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Abstract We consider a telecommunication problem in which the objective
is to schedule data transmission to be as fast and as cheap as possible. The
main characteristic and restriction in solving this multiobjective optimization
problem is the very limited computational capacity available. We describe a sim-
ple but efficient local search heuristic to solve this problem and provide some
encouraging numerical test results. They demonstrate that we can develop a
computationally inexpensive heuristic without sacrificing too much in the solu-
tion quality.

Keywords Heuristics · Parallel machine scheduling · Biobjective optimization ·
Combinatorial optimization · Telecommunications

1 Introduction

Future fourth generation (4G) wireless networks will enable global roaming
across many wireless networks [18]. This means that mobile terminals will be
able to use multiple wireless connections to networks simultaneously [5]. This
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provides valuable new potential because data to be transferred often consists of
several distinct components. A web page, for example, is composed of multiple
pictures and text parts. These different components can be transferred using
distinct network connections. The connections may have very different char-
acteristics, like price and transmission rate, which makes the wise selection of
connections difficult for the user of the mobile terminal. Therefore, an auto-
matic network connection selection method is needed.

The network connection selection problem [14] can be described as follows:
A set of available network connections is given with known properties, such
as transmission rate and price. Data consisting of distinct components is to be
transferred using the network connections. The problem is to select a network
connection for each component of the data in such a way that both the time used
in transferring and the costs are minimized. This objective is chosen because
the users of mobile terminals naturally want the data to be transferred as fast
as possible while keeping the costs as low as possible. Usually, the faster the
transfer is, the more expensive it is. Therefore, we need to find a compromise
solution in which the transfer is fast enough while the costs are not too high.

Our goal is to develop a fast automatic solution method that gives a good
compromise between the conflicting objectives. The method should be fast,
because otherwise the usability of the mobile terminal impairs. In addition, the
method should use little computational capacity because the capacity of mobile
terminals is limited.

The network connection selection problem can be seen as a uniform paral-
lel machine scheduling problem, where the goal is to minimize the makespan
and the total costs of processing the jobs [14]. (Connections to other problem
types are discussed in [14].) Using the three field notation introduced in [4], the
problem can be stated as Q||Cmax,

∑
fj where fj denotes the cost of processing

job j. The uniform parallel machine scheduling problem with the objective of
minimizing the makespan is NP-hard [1]. Therefore, also the problem with the
objectives of minimizing both the makespan and the costs is NP-hard. This
means that it is unlikely that there exists a polynomial time algorithm capable
of solving the problem. Because of the NP-hardness and the need for a fast solu-
tion method (also for large problem cases), we focus on developing a heuristic
for the problem.

Some multiobjective scheduling problems have been considered in the lit-
erature, but the research has concentrated mostly on single machine problems
[13,15]. We are not aware of any research on uniform parallel machine sched-
uling problems with the objectives of minimizing both the makespan and the
costs. There are however some studies on unrelated parallel machine schedul-
ing problems with these objectives [6,9]. The algorithms presented require that
upper bounds T for the makespan and C for the costs are given. For example in
[9], the algorithm forms a schedule with makespan at most (1+ ε)T and costs at
most (1 + ε)C if there exists a schedule with makespan T and costs C. This kind
of algorithms cannot be used for our network connection selection problem
because we cannot determine values T and C a priori.
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In [16], solving a general multiobjective scheduling problem has been divided
into three subproblems: modelling the problem, taking into account the objec-
tives and scheduling. The first phase, modelling the problem, means defining
the scheduling problem and the objectives. In the second phase, the problem is
to decide how the conflicting objectives will be taken into account, that is, how a
compromise solution between the objectives can be obtained. In the last phase,
the actual scheduling problem is solved and a solution to the multiobjective
scheduling problem is obtained.

In our previous paper [14], we concentrated on modelling the network con-
nection selection problem and taking into account the conflicting objectives.
We compared different multiobjective optimization methods that do not need
human interaction, studied the nature of the problem and found a method that
produces a good compromise between the conflicting objectives. The method
combines the two objectives into a scalarizing function that can be minimized in
order to obtain a good compromise solution for the multiobjective optimization
problem. Unfortunately, in practice, this method cannot be applied in solving
the network connection selection problem because it is computationally far too
demanding. Thus, we need new approaches.

In this paper, we continue our research on the network connection selec-
tion problem and consider the third phase: solving the problem. The goal of
our study has been to develop a fast automatic solution method that uses only
little computational capacity. Therefore, we have developed a heuristic solu-
tion method which we present here. The heuristic uses the scalarizing function
found appropriate for solving the network connection selection problem in
[14] to measure the solution quality. This idea of using a scalarizing function
to measure the solution quality is new, since usually in heuristics developed
for scheduling problems different objectives are considered separately. The
heuristic is applicable also to other combinatorial multiobjective optimization
problems.

The rest of this paper is organized as follows. In the next section,we give a
mathematical model of the network connection selection problem. In Sect. 3,
we define some concepts of multiobjective optimization and describe a scalar-
izing function. The scalarizing function is used in the heuristic we propose in
Sect. 4. Computational results are given in Sect. 5, and finally, we conclude in
Sect. 6.

2 Model

Let us assume that there are m network connections available and data consist-
ing of n components is to be transferred using them. The connections available
and their properties are known because the mobile terminal requests this infor-
mation from network operators before the data transmission. Transmitting all
the components is considered as a transaction that is time-sensitive. The time
used in the transaction is assumed to be short and, therefore, the properties of
the network connections can be assumed to be fixed during the transaction.
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Let xij be a binary variable such that xij = 1, when component j is transferred
using connection i, otherwise xij = 0, i = 1, . . . , m, j = 1, . . . , n. A coefficient,
duration, dij represents the time used in transferring component j using con-
nection i. Another coefficient cij represents the cost of using connection i to
transfer component j.

Now, the network connection selection problem can be formulated as follows:
minimize

f1(x) = max
i = 1,...,m

n∑

j = 1

dijxij and f2(x) =
m∑

i = 1

n∑

j = 1

cijxij

subject to
m∑

i = 1

xij = 1, for all j = 1, . . . , n, (1)

xij ∈ {0, 1}, for all i = 1, . . . , m and j = 1, . . . , n.

The objective function f1 expresses the time used in transferring the com-
ponents and the objective function f2 denotes the costs of the transfers. The
constraints (1) require that each component is transferred using exactly one
network connection.

When the model is solved, the solution tells which connection is used for
transferring each component. It does not pay attention to the order in which
the components are transferred on each network connection because neither
the time used in transfers nor the total costs depend on the order of the compo-
nents. After solving the problem, the components can be ordered, for example,
in the increasing order of the component sizes on each network connection.

It should be noted that since we cannot determine the exact transmission rate
a priori, the minimum guaranteed rate of each connection given by the opera-
tor of the connection is used in calculating the durations. This ensures that the
actual time used in each transmission is never longer than the duration dij.

3 Concepts of multiobjective optimization

Before we start solving the network connection selection problem, we briefly
define some concepts of multiobjective optimization. Let us consider a problem
where we want to minimize two conflicting objective functions f1(x) and f2(x)

simultaneously subject to a general constraint x ∈ S. The vector of objective
functions, called objective vector, is denoted by F(x) = (f1(x), f2(x))T, and the
vector x = (x1, x2, . . . , xn)T is called a decision vector.

Generally, it is not possible to find a solution in which both objective functions
attain minimal values. A decision vector x∗ ∈ S and the corresponding objective
vector F(x∗) are Pareto optimal if there does not exist another decision vector
x ∈ S such that fi(x) ≤ fi(x∗) for i = 1, 2 and fj(x) < fj(x∗) for at least one j [11].
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Pareto optimality guarantees that we cannot improve any objective function
value of the solution without deteriorating the other objective function value.
In other words, all the Pareto optimal solutions are mathematically equivalent.
Which of them is the best and is selected to be the final solution depends on the
problem settings.

An objective vector containing the minimal value of each objective function
is called an ideal objective vector, z∗ [11]. With conflicting objectives, the ideal
objective vector is infeasible. The components z∗

i of the ideal objective vector
are obtained by minimizing both objective functions fi separately subject to the
constraint x ∈ S.

From the ideal objective vector we get the lower bound of the Pareto optimal
set for each objective function. The upper bounds of the Pareto optimal set are
the components of a nadir objective vector znad. In the case of two objective
functions, the nadir objective vector can be obtained at the same time the ideal
objective vector is calculated. The first component of the nadir objective vector
is the value of the first objective function in the point where the second objec-
tive function attains its minimal value, and the second component is the value
of the second objective function in the point where the first objective function
attains its minimal value [3].

Multiobjective optimization problems are usually solved by scalarization [11].
Scalarization means converting the problem with multiple objectives into a sin-
gle objective optimization problem or a family of single objective optimization
problems. When a multiobjective optimization problem has been scalarized,
methods developed for single objective optimization can be used for solving
the problem. The objective function of the single objective problem is called a
scalarizing function.

In [14], we compared different scalarizing functions (including the well-
known weighting method) for solving the network connection selection prob-
lem. We next describe one of them that was found the most suitable for our
purposes. This scalarizing function is used in the heuristic to be presented in
Sect. 4.

The following achievement scalarizing function is minimized subject to the
constraint of the problem:

max
i=1,2

wi
fi(x) − zmid

i

znad
i − z∗

i
+ ρ

2∑

i=1

wi
fi(x) − zmid

i

znad
i − z∗

i
, (2)

where zmid is a middle point located in the middle of the ranges of the objective
functions in the Pareto optimal set, that is,

zmid
i = znad

i + z∗
i

2

for i = 1, 2 and the augmentation coefficient ρ is a small positive scalar. The
ratio of the positive weighting coefficients w1 and w2 represents here the rate
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at which the user of the mobile terminal is willing to trade off values of the
objective functions. In (2), denominators are used to scale the terms of the sca-
larizing function to be of a similar magnitude. This increases the computational
efficiency of this type of scalarizing functions, as shown in [12]. The solution to
the achievement scalarizing function (2) is Pareto optimal [11].

Calculating ideal and nadir objective vectors means additional computations.
To avoid that, we use approximations of the ideal and the nadir objective vec-
tors. We use vector (0, 0)T to approximate the ideal objective vector. This vector
is infeasible because no data can be transferred without any costs and without
using any time. The nadir objective vector is estimated from the problem data
as follows. The first component of the vector is the objective function value f1(x)

related to a solution x where every component is transferred using the slowest
network connection. The second component of the vector is the objective func-
tion value f2(x) related to a solution x where every component is transferred
using the most expensive connection. These estimates are larger than or equal
to the components of the real nadir objective vector. Though the estimate of
the second component may be very rough, the estimates are sufficient for our
purposes [14], and no optimization problems need to be solved to get them.

4 Heuristic

Because the capacity of mobile terminals is limited, our aim is to develop an
algorithm that uses as little computational resources as possible. In other words,
the heuristic should produce a good enough solution while being as simple as
possible. In addition, the network connection selection problem requires that
the solution is obtained fast. Otherwise, the user of the mobile terminal is not
satisfied.

In [14], we studied the settings of the network connection selection problem
using different problem instances. The instances represented different kinds of
cases of the problem that may occur. In all the examples studied, we could iden-
tify a solution that is a good compromise between the objectives and, thus, a
logical choice for the final solution. We studied different scalarizing functions in
order to find a method that produces a solution near the good compromise solu-
tion. Our computational tests showed that the achievement scalarizing function
(2) was the most suitable and robust for that purpose.

The problem has binary-valued variables which makes minimizing the sca-
larizing function using exact methods, such as branch-and-cut methods [10],
time-consuming. Therefore, we need to develop a heuristic that gives a solution
near the optimal solution to the scalarizing function (2). Our heuristic to be
presented next is a simple local search method that uses the scalarizing function
(2) to measure the solution quality.

Because we cannot use a lot of computational capacity in our heuristic, we
use simple moves called 1-exchanges [17] for improving an initial solution.
A 1-exchange means in this case that a component j that is assigned to a
connection i is moved from connection i to another connection i′. This move
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should improve the solution, otherwise it is not performed. We want to use
1-exchanges in a systematic way, and not to use random selection. The reason
for this is that if we use random selection, 1-exchanges may be used for some
component many times, whereas for some components the 1-exchanges are not
applied at all, if there are only few iterations of 1-exchanges in the heuristic.
Therefore, 1-exchanges are used for each component j in turn, and the potential
new connection i′ is chosen in the following way: The algorithm considers all
the connections except connection i, and connection i′ is the connection that
gives the best solution when component j is transferred using it.

As already mentioned, we use the scalarizing function (2) to measure the
solution quality. In other words, the lower the value of the scalarizing func-
tion is, the better the solution is. The parameters of the scalarizing function
are given the following values: the augmentation coefficient ρ was set to 0.001
and the coefficients of the objective functions (time and costs) w1 and w2 were
set to 1 and 2, respectively. These values were used also in [14]. This idea of
using a scalarizing function to measure the solution quality is new: In heuris-
tics developed for scheduling problems the objectives are usually considered
separately.

The initial solution plays a very important role in getting a good final solu-
tion. It is desirable that the initial solution enables the improvements to lead
the search near a good compromise solution. Therefore, we use the scalarizing
function (2) also when forming the initial solution: We set each component in
the initial solution to the network connection that gives the lowest scalarizing
function value. This kind of an initial solution ensures that the scalarizing func-
tion measures the solution quality already when the first feasible solution is
constructed.

To be more precise, the initial solution is formed as follows. A set C contain-
ing the components that have already been assigned to a network connection is
initially empty. At each iteration, we consider a component i not yet in the set
C, add it to the set and assign it to a connection. We define a partial problem
as a problem consisting of all the connections and the components currently
in C. The connection to which the component is assigned is the one that gives
the lowest scalarizing function value for the partial problem. (Note that the
assignments of the other components in C are fixed.) In order to be able to use
the scalarizing function, the nadir objective vector of the partial problem has to
be approximated. The vector is approximated as presented in Sect. 3.

Now we can sum up the heuristic algorithm as follows:

1. Initialize by setting C = ∅.
2. Construction of the initial solution. For each component i = 1, . . . , n:

(a) Add component i in the set C.
(b) Approximate the nadir objective vector for the partial problem con-

sisting of all the network connections and the components in C.
(c) Assign component i to the network connection that gives the lowest

value of the scalarizing function (2) for the current partial problem
when the assignments of the other components in the partial problem
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are fixed. The nadir objective vector approximated in the previous
step is used in the scalarizing function.

3. Set the initial solution formed in the previous step as the current solution.
4. Improvements. For each component i = 1, . . . , n, use 1-exchange:

(a) Select the connection that gives the lowest value of the scalarizing
function (2) when component i is transferred using it, instead of using
the connection the component is assigned to in the current solution.

(b) If the value of the scalarizing function is smaller than in the current
solution, set component i to the selected connection and set this as the
current solution.

5. Repeat Step 4 if the stopping criterion is not satisfied.

The stopping criterion can be a certain number of improvement rounds (Step 4)
done or no improvement in the solution in the previous round of improvements.
The stopping criterion can also be a combination of these criteria.

We have not yet specified in which order the components are dealt with in
the heuristic. The 1-exchanges can be used for the components in a random
order, which means, for example, the order in which the components of the
data happen to be, or in the decreasing order of the component sizes. These
orders can also be used in forming the initial solution. The decreasing order is
intuitively appealing, because the larger the component is the more influence it
has on the solution.

Without ordering the components, the computational complexity of the heu-
ristic is O(mn) (note that usually m < n). The ordering of the components can
be done using quicksort, which has the worst case complexity of O(n2) and the
mean complexity of O(n log n) [2]. Then, the computational complexity of the
heuristic is O(n2) if the components are ordered.

We have tested the heuristic using both random order and the decreasing
order. Thus, in the following computational results, there are two versions of
the heuristic: in heuristic1, the components are dealt with in a random or-
der, whereas in heuristic2 the 1-exchanges are applied to the components in
a decreasing order of their sizes. The heuristic is stopped in our computa-
tional tests when the solution has not improved during the previous round of
improvements.

Finally, we want to remark that the scalarizing function used to measure the
solution quality can be changed during the heuristic. In other words, we can
use different scalarizing functions in forming the initial solution and in the im-
provemet phase, or we can use another scalarizing function after few rounds of
improvements to refine the final solution.

5 Computational results

The two versions of the heuristic were tested with 16 reality-based test instances.
By reality-based instances we mean that the components of each problem in-
stance form a real web page and the properties of the network connections
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(that is, price and transmission rate) are estimates for connections of the near
future.

Because we cannot predict exactly what kind of a pricing model the opera-
tors will use in the future, we have used two different pricing models. In the first
model, the pricing is linear in the size of the component. Thus, the price is, for
example, 8.2 · 10−8 euros per bit (and naturally the price is different for each
connection). The second model is more elaborate: the price is calculated using
formula

cij = K0 + K1 exp(K2 · rate(i)) · size(j), (3)

where rate(i) is the rate of connection i (bits per second), size(j) is the size of
component j in bytes and K0, K1, and K2 are connection-specific coefficients.
The coefficients K0, K1, and K2 used for GSM connections are 9.0, 0.31, and
0.000043, respectively, and for UMTS connections the coefficients are 6.0, 8.8,
and 0.0000017, respectively. The cost given by formula (3) has to be multiplied
by 10−5 in order to get the cost in euros.

The test instances are briefly summarized in Table 1: For each instance, the
number of components n and the number of network connections m as well
as the total size of the components are given. The table reports also which of
the pricing models is used in each test instance. We would like to note that the
number of network connections m is small in the test instances because mobile
terminals cannot use too many connections simultaneously.

As mentioned earlier, the solution obtained by minimizing the scalarizing
function (2) is a good Pareto optimal compromise between the conflicting objec-
tives. That is why we compare the performance of our heuristic to that solution.
This optimal solution is calculated using CPLEX 8.0, which uses a branch-and-
cut method to solve integer programming problems [7]. Both the heuristic and
CPLEX were run in a computer with a 550 MHz HP PA-RISC processor. The
relative optimality tolerance used in CPLEX was 10−8, with the exception of

Table 1 Test instances (with
n components and m
connections)

Instance n m Total size (bytes) Pricing model

geu1 10 3 80,400 Linear
geu2 15 5 154,600 Linear
geu3 25 5 156,141 Linear
city 9 5 65,671 Linear
mit 11 5 70,776 Linear
jyu 12 5 22,795 Linear
hut 14 5 73,706 Linear
helsinki 15 5 61,168 Linear
wireless 15 5 34,028 Linear
yahoo 17 5 44,384 Linear
geizhals 18 5 24,003 Linear
bbc 23 5 27,554 Linear
gigantti 24 5 39,094 Linear
gsm-umts 14 5 73,706 Formula (3)
gsm-umts2 18 5 24,003 Formula (3)
gsm 17 3 44,384 Formula (3)
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instance geu3 in which the tolerance was 10−4. (A smaller tolerance 10−6 caused
CPLEX to run 38 days of CPU time without establishing the final solution.)
The relative optimality tolerance of 10−4 guarantees that the solution given by
CPLEX is within 0.01% of the optimal solution value.

The computational results are presented in Tables 2 and 3. Table 2 contains
(in the last column) the objective function values of the optimal solutions to
the scalarizing function (2), to which the heuristic solutions are compared. In
order to ease comparison, instead of reporting the solutions given by the two
versions of the heuristic, the differences of the heuristic solutions to the opti-
mal solution are given in the table. The differences in the objective function
values (time, costs) are in parentheses, and they are calculated by subtracting
the value of the optimal solution from the value of the heuristic solution. The
differences in the value of the scalarizing function (2) between the heuristic and
optimal solutions are also presented in Table 2. The average differences in the
scalarizing function value are 0.0026 (heuristic1) and 0.0023 (heuristic2), which
are very good results. It is also significant that in the cases of two test instances
the solution given by both versions of the heuristic is the same as the optimal
solution to the scalarizing function (2).

In Table 3, the CPU times used by the heuristics and CPLEX are given, as
well as the number of improvement rounds done in each heuristic. The number
of improvement rounds applied in the heuristics was small in all the problem
instances tested. In one instance (geu3) four rounds were needed, whereas
in the other cases at most two rounds were applied. Thus, if we had stopped
the iteration in the heuristics after two rounds of improvements, the solutions
would have remained the same except in the instance geu3 with the version

Table 2 Differences between heuristic solutions and optimal solutions and differences measured
using the scalarizing function (2)

heuristic1 heuristic2 Optimal solution

Instance (time, costs) (time, costs)

geu1 (0.0, 0.0514) 0.0001 (0.0, 0.0514) 0.0001 (4.7778, 0.4721)
geu2 (0.0, 0.0047) 0.0000 (0.0, 0.0009) 0.0000 (5.0, 0.7664)
geu3 (0.1035, -0.0288) 0.0012 (0.1222, -0.0304) 0.0014 (4.4076, 1.0318)
city (0.0, 0.0008) 0.0000 (0.0, 0.0008) 0.0000 (2.3224, 0.3441)
mit (-0.0785, 0.0015) 0.0017 (-0.0785, 0.0015) 0.0017 (2.1137, 0.4712)
jyu (0.0728, 0.0027) 0.0058 (0.0306, 0.0028) 0.0024 (0.7182, 0.1134)
hut (0.0, 0.0) 0 (0.0, 0.0) 0 (4.3076, 0.3450)
helsinki (0.0581, -0.0174) 0.0017 (0.0229, -0.0066) 0.0007 (1.7297, 0.4039)
wireless (0.0472, -0.0045) 0.0025 (0.0472, -0.0045) 0.0025 (0.9641, 0.2247)
yahoo (0.1538, -0.0258) 0.0062 (0.1538, -0.0258) 0.0062 (1.2594, 0.2934)
geizhals (0.0253, 0.0016) 0.0019 (0.0253, 0.0016) 0.0019 (0.6848, 0.1570)
bbc (0.0, 0.0243) 0.0001 (0.0, 0.0243) 0.0001 (0.8407, 0.1434)
gigantti (0.0461, -0.0137) 0.0021 (0.0461, -0.0023) 0.0021 (1.1033, 0.2584)
gsm-umts (0.0, 0.0) 0 (0.0, 0.0) 0 (8.8614, 2.2052)
gsm-umts2 (0.1033, -0.0016) 0.0078 (0.0559, 0.0191) 0.0069 (1.2099, 1.1936)
gsm (0.0508, 0.0087) 0.0112 (0.0508, 0.0087) 0.0112 (6.6995, 0.5904)
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Table 3 CPU-times and
numbers of improvement
rounds

heuristic1 heuristic2 Optimal time(s)

Instance time(s) rounds time(s) rounds

geu1 <0.01 1 0.01 1 0.05
geu2 0.02 1 0.01 1 0.08
geu3 0.04 4 0.04 2 79.64
city 0.01 1 0.01 1 0.07
mit 0.01 1 0.01 2 0.08
jyu 0.01 1 0.01 2 0.08
hut 0.01 0 0.01 0 0.07
helsinki 0.01 2 0.01 2 0.9
wireless 0.01 0 0.01 0 2.41
yahoo 0.01 1 0.01 1 1.13
geizhals 0.01 2 0.01 1 7.85
bbc 0.01 0 0.01 0 0.33
gigantti 0.02 1 0.02 1 3488.51
gsm-umts 0.01 0 0.01 0 0.07
gsm-umts2 0.01 2 0.01 1 54.72
gsm 0.01 0 0.01 0 0.42

heuristic1. The difference to the optimal solution in that case would have been
(0.1624, −0.0324) and the difference in the value of the scalarizing function
0.0019. In other words, this solution would have also been very good. However,
the time needed by the heuristic would have remained the same. It should be
noted that in five test instances, the initial solution was already very close to the
optimal solution and the solution did not change in the improvement phase.

Both versions of the heuristic are fast: the CPU times used were typically
around 0.01 seconds and always less than 0.04 s in all the test instances. Thus,
the speed did not vary a lot between different instances. On the contrary, the
times needed by CPLEX varied much, and in most instances the times were
so long that they would not be acceptable. This is natural since exact solution
methods, such as the branch-and-cut methods, are known to be slow. Yet, the
solutions produced by the heuristics were very close to those of CPLEX, as
mentioned above. Our heuristic may seem simple but in our problem setting it
is a significant benefit. From the practical point of view, it is very important that
we can say that we managed to achieve our goal of developing a computation-
ally inexpensive method for solving the network connection selection problem
without sacrificing the solution quality.

There was not much difference between the two versions of the heuristic,
when we consider the quality of the solutions, the time used, and the number
of improvement rounds taken. It is important to note that the ordering of the
components done in the version heuristic2 did not increase the time used when
compared to the other version. On the other hand, the solutions given by the
different versions of the heuristic are very similar, even the average difference to
the optimal solution is almost the same. Therefore, we cannot claim superiority
over either of the versions.

We must point out that the computer used in the computational tests is quite
efficient. Therefore, one might ask whether it would be at all possible to run
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the heuristic in a mobile terminal. Actually, mobile terminals cannot yet run
the heuristic as fast as the computer we used for the computational results, but
the computational capacity of mobile terminals is growing fast. It is likely that
in few years mobile terminals using, for example, an Intel XScale processor [8]
will be able to run the heuristic as fast as our computer now.

6 Conclusions

In this paper, we have considered the network connection selection problem,
which is a multiobjective scheduling problem, where a set of components is to
be transferred using distinct network connections. The objective of the problem
is to minimize both the time used for the transfers and the costs of the transfers.

We have presented a simple but efficient local search heuristic for the net-
work connection selection problem. The idea of the heuristic is to improve an
initial solution by simple moves called 1-exchanges. In a 1-exchange, a com-
ponent is moved to be transferred using another connection if the solution
quality improves. The core of our method is the novel idea of measuring the
solution quality using a scalarizing function (found appropriate for producing
a good compromise between the conflicting objectives in our previous study).
The same scalarizing function is used also when forming the initial solution. The
results obtained are very encouraging. The ideas of the heuristic are applicable
also to other combinatorial multiobjective optimization problems and we can
recommend using scalarizing functions as parts of heuristics in this field.

So far in our study, we have assumed that the time needed for the transmis-
sion is short. Then, we can assume that each connection has a fixed rate and a
fixed price during the transmission. A topic of future research is to consider the
problem with longer transmission times when the properties of the environment
can change during the transmission.
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