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Abstract This paper describes a problem of interdicting/jamming wireless
communication networks in uncertain environments. Jamming communication
networks is an important problem with many applications, but has received
relatively little attention in the literature. Most of the work on network inter-
diction is focused on preventing jamming and analyzing network vulnerabilities.
Here, we consider the case where there is no information about the network
to be jammed. Thus, the problem is reduced to jamming all points in the area
of interest. The optimal solution will determine the locations of the minimum
number of jamming devices required to suppress the network. We consider
a subproblem which places jamming devices on the nodes of a uniform grid
over the area of interest. The objective here is to determine the maximum grid
step size. We derive upper and lower bounds for this problem and provide
a convergence result. Further, we prove that due to the cumulative effect of
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the jamming devices, the proposed method produces better solutions than the
classical technique of covering the region with uniform circles.

Keywords Network interdiction · Network jamming · Optimization · Bounds

1 Introduction

This paper describes a problem of interdicting/jamming communication net-
works in uncertain environments. Jamming communication networks is an
important problem but has not been intensively researched despite the vast
amount of work on optimizing telecommunication systems [8]. Most papers on
network interdiction are about preventing jamming and analyzing network vul-
nerability [3,7]. To our knowledge, the only literature on network interdiction
involving optimal placement of jamming devices is the work of Commander
et al. [1] in which several mathematical programming formulations were given
for the deterministic wireless network jamming problem. The only other thor-
oughly studied cases are problems of minimizing the maximal network flow and
maximizing the shortest path between given nodes via arc interdiction using lim-
ited resources. Wood [9], Israeli and Wood [5], and Cormican et al. [2] studied
stochastic and deterministic cases and suggested efficient heuristics. A similar
setup but with a different objective was recently studied by Held et al. [4].

Since most situations arise in military battlefield scenarios, exact information
about the topology of the adversary’s network is unknown. Thus, deterministic
network interdiction approaches have limited applicability. In this case, a sto-
chastic approach involving some risk measure for evaluating the efficiency of
the jamming device placement may be helpful. However, choosing an appro-
priate risk measure is a challenging problem in its own right. In this paper, we
consider an extreme case where there is no a priori information about the topol-
ogy of the network to be jammed. The only information used in our approach
is a bounding area, containing the communication network.

The organization of the paper is as follows. Section 2 gives a formal descrip-
tion of the problem and the jamming model. We derive bounds and prove a
convergence result for the case of complete uncertainty in Sect. 3. Here we also
demonstrate the advantage of the proposed method compared to the simplified
case which does not account for the cumulative effect of the jamming devices.
Section 4 provides some concluding remarks.

2 Descriptions, assumptions, and definitions

In general, the problem of jamming a communication network is to determine
the minimum number of jamming devices required to interdict or suppress func-
tionality of the network. Starting with this general statement, more specific ones
can be obtained by considering various types of jamming devices and interdic-
tion criteria. Depending on the given information about the communication
nodes and the network topology, stochastic or deterministic setups can be
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constructed [1]. Below we provide assumptions and basic definitions of the
considered framework.

We consider radio-transmitting communication networks and jamming
devices operating with electromagnetic waves. We assume that the jamming
devices have omnidirectional antennas and emit electromagnetic waves in
all directions with the same intensity. We also assume that jamming power
decreases reciprocally to the squared distance from a device.

Definition 1 A point (communication node) X is said to be jammed or cov-
ered if the cumulative energy received from all jamming devices exceeds some
threshold value E: ∑

i

λ

R2(X, i)
≥ E, (1)

where λ ∈ R and R(X, i) represents the distance from X to jamming device i.
This condition can be rewritten as:

∑

i

1
R2(X, i)

≥ 1
L2 , (2)

where L =
√

λ
E .

The latter inequality implies that a jamming device covers any point inside a
circle of radius L.

Definition 2 A connection (arc) between two communication nodes is consid-
ered blocked if any of the two nodes is covered.

Usually, interdiction efficiency is determined by a fraction of covered nodes
and/or arcs. More complicated criteria used are based on the amount of infor-
mation transmitted through the network or the length of the shortest path
between pairs of nodes. We do not consider a specific criterium because we are
interested in the case of complete uncertainty. Thus, we are assuming that we
have no knowledge of the network topology, including information about the
node coordinates.

3 Jamming under complete uncertainty

If we ignore the cumulative effect of the jamming devices, then the problem
reduces to determining the optimal covering of an area on a plane by circles.
This covering problem was solved by Kershner [6]. The current paper shows
that accounting for the cumulative effect of all the devices can lead to significant
losses in costs, i.e., required number of jamming devices.

Since we assume no information is known about the network to be jammed,
the only reasonable approach is to cover all points in some area known to
contain the network. This approach would also be appropriate when some
information about the network is available, but is potentially inaccurate.
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Fig. 1 Uniform grid with
jamming devices

We consider a case when a communication network is located inside a square.
However, all of the following theorems can be formulated for a more general
case. For example, to obtain results when the network is contained inside a rect-
angular region in the plane, the only modification required to the calculations
is an appropriate updating of the summation bounds.

An optimal covering is one which contains the minimum number of jamming
devices that jam all points in the particular area of interest. However, finding a
globally optimal solution for the general problem is difficult [1]. Therefore, we
consider a subproblem of covering a square with jamming devices located at
the nodes of a uniform grid. The solution to this problem will provide a feasible
solution (optimal in certain cases) to the general problem. Suppose the grid step
size is R. If the length of a square side a is not a multiple of R, then we cover a
bigger square with a side of length R([ a

R ] + 1). See Fig. 1 for an example. The
optimal solution in the considered problem is a uniform grid with the largest
possible step size which covers the square. The problem remains non-trivial,
even for this simplified setup.

Lemma 1 For any covering of a square with a uniform grid, a point which recei-
ves the least amount of jamming energy lies inside a corner grid cell (see Fig. 2).

Fig. 2 The least covered
point is shown in the lower
left grid cell
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Fig. 3 Square decomposition

Proof Consider a corner cell S0 and an arbitrary non-corner cell Si. We prove
that for any point P ∈ Si, there is a corresponding point P′ ∈ S0 such that
E(P) > E(P′), where E(X) is the cumulative jamming energy from all devices
received at point X.

Let P′ be a symmetric correspondence of point P inside S0. Here, symmetry
implies that P and P′ are equidistant from the sides of their respective cells.
We split the square into the four rectangles A, B, C, and D, where A is the
rectangle containing cells S0 and Si (see Fig. 3). Denote the other two corner
cells of rectangle A by C1 and C2. Let also T1 and T2 be points inside C1 and
C2 respectively, such that T1PT2P′ is a rectangle with sides parallel to the sides
of the square as in Fig. 4. Using symmetry we get the following relations:

E(P′, A) = E(P, A), (3)

E(P′, B) < E(T1, B) = E(P, B), (4)

E(P′, D) < E(T2, D) = E(P, D), (5)

E(P′, C) < E(P, C), (6)

where E(X, I) is the cumulative jamming energy from all devices inside rectan-
gle I received by point X. Relations (3)–(6) imply

E(P′) = E(P′, A) + E(P′, B) + E(P′, C) + E(P′, D)

< E(P, A) + E(P, B) + E(P, C) + E(P, D)

= E(P), (7)

and the lemma is proved.

Below we formulate theorems for upper R and lower R bounds for the opti-
mal grid step size R∗ : R < R∗ < R. In all formulated theorems, we consider
covering a square with side length a.



58 C. W. Commander et al.

Fig. 4 Equivalent points

Theorem 1 The unique solution of the equation

1
2R2

(
π ln

( a
R

+ 1
)

+ π − 3
)

= 1
L2 (8)

is a lower bound R for the optimal grid step size R∗.

Proof In Lemma 1, we proved that the least covered point lies inside a corner
cell. Consider now a grid with step size R. Without the loss of generality, let
P(x0, y0) be a point inside the bottom left corner cell as shown in Fig. 5. I1, I2,
and I3 are cumulative jamming energy received at P by jamming devices located
in regions C, A, and B, correspondingly. Similarly, I4 is the jamming energy from
the jamming device located at the bottom left node O. With this, the jamming
energy received at point P is calculated through the expression

E(P) = I1 + I2 + I3 + I4, (9)

where

I1 =
T−1∑

i=0

T−1∑

j=0

1
(R − x0 + i · R)2 + (R − y0 + j · R)2 , (10)

I2 =
T−1∑

i=0

1

(R − x0 + i · R)2 + y2
0

, (11)

I3 =
T−1∑

j=0

1

x2
0 + (R − y0 + j · R)2

, (12)
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Fig. 5 Cumulative emanation
of jamming devices

I4 = 1

x2
0 + y2

0

, (13)

T =
[ a

R

]
+ 1. (14)

Notice that we can estimate I2 + I3 as

I2 + I3 ≥ 2 ·
T−1∑

i=0

1
R2(1 + i)2 + R2 ≥ 2

R2

T∫

0

1
1 + (1 + x)2 dx. (15)

This follows from the fact that

N∑

i=0

f (i) ≥
N+1∫

0

f (x)dx, (16)

where f (x) is a decreasing function. This property can be easily established
geometrically. Notice in Fig. 6 that the left side of inequality (16) represents the
shaded region in the figure, while the right side represents the area under f (x).
Continuing from (15) above we have

T∫

0

1
1 + (1 + x)2 dx = arctan(T + 1) − π

4

= π

2
− arctan

(
1

T + 1

)
− π

4

≥ π

4
− 1

T + 1
. (17)
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Fig. 6 Integral lower bound

Here and further, we use the inequalities given below:

arctan(x) ≤ x, 0 ≤ x ≤ 1, (18)

arctan(x) ≥ x − x3

3 , 0 ≤ x ≤ 1. (19)

Now combining (15) and (17), we obtain

I2 + I3 ≥ 2
R2

(
π

4
− 1

T + 1

)
. (20)

We also have the following approximation for I4 which follows clearly

I4 ≥ 1
2R2 . (21)

For estimating I1 we use a property similar to (16), but in a higher dimension.
Namely,

N∑

i=0

N∑

j=0

f (i, j) ≥
N+1∫

0

N+1∫

0

f (x, y)dx dy, (22)

where as above, f (x, y) is a decreasing function of x and y. Using this inequality,
we derive the following approximation for I1.
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I1 ≥
T∫

0

T∫

0

dxdy
(R − x0 + x · R)2 + (R − y0 + y · R)2

≥
T∫

0

T∫

0

dxdy
(R + x · R)2 + (R + y · R)2

= 1
R2

T+1∫

1

T+1∫

1

dxdy
x2 + y2 . (23)

Furthermore,

T+1∫

1

T+1∫

1

dxdy
x2 + y2 =

T+1∫

1

1
x

arctan

(
T + 1

x

)
dx −

T+1∫

1

1
x

arctan

(
1
x

)
dx

≥
T+1∫

1

1
x

arctan

(
T + 1

x

)
dx −

T+1∫

1

dx
x2

=
T+1∫

1

1
x

(
π

x
− arctan

(
x

T + 1

))
dx − 1 + 1

T + 1

= π

2
ln(T + 1) − 1 + 1

T + 1
−

T+1∫

0

1
x

arctan

(
x

T + 1

)
dx

≥ π

2
ln(T + 1) − 1 + 1

T + 1
−

T+1∫

0

1
x

(
x

T + 1

)
dx

= π

2
ln(T + 1) − 2

(
1 − 1

T + 1

)
. (24)

Combining this result with (23) we have

I1 ≥ 1
R2

(
π

2
ln(T + 1) − 2

(
1 − 1

T + 1

))
. (25)

Summing (20), (21), and (25) we obtain an overestimate of the total coverage
at point P. That is
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E(P) ≥ 1
R2 ·

(
π

2
ln(T + 1) − 2 + 2

T + 1
+ π

2
− 2

T + 1
+ 1

2

)

= 1
R2

(
π

2
ln(T + 1) + π

2
− 3

2

)

≥ 1
2R2

(
π · ln

( a
R

+ 1
)

+ π − 3
)

. (26)

To guarantee coverage of point P, it is sufficient to claim that

f (R) = 1
2R2

(
π · ln

( a
R

+ 1
)

+ π − 3
)

≥ 1
L2 . (27)

Since f (R) is monotonically decreasing on (0, +∞), the largest R satisfying the
above inequality is the unique solution R of the equation

f (R) = 1
L2 . (28)

Thus, a uniform grid with step size R jams any point P inside a corner cell.
According to Lemma 1, the grid jams the least covered point in the square
implying that the whole square is jammed. Thus we have the desired result.

Since the function f (R) = 1
2R2 (π ln( a

R +1)+π −3) is monotonic, equation (8)
can be easily solved using a numerical procedure such as a binary search. There-
fore, using (8), we can obtain a step size R such that the corresponding uniform
grid covers the entire square. Further, the number of jamming devices in the
grid does not exceed

N1 =
(

a
R

+ 2
)2

. (29)

A more straightforward solution of the initial problem could be based on the
property that a jamming device covers all the points inside a circle of radius
L as mentioned in Definition 1. Using that, we could reduce the problem to
finding the optimal covering of a square with circles of radius L. A direct result
from Kershner [6] (that was mentioned in [7]) is that in the limit, the minimum
number of circles to cover an area a2 is

N2 = 2a2

3
√

3L2
. (30)

To compare the approaches, we consider the ratio

N2

N1
=

(
R
L2

)
2

3
√

3

1
(

1 + 2 R
a

)2

= 2x2

3
√

3

1
(

1 + 2x
k

)2 , (31)
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Table 1 Comparing N2
N1

for

various values of k
k x N2

N1

102 2.44 2.3
104 3.54 4.8
106 4.40 7.5
108 5.14 10.2

where x = R
L and k = a

L . Using these substitutions, equation (8) can be rewritten
in terms of variables x and k as follows

1
x2

(
π ln

(
k
x

+ 1
)

+ π − 3
)

= 2. (32)

By solving (32) for different values of k, one can find corresponding values of x
and N2

N1
. To evaluate the advantage of the uniform grid approach over the naive

one, we provide some computational results in the Table 1. From the table, we
see that as k increases, the advantage of using our approach becomes more
significant. In fact, it can be proved that lima→∞ N2

N1
= ∞. This will follow as a

corollary of Theorem 3.
To establish the quality of the lower bound rigorously, we need to first estab-

lish a similar result for an upper bound. This follows in the next theorem.

Theorem 2 The unique solution of the equation

1
R2

(
π

2
ln

(
2a
R

+ 1
)

− 1
6
( a

R + 1
) + π

2
+ 19

3

)
= 1

L2 (33)

is an upper bound R of the optimal grid step size R∗.

Proof Let P(x0, y0) be the least jammed point, that lies inside a corner cell
according to Lemma 1. Without the loss of generality, as in the proof of
Theorem 1, we assume that P is inside the bottom left corner cell. The jam-
ming energy received at point P is calculated through the expressions (9)–(14).
Since P is the least covered point, the following inequality holds.

E(P) ≤ E
(

P′
(

x = R
2

, y = 0
))

= I′
1 + I′

2 + I′
3 + I′

4, (34)

where

I′
1 =

T−1∑

i=0

T−1∑

j=0

1
(

R
2 + i · R

)2 + (R + j · R)2
, (35)
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I′
2 =

T−1∑

i=0

1
(

R
2 + i · R

)2 , (36)

I′
3 =

T−1∑

j=0

1
(

R
2

)2 + (R + j · R)2
, (37)

I′
4 = 1

(
R
2

)2 . (38)

I′
2 and I′

3 can be estimated through integrals similarly to the techniques used in
the proof of Theorem 1. The following inequality holds

N∑

i=1

f (i) ≤
N∫

0

f (x)dx, (39)

where f (x) is a decreasing function. This property can also be proven geomet-
rically. Figure 7 represents a graphical interpretation of this relation. The left
side of the inequality is represented by the shaded area. The right side of (39)
is the area under f (x). With this property we have from (36) that

I′
2 ≤ 1

(R
2 )2

+
T−1∫

0

dx
(

R
2 + x · R

)2

= 1
R2

(
6 − 1

T − 1
2

)
. (40)

Furthermore, using inequalities (18) and (19), we see that (37) is estimated by

I′
3 ≤ 1

(
R
2

)2 + (R + x · R)2

= 2
3R2 + 2

R2

(
arctan

(
1
2

)
− arctan

(
1

2T

))

≤ 2
3R2 + 2

R2

(
1
2

− 1
2T

+ 1
24T3

)

= 1
R2

(
5
3

− 1
T

+ 1
12T3

)
. (41)
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Fig. 7 Integral upper bound

To estimate I′
1 a property similar to (39) can be used. This inequality is

given by

N∑

i=1

N∑

j=1

f (i, j) ≤
N∫

0

N∫

0

f (x, y)dxdy +
N∫

0

f (x, 0)dx +
N∫

0

f (0, y)dy, (42)

where f (x, y) is a decreasing function of x and y. With the above inequality,

I′
1 ≤ 1

(R
2

2
) + R2

+
T−1∫

0

dx

(R
2 )2 + (R + x · R)2 +

T−1∫

0

dx
(

R
2 + x · R

)2 + R2

+
T−1∫

0

T−1∫

0

dxdy
(

R
2 + x · R

)2 + (R + y · R)2

= 4
5R2 + C

R2 + 1
R2

T−1∫

0

T−1∫

0

d
(

x + 1
2

)
dy

(
1
2 + x

)2 + (y + 1)2
, (43)

where

C = 2 arctan(2T) − arctan(2) + arctan

(
T − 1

2

)
− π

2

= π

2
− 2 arctan

(
1

2T

)
+ arctan

(
1
2

)
− arctan

(
2

2T − 1

)

≤ π

2
− 2

(
1

2T
− 1

24T3

)
+ 1

2
−

(
2

2T − 1
− 8

3(2T − 1)3

)

≤ π + 1
2

. (44)
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The double integral in (43) is bounded as follows

T−1∫

0

T−1∫

0

d(x + 1
2 )dy

( 1
2 + x)2 + (y + 1)2

=
T− 1

2∫

1
2

T∫

1

dtdy
t2 + y2

=
T− 1

2∫

1
2

1
t

(
arctan

(
T
t

)
− arctan

(
1
t

))
dt

≤
T− 1

2∫

1
2

1
t

(
π

2
− arctan

(
t
T

))
dt −

T− 1
2∫

1
2

1
t

(
1
t

− 1
3t3

)
dt

≤ π

2

(
ln

(
T − 1

2

)
− ln

(
1
2

))
−

T− 1
2∫

1
2

1
t

(
t
T

− t3

3T3

)
dt

−
(

4
3

− 1

T − 1
2

+ 1

6(T − 1
2 )2

)

= π

2
ln(2T − 1) − 20

3
+ 5

6T
+ 1

12T2 − 1
36T3 + 1

T − 1
2

− 1

6
(

T − 1
2

)2

<
π

2
ln(2T − 1) − 20

3
+ 5

6T
+ 1

T − 1
2

− 1

12
(

T − 1
2

)2 . (45)

Combining the results from (43), (44), and (45) gives the overestimate for I′
1 as

I′
1 <

1
R2

⎛

⎜⎝
π

2
ln(2T − 1) + π

2
− 16

3
+ 5

6T
+ 1

T − 1
2

− 1

12
(

T − 1
2

)2

⎞

⎟⎠. (46)

Recall equation (34) stated E(P) ≤ I′
1 + I′

2 + I′
3 + I4. So using the expression

for I′
4 given in (38) and the overestimates for I′

1, I′
2, and I′

3 derived in equations
(46), (40), and (41) respectively, we obtain

E(P) ≤ 1
R2

(
π

2
ln(2T − 1) − 1

6T
+ π

2
+ 19

3

)
. (47)
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Finally, if we let T = [ a
R ] + 1 ≤ a

R + 1, we get

E(P) <
1

R2

(
π

2
ln

(
2a
R

+ 1
)

− 1
6
( a

R + 1
) + π

2
+ 19

3

)
(48)

The function f (R) = 1
R2

(
π
2 ln

(
2a
R + 1

)
− 1

6( a
R +1)

+ π
2 + 19

3

)
is monotone, hence

the equation f (R) = 1
L2 has a unique solution R. Equation (48) implies that a

grid with step size R does not cover the entire square. That is, there exists at
least one point P that remains uncovered. Thus R is an upper bound for the
optimal grid covering problem. Since the optimal grid step size R∗ < R, the
theorem is proved.

In Fig. 8, we see an example in which we are covering at 40 × 40 square
and the required jamming level at each point is 3.0 U. In part (a), we see the
coverage associated with the required number of devices from the lower bound
of Theorem 2. In this case, 202 = 400 jamming devices are used to cover the
area. Notice that there are no holes in the region. This, together with the scallop
shell outside the bounding box indicates that all points within the region are
covered. In part (b), we see the coverage corresponding to the placement of the
jamming devices on a uniform grid according to the upper bound of Theorem 3.
Here, the required number of devices is 192 = 361. Notice the holes located at
the four corners of the region indicating that these points are uncovered. This
validates the theoretical results obtained in Theorem 2 and Theorem 3.

Now that we have established both upper and lower bounds for an optimal
grid step size, we can determine the quality of the bounds. The result is obtained
in the following theorem.
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Fig. 8 a The coverage of when jamming devices are placed according to the lower bound from
Theorem 2. The total number of jamming devices required is 202 = 400. b We see the coverage
associated with the result obtained from Theorem 3. In this case, 192 = 361 devices are placed.
Notice the corner points are not jammed



68 C. W. Commander et al.

Theorem 3

lim
a→∞

R
R

= 1, (49)

where R and R are bounds obtained from equations (8) and (33), correspond-
ingly. Moreover, the following inequality holds:

1 ≤ R
R

≤
√

1 + c
ln(a)

, (50)

for constants M ∈ R, c ∈ R, such that R > M.

Proof By letting x = R
L and y = R

L , Eqs. (8) and (33) can be respectively
rewritten as

a = L · x
(

e
2
π

(x2+ 3
2 )−1 − 1

)
, (51)

and
π

2
ln

(
2a

L · y
+ 1

)
= y2 − 19

3
− π

2
+ L · y

6(a + L · y)
. (52)

To prove the theorem, we need to show that

lim
a→∞

y
x

= 1, (53)

where x > 0 and y > 0 are solutions of (51) and (52), correspondingly. From
(52), we obtain

π

2
ln

(
2a

L · y
+ 1

)
> y2 − C1, (54)

where

C1 = 19
3

+ π

2
, (55)

and

a >
L · y

2

(
e

2
π

(y2−C1) − 1
)

. (56)

From (51) and (56) we see that

x
(

e
2
π

(x2+C2) · C3 − 1
)

>
y
2

(
e

2
π

(y2−C1) − 1
)

, (57)

where

C2 = 3
2

, (58)
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and

C3 = e−1. (59)

Since y ·L and x ·L are upper and lower bounds, correspondingly, the following
relation holds y

x
> 1. (60)

With (51) and (60) above, we can also conclude that

lim
a→∞ x = ∞ and lim

a→∞ y = ∞. (61)

For all M ∈ R, where M >
√

C1, there exists Q ∈ R such that (57) can be
reduced to

y
x

< Q · e
2
π

(x2−y2), and y > M. (62)

Moreover, for c = π
2 ln(Q) the following inequality holds

(y
x

)2 − 1 ≤ c
x2 , and y > M. (63)

Assume for the sake of contradiction that the inequality in (63) does not hold

for some (x∗, y∗). That is assume that
(

y∗
x∗

)2 − 1 > c
x∗2 . Using (62) we have

y∗

x∗ < Q · e
− 2

π
x∗2

(
(

y∗
x∗ )2−1

)

< Q · e− 2
π

x∗2· c
x∗2 = 1, (64)

which contradicts (60).
Applying (60) and (63) we get

1 <
y
x

≤
√

1 + c
x2 , and y > M. (65)

Letting a tend to ∞ and taking (61) into account, we see that in fact

lim
a→∞

y
x

= 1. (66)

Finally, by using (65) and (51), the following relation can be obtained

1 <
y
x

≤
√

1 + k
ln(a)

, (67)

for some constant k ∈ R, when y > M. Thus, the theorem is proved.
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4 Conclusion

In this paper, we introduced the problem of jamming a communication net-
work under complete uncertainty. We examined the case when the network is
known to lie in a square with area a2. We derived upper and lower bounds for
the optimal number of jamming devices required when they are located at the
vertices of a uniform grid. We also provided a convergence result indicating
that the proposed bounds are tight. Furthermore, we proved that our approach
is more efficient than the solution provided by optimally covering the square
with circles of radius L.
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