 1

e 0.1475 2 N/A N/A

f 0.0533 3 0.4516 1

Table 5 Importance and ranking of nodes in Example 3

Node Importance value Importance ranking Importance value Importance ranking
from from from the from the
our measure our measure L–M measure L–M measure

0 1.0000 1 N/A N/A

1 0.5327 2 0.2775 2

2 0.5327 2 0.2775 2

3 0.1475 3 0.3509 1

4 0.1475 3 0.3509 1

so that:

λw1 = 52, λw2 = 32.

Our network performance/efficiency measure for Example 3 is:

E(G, d) = 1

nW

[
dw1

λw1

+ dw2

λw2

]

=
48
52 + 8

32

2
= 0.5865.

The L–M measure for Example 3 is:

E(G) = 1

n(n − 1)

[
1

d01
+ 1

d02
+ 1

d03
+ 1

d04
+ 1

d13
+ 1

d14
+ 1

d23
+ 1

d24

]

= 1

20

[
1

28
+ 1

28
+ 1

52
+ 1

32
+ 1

24
+ 1

4
+ 1

24
+ 1

4

]

= 0.0353.

As discussed in Sect. 3.1, the Zhu et al. [30] measure cannot be used to assess net-
works with elastic demands. Therefore, in Tables 4 and 5, only the importance of links
and nodes and their rankings using our measure and the L–M measure are given.

As discussed in Sect. 3, by adding an abstract (and infinite cost) path to a discon-
nected O/D pair, our measure can be used to study networks with disconnected O/D
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pairs. This feature enables us to investigate the importance of nodes 3 and 4 in the
Examples 1 and 3 while the Zhu et al. [30] measure is then undefined.

5 Conclusions and future research directions

In this paper, we introduced a unified network performance/efficiency measure, which
can be applied to evaluate the network efficiency of different types of networks whether
the demands on the network are fixed or elastic. The measure assesses the network
efficiency by incorporating flows, and costs, along with behavior, all important factors
when dealing with network vulnerability and reliability. Future research will utilize
the above measure to identify the important/vulnerable components of large-scale
networks in a variety of distinct network settings and applications.
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