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Abstract The scattering of plane harmonic P and SV

waves by a pair of vertically overlapping lined tunnels

buried in an elastic half space is solved using a semi-ana-

lytic indirect boundary integration equation method. Then

the effect of the distance between the two tunnels, the

stiffness and density of the lining material, and the incident

frequency on the seismic response of the tunnels is inves-

tigated. Numerical results demonstrate that the dynamic

interaction between the twin tunnels cannot be ignored and

the lower tunnel has a significant shielding effect on the

upper tunnel for high-frequency incident waves, resulting

in great decrease of the dynamic hoop stress in the upper

tunnel; for the low-frequency incident waves, in contrast,

the lower tunnel can lead to amplification effect on the

upper tunnel. It also reveals that the frequency-spectrum

characteristics of dynamic stress of the lower tunnel are

significantly different from those of the upper tunnel. In

addition, for incident P waves in low-frequency region, the

soft lining tunnels have significant amplification effect on

the surface displacement amplitude, which is slightly larger

than that of the corresponding single tunnel.

Keywords Vertically overlapping lined tunnels �
Scattering � Indirect boundary integration equation method

(IBIEM) � Soil-tunnel dynamic interaction

1 Introduction

With the rapid developing of underground space and the

improvement of underground engineering technology,

vertically overlapping tunnels (with vertical alignment)

have been widely used for the urban subway and other

underground transportation system in many large cities, for

instance, the twin metro tunnels in Ankara, Turkey (Kar-

akus et al. 2007), in Tehran, Iran (Chakeri et al. 2011), and

in Wuhan, China (Wang et al. 2012). On the other hand, it

has been observed that the underground tunnel may suffer

from serious damage in great earthquakes, such as Taiwan

Chi-Chi (Wang et al. 2001) earthquakes. Hence, in the last

decades, the seismic response of underground tunnel has

become an attractive research topic in earthquake engi-

neering and has been intensively investigated by numerous

researchers analytically or numerically.

The analytical method such as wave function expansion

method (WFEM) has been widely used to solve the scat-

tering of seismic waves by a lined tunnel (Lee and Trifunac

1979; Liang and Ji 2006; Liu et al. 2013; Yi et al. 2014).

Due to the fact that the analytical methods are usually

restricted to simple calculation models, for complex geo-

metrical and material characteristics, it is necessary to

develop numerical methods, such as the finite element

method (FEM), finite difference method (FDM), the

boundary element method (BEM), etc. Kobayashi and

Nishimura (1983) used the BEM to solve the dynamic

response of an underground tunnel. Stamos and Beskos

(1996) solved the three-dimensional seismic response of

long lined tunnels in a half space by BEM. Kattis et al.

(2003) used the BEM to study the harmonic body waves

scattering by lined and unlined tunnels in an infinite

poroelastic saturated soil. Rodriguez-Castellanos et al.
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(2006) studied the scattering of P and SV waves by cracks

and underground cavities using the indirect boundary ele-

ment method (IBEM). Esmaeili et al. (2006) analyzed the

dynamic response of plane harmonic waves by a lined

circular tunnel using the hybrid boundary and FEM.

Yiouta-Mitra et al. (2007) adopted the FDM to study the

dynamic response of a circular tunnel in a half space

subjected to harmonic SV waves. Yu and Dravinski (2009)

investigated the scattering of plane P, SV, and Rayleigh

waves by a cavity embedded in an isotropic half space by

BEM. Liu et al. (2010) further discussed the diffraction of

P, SV waves by a tunnel in an elastic half space using a

special BEM. Panji et al. (2013) studied the displacement

response of an unlined truncated circular cavity in a

homogenous isotropic medium under SH waves by BEM.

Recently, Parvanova et al. (2014) investigated the seismic

response of a lined tunnel in the half-plane with surface-

traction relief. Pitilakis et al. (2014) presented a series of

numerical analysis to investigate the dynamic response of

shallow circular tunnels. Alielahi et al. (2015) utilized the

BEM to study the seismic ground amplification by unlined

tunnels subject to vertically P and SV wave propagation.

Note that the above-mentioned studies are mainly

focused on the single-tunnel model. As for twin tunnels or

tunnel group, the dynamic interaction between closely-

spaced tunnels should be taken into account (Hasheminejad

and Avazmohammadi 2007; Smerzini et al. 2009; Chen

et al. 2010; Wang et al. 2012; An et al. 2015; Fang et al.

2015; Alielahi and Adampira 2016a). Fotieva (1980)

studied the effect of the compressional and the shear waves

by twin-parallel tunnels. Balendra et al. (1984) solved the

dynamic response of a pair of circular tunnels under SH

waves. Okumura et al. (1992) studied the seismic response

of the twin circular tunnels by FEM. Moore and Guan

(1996) investigated the three-dimensional seismic response

of twin lined tunnels in full space using the successive

reflection method. Liang et al. (2003, 2004) discussed a

series of solutions for surface motion amplification of the

underground twin tunnels under P, SV waves. Chen et al.

(2006) presented the Null-field integral equations for stress

field around circular holes under anti-plane shear waves.

Zhou et al. (2009) applied a semi-analytical method to

discuss the dynamic response of twin-parallel elliptic tun-

nels embedded in an infinite poroelastic medium. Alielahi

and Adampira (2016b) studied the seismic ground response

under vertically in-plane waves by the twin-parallel

tunnels.

As stated above, there have been several studies on the

dynamic models of twin tunnels or tunnels group. How-

ever, to the author’s best knowledge, for the vertically

overlapping tunnels (coincidence of plane projection)

shallowly buried in a half space, available theoretical

analysis is extremely limited. Note that the investigations

of Liang et al. (2003, 2004) only considered horizontally

twin tunnels by an approximate analytic method. In fact, in

Liu and Wang (2012), it has been illustrated that the

seismic response of vertically overlapping tunnels is sig-

nificantly different from that of horizontally flat twin tun-

nels in a full space. However, it is restricted to deep-buried

tunnels. In order to improve the qualitative level of seismic

design of vertically overlapping tunnels in a half space, it is

necessary to calculate and reveal the dynamic interactions

between the upper and the lower tunnels, and the influence

of nearby ground surface.

In this paper, we focus on the dynamic interaction

between these two vertically overlapping tunnels which are

shallowly buried in an elastic half space, based on the

indirect boundary integration equation method (IBIEM). It

has been demonstrated that this method has several

advantages such as reducing dimensions of problems,

automatic satisfaction of boundary condition, and high

calculation precision (Luco and De Barros 1994). More-

over, the IBIEM does not require element discretization,

and it can thus be implemented more efficiently. The rest of

this paper is organized as follows. The numerical procedure

for IBIEM solution is present in section II. Then, the pre-

cision of the method is verified by the satisfaction extent of

boundary conditions and the comparison between the

degenerated and available solutions. Based on the IBIEM,

the effects of key parameters, such as the distance between

the two tunnels, the stiffness and density of the lining

material, and the incident frequency on dynamic response

are investigated in detail through numerical examples.

Finally, several conclusions are drawn, which provide

some useful insights for the seismic design of underground

vertically overlapping tunnels. Due to the semi-analytical

feature of the IBIEM, the numerical example in this study

can also be regarded as a benchmark scheme for other

numerical methods.

2 Model definition

As shown in Fig. 1, a pair of vertically overlapping lined

tunnels are shallowly buried in the elastic half space with

the depth d (to the upper tunnel center), the inner and outer

radius of the upper tunnel and lower tunnel a1 and a2, a
0
1

and a02, respectively. The distance between the centers of

upper and lower tunnels is denoted as D. The domain of

tunnels and the half space are assumed to be elastic,

homogenous and isotropic. Let D0, D1, D2 denote the

domain of the half space, the upper tunnel and the lower

tunnel, respectively. S and S0 denote the outer and inner

surface of the upper tunnel; correspondingly, S
0
and S00

denote those of the lower tunnel. The shear modulus,

Poisson ratio, and the density in D0 are l1, m1, and q1,
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respectively. Then the velocity of the P and SV waves in

the half space can be defined by cb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

l1=q1
p

,

ca1 ¼ cb1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� m1Þ=ð1� 2m1Þ
p

, where, l2, m2, q2, ca2 and

cb2 are the material parameters of the two lined tunnels.

Suppose that the plane P and SV waves propagate in a half

space, then the two-dimensional scattering of plane P and

SV waves by the vertically overlapping lined tunnels in a

half space needs to be studied. For simplicity, the following

calculation is limited to the circular tunnel case, while the

IBIEM is well suited for tunnels with arbitrary shapes.

3 Numerical solutions by IBIEM

IBIEM was first proposed by Wong (1982), since then it

has applied extensively, among which Liang and Liu

(2009) solved the wave motion problems. Based on the

single-layer potential theory, the IBIEM solves wave

motion problems in the following way. The whole wave

field is divided into free field (without scattering) and

scattered field, and the scattered waves are constructed by

using a linear combination of fundamental solutions (fic-

titious wave sources). In order to avoid singularities, the

fictitious wave sources are placed at some distance to the

physical boundaries of scatters, and the densities of the

fictitious wave sources are determined by the boundary

conditions. In this paper, the compressional line source and

shear line source in a half space are introduced as the

fundamental solution.

Assume that the wave potential functions of P and SV

waves in the medium are / and w, respectively. The

steady-state wave equation under two-dimensional plane

strain state can be expressed as

o2/
ox2

þ o2/
oy2

þ k2P/ ¼ 0; ð1Þ

o2w
ox2

þ o2w
oy2

þ k2Sw ¼ 0; ð2Þ

where kP, kS are the wavenumber of the P and SV waves,

respectively. Define the shear modulus of the medium as l,
the relationship between displacement, stress and the wave

potential functions can be expressed as (Lamb 1904)

ux ¼
o/
ox

þ ow
oy

ð3Þ

uy ¼
o/
oy

� ow
ox

ð4Þ

rxx ¼ l �k2S/� 2
o2/
oy2

þ 2
o2w
oxoy

� �

ð5Þ

ryy ¼ l �k2S/� 2
o2/
ox2

� 2
o2w
oxoy

� �

ð6Þ

rxy ¼ l 2
o2/
oxoy

� k2Sw� 2
o2w
ox2

� �

ð7Þ

where ux, uy denote the horizontal and vertical displace-

ment, respectively, rxx, ryy and rxy are the normal stress

and shear stress, respectively.

3.1 Green’s functions of compressional and shear wave

sources buried in elastic half-space

It is known that the wave potential functions of compres-

sional line source and shear line source in the whole space

can be expressed by Hankel function of the second kind as

/iðx; yÞ ¼ H
ð2Þ
0 ðkPr2Þ, wiðx; yÞ ¼ H

ð2Þ
0 ðkSr2Þ, with r2 being

the distance between the wave source at ðxS; ySÞ and the

observation point at ðx; yÞ. Note that the time factor

expðixtÞ is omitted here and thereafter for simplicity, with

x and t being the excitation frequency and time variable,

respectively.

According to the boundary condition of the free surface

in the half space, and combining with the Fourier transform

in the wave-number domain, the potential functions of total

wave field can be derived (Lamb 1904).

(1) potential functions of total wave field in a half space

under the compressional wave source can be

expressed as

Fig. 1 The model of twin vertically overlapping lined tunnels

shallowly buried in an elastic half space

Earthq Sci (2016) 29(3):185–201 187

123



/ðx; yÞ ¼ H
ð2Þ
0 kP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xSÞ2 þ ðy� ySÞ2
q

� �

þ H
ð2Þ
2 kP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xSÞ2 þ ðyþ ySÞ2
q

� �

� 4i

p

Z 1

0

ð2n2 � k2PÞ
2

aFðnÞ e�aðyþysÞ cosðnxÞdn; ð8Þ

wðx; yÞ ¼ 8i

p

Z 1

0

nð2n2 � k2SÞ
2

FðnÞ e�ayS�by sinðnxÞdn; ð9Þ

(2) potential functions of total wave field in a half space

under the shear wave source can be expressed as

wðx; yÞ ¼ H
ð2Þ
0 kS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xSÞ2 þ ðy� ySÞ2
q

� �

þ H
ð2Þ
0 kS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xSÞ2 þ ðyþ ySÞ2
q

� �

� 4i

p

Z 1

0

ð2n2 � k2SÞ
bFðnÞ e�bðyþySÞ cosðxnÞdn; ð10Þ

/ðx; yÞ ¼ �8i

p

Z 1

0

nð2n2 � k2SÞ
FðnÞ eð�byS�ayÞ sinðnxÞdn; ð11Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � k2P

q

, b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � k2S

q

, FðnÞ ¼ ð2n2�
k2SÞ

2 � 4n2ab.

3.2 Wave field construction

Define the inner and outer surfaces of lined upper tunnel are

S and S0, respectively, then introduce the fictitious wave

source surface S1 around S to construct the scattered field in

the half space and the fictitious wave source surfaces S2 and

S3 to construct the scattered field in the lined tunnel. Sim-

ilarly, the inner and outer surfaces of the lower tunnel are

denoted by S0 and S00, and the fictitious wave source surfaces

for the lower tunnel are S01, S
0
2 and S03. Additionally, for

convenience, suppose that the shapes of the fictitious wave

source surfaces and the tunnel are identical.

The total wave field in the half space can be obtained as

the superposition of the free field in the half space and the

scattered field. First, we analyze the free field. Suppose that

the plane P and SV waves with excitation frequency x, and
with incident angles ha and hb, respectively, then the wave

potential function in the orthogonal coordinates can be

expressed as

uðiÞðx; yÞ ¼ exp½�ika1ðx sin ha � y cos haÞ�; ð12Þ

wðiÞðx; yÞ ¼ exp½�ikb1ðx sin hb � y cos hbÞ�: ð13Þ

Due to the existence of the half space surface, the

incident P and SV waves will generate reflected P and SV

waves as follows

uðrÞðx; yÞ ¼ A2 exp½�ika1ðx sin ha þ y cos haÞ�; ð14Þ

wðrÞðx; yÞ ¼ B2 exp½�ikb1ðx sin hb þ y cos hbÞ�; ð15Þ

where A2, B2 amplitude of the reflect waves, can be

referred to Luco and De Barros (1994).

Once the lined tunnel exists, scattered field will appear

in the half space and the inner of the lined tunnel. Based on

the single-layer potential theory, the scattered field in the

half space and the tunnel can be constructed by all the

compressional line sources and shear line sources. Suppose

that the scattered field in the half space is generated by the

fictitious wave source surfaces S1 and S01, then the dis-

placement and stress can be expressed as

uiðxÞ ¼
Z

S1

½bðx1ÞGðsÞ
i;1 ðx; x1Þ þ cðx1ÞGðsÞ

i;2 ðx; x1Þ�dS1

þ
Z

S0
1

½b0ðx01ÞG
ðsÞ
i;1 ðx; x01Þ þ c0ðx01ÞG

ðsÞ
i;2 ðx; x01Þ�dS01

ð16Þ

rijðxÞ ¼
Z

S1

½bðx1ÞTðsÞ
ij;1ðx; x1Þ þ cðx1ÞT ðsÞ

ij;2ðx; x1Þ�dS1

þ
Z

S0
1

½b0ðx01ÞT
ðsÞ
ij;1ðx; x01Þ þ c0ðx01ÞT

ðsÞ
ij;2ðx; x01Þ�dS01

ð17Þ

where x 2 D1, x1 2 S1, x
0
1 2 S01. b x1ð Þ, c x1ð Þ, b0 x01

� �

, c0 x01
� �

are the densities of the compressional line source and the

shear line source at x1 and x01 on fictitious wave source

surfaces S1 and S01, respectively. G
ðsÞ
i;l x; x1ð Þ, G

ðsÞ
i;l x; x01
� �

,

T
ðsÞ
ij;l ðx; x1Þ and T

ðsÞ
ij;l ðx; x01Þ are the Green’s functions for the

displacement and the traction in the half space (with the

subscripts 1 and 2 corresponding to the compressional line

source and the shear line source, respectively), which sat-

isfy the wave equations and surface boundary conditions

automatically. Note that subscripts i, j = 1, 2 denote the x,

y directions, respectively.

The scattered field in the upper tunnel can be con-

structed by the superposition of the compressional line

sources and shear line sources acted on the fictitious wave

source surfaces S2 and S3, which can be expressed as

uiðxÞ ¼
Z

S2

½dðx2ÞGðtÞ
i;1ðx; x2Þ þ eðx2ÞGðtÞ

i;2ðx; x2Þ�dS2

þ
Z

S3

½f ðx3ÞGðtÞ
i;1ðx; x3Þ þ gðx3ÞGðtÞ

i;2ðx; x3Þ�dS3

ð18Þ

rijðxÞ ¼
Z

S2

½dðx2ÞT ðtÞ
ij;1ðx; x2Þ þ eðx2ÞTðtÞ

ij;2ðx; x2Þ�dS2

þ
Z

S3

½f ðx3ÞT ðtÞ
ij;1ðx; x3Þ þ gðx3ÞT ðtÞ

ij;2ðx; x3Þ�dS3

ð19Þ
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where x 2 D2, x2 2 S2, x3 2 S3, dðx2Þ, eðx2Þ are the den-

sities of the compressional line source and shear line source

at x2 on S2, and f ðx3Þ, gðx3Þ denote those at x3 on fictitious

wave source S3,G
ðtÞ
i;l , T

ðtÞ
ij;l

are the Green’s function for the

displacement and the traction in the lined tunnel,

respectively.

Similarly, the stress and displacement of the lower lined

tunnel can be obtained.

3.3 Boundary conditions and the numerical solutions

Due to the adoption of the fundamental solution for the

elastic half space, the boundary condition of the free

ground surface can be satisfied automatically. Thus, we

only need to consider the continuity of displacement and

traction on the interface between the lining and surround-

ing soil, and the zero traction condition on the inner surface

of the lining, which are as follows:

usx ¼ utx; u
s
y ¼ uty; r ¼ a2; r

0 ¼ a02
� �

ð20Þ

rsnn ¼ rtnn; r
s
nt ¼ rtnt r ¼ a2; r

0 ¼ a02
� �

ð21Þ

rtnn ¼ 0; rtnt ¼ 0 r ¼ a1; r
0 ¼ a01

� �

ð22Þ

where the superscripts s, t denote the half space and the

tunnel, respectively. For ease of numerical solution, we

discrete the inner and outer surface of the tunnels and

fictitious wave source surfaces. Suppose that the number of

discrete points on the internal and external surface of the

tunnels is N, and that of the fictitious wave source surface

is N1. Then the scattered displacement field and stress field

in the half space can be expressed as

uiðxnÞ ¼
X

N1

n1¼1

bn1G
ðsÞ
i;1 ðxn; xn1Þ þ cn1G

ðsÞ
i;2 ðxn; xn1Þ

þ
X

N1

n1¼1

b0n1G
ðsÞ
i;1 ðxn; x0n1Þ þ c0n1G

ðsÞ
i;2 ðxn; x0n1Þ

ð23Þ

rijðxnÞ ¼
X

N1

n1¼1

bn1T
ðsÞ
ij;1ðxn; xn1Þ þ cn1T

ðsÞ
ij;2ðxn; xn1Þ

þ
X

N1

n1¼1

b0n1T
ðsÞ
ij;1ðxn; x0n1Þ þ c0n1T

ðsÞ
ij;2ðxn; x0n1Þ ð24Þ

xn 2 D0; xn1 2 S1; x
0
n1
2 S01; n ¼ 1; 2; � � �;N;

n1 ¼ 1; 2; � � �;N1;

where bn1 , cn1 , and b0n1 , c
0
n1
are the source densities of P and

SV waves for the n1-th point on fictitious source surfaces

S1 and S01, respectively.

The scattered displacement field and stress field in the

upper tunnel can be expressed as

uiðxnÞ ¼
X

N1

n1¼1

dn1G
ðsÞ
i;1 ðxn; x2;n1Þ þ en1G

ðsÞ
i;2 ðxn; x2;n1Þ

þ
X

N1

n1¼1

fn1G
ðsÞ
i;1 ðxn; x3;n1Þ þ gn1G

ðsÞ
i;2 ðxn; x3;n1Þ;

ð25Þ

rijðxnÞ ¼
X

N1

n1¼1

dn1T
ðsÞ
ij;1ðxn; x2;n1Þ þ en1T

ðsÞ
ij;2ðxn; x2;n1Þ

þ
X

N1

n1¼1

fn1T
ðsÞ
ij;1ðxn; x3;n1Þ þ gn1T

ðsÞ
ij;2ðxn; x3;n1Þ; ð26Þ

xn 2 D1; x2;n1 2 S2; x3;n1 2 S3; n ¼ 1; 2; � � �;N;
n1 ¼ 1; 2; � � �;N1

where dn1 , en1 and fn1 , gn1 are the source densities of P and

SV waves for the n1-th point on fictitious source surfaces S2
and S3. Note that here we assume that the discrete numbers

of S2 and S3 are also N1.

Similarly, the scattered field in the lower tunnel can be

constructed by the discrete wave source on S02 and S
0
3. From

Eqs. 20–22, we can obtain

H1Y1 þH0
11Y

0
1 þ F1 ¼ H2Y2 þH3Y3; ð27Þ

H11Y1 þH0
1Y

0
1 þ F0

1 ¼ H0
2Y

0
2 þH0

3Y
0
3; ð28Þ

T2Y2 þ T3Y3 ¼ 0; ð29Þ

T0
2Y

0
2 þ T0

3Y
0
3 ¼ 0; ð30Þ

where H1, H2, H3, H
0
11 are the Green’s influence matrices

relating to the displacements and tractions on the discrete

points of the outer surface of the upper tunnel caused by the

fictitious wave sources on S1, S2, S3, S
0
1; H

0
1, H

0
2, H

0
3, H11 are

the Green’s influence matrices for the outer surface of the

lower tunnel.T2, T3 are the Green’s matrix (stress) relating

to the traction on the discrete points of the inner surface of

the upper tunnel caused by the fictitious wave sources on

S2, S3 and T 0
2, T

0
3 are the corresponding Green’s influence

matrices for the internal surface of the lower tunnel. Y1, Y2,

Y3, Y
0
1, Y

0
2, Y

0
3 are fictitious wave source densities vectors on

the fictitious surfaces S1,S2, S3,S
0
1, S

0
2,S

0
3, respectively.F1,

F2 are the free field vector related to the displacement and

traction on the interfaces.

Equations 27–30 are written as a compact form as

HA ¼ B, and this overdetermined equation can be solved

by least square (LS) method

A ¼ �HTH
� ��1

HTB ð31Þ

where �H, HT and �HT are the conjugate, transpose, and

conjugate transpose matrices of H, respectively. After

solving the equations about the fictitious wave source

densities from (31), we can obtain the scattered field. The

total wave field is the superposition of scattered field and
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free field, and then we can calculate the displacement,

stress at any location both in the half space and the tunnels.

4 Verification of accuracy and validation

of the numerical solution

Until now, it is still a challenging task to obtain the

accurate analytical solution for the scattering of plane P,

SV waves by the lined tunnel in an elastic half space due to

the difficulty in dealing with the traction-free boundary

condition of the half-space surface. Thus, we verify the

accuracy by the following steps: (1) test the satisfaction

extent of the boundary conditions, (2) examine the

numerical stability of the solutions, (3) and degenerate

solutions to the single-tunnel case with well-known

solutions.

Then define the non-dimensional frequency

g ¼ xa1=pcb1, with cb1 being the shear wave velocity in a

half space medium. To test the boundary conditions, plenty

of calculation results show that with the increase of discrete

points, the boundary residual value decreases gradually.

When the incident frequency g = 2.0, the residual value

can reach up to 10-4 for N = 120 and N1 = 80. The

notations and symbols are summarized in Table 1.

To verify the numerical stability of the solution,

Tables 2, 3 and 4 illustrate the convergence of the surface

displacement amplitudes and the hoop stress amplitudes on

the inner surface of tunnels with the increase of discrete

points. Parameters are set a1 = 1.0, d/a1 = 4.0, D/a1 = 3.0,

a1/a12 = 0.9, a01=a
0
2 = 0.9, damping ratio f = 0.001,

g = 1.0, v = 0.25, q2=q1 = 5/4, cb2=cb1 = 5/1(rigid lin-

ing), N = 60, 80, and 120, correspondingly N1 = 40, 60,

and 80. It is clearly shown that the surface displacement

amplitudes and stress converge quite well with the increase

of discrete points. This further validates the excellent

numerical stability of this solution.

When the non-dimensional frequency is 0.5, the results

indicate that as the depth of the lower tunnel is larger than

30a1, the impact to the upper tunnel or the ground surface

can be ignored. To degenerate the solution to single-tunnel

case, the following parameters are taken: D/a1 = 200,

q2=q1 = 1.0, cb2=cb1 = 1.0, damping ratio f = 0.001,

v = 1/3 and g = 0.5. Figure 2 shows the surface dis-

placement amplitudes of the half space and the dynamic

stress concentration factors on the inner surface of the

upper tunnel compared with the well-known results of the

elastic half space by Luco and De Barros (1994) for ver-

tically incident P waves and the buried depth of d/a1 = 1.5

and 5.0, respectively.

Table 1 List of some important notations and symbols

Symbol Description Symbol Description

d The depth to the upper tunnel center D Distance between the centers of twin tunnels

a1; a2 Inner and outer radius of upper tunnel D0, D1, D2 Domain of the half space, upper, and lower tunnel

a01; a
0
2 Inner and outer radius of lower tunnel q1, q2 Density of D0 and tunnels

N Discrete points v1, v2 Poisson ratio of D0 and tunnels

g Non-dimensional frequency l1, l2 Shear modulus of D0 and tunnels

f Damping ratio ca1, cb1 Velocity of the P and SV waves in D0

ha, hb Incident angle of P and SV waves ca2, cb2 Velocity of the P and SV waves in tunnels

Table 2 Numerical stability verification of surface displacement

amplitudes under vertically incident P and SV waves (g ¼ 1:0)

x=a1 N = 60, N1 = 40 N = 80, N1 = 60 N = 100, N1 = 80

Uy=AP

	

	

	

	 Ux=ASVj j Uy=AP

	

	

	

	 Ux=ASVj j Uy=AP

	

	

	

	 Ux=ASVj j

0.0 0.3983 0.5174 0.3904 0.5492 0.3904 0.5494

0.5 0.4199 0.4410 0.4163 0.4834 0.4164 0.4834

1.0 0.5316 0.3331 0.5404 0.3949 0.5402 0.3949

1.5 0.7875 0.6042 0.8021 0.6449 0.8021 0.6448

2.0 1.1534 1.1372 1.1626 1.1700 1.1625 1.1698

2.5 1.5637 1.7009 1.5645 1.7304 1.5645 1.7302

3.0 1.9592 2.1660 1.9602 2.1954 1.9602 2.1954

3.5 2.2826 2.4905 2.2925 2.5177 2.2926 2.5176

4.0 2.4745 2.6795 2.4855 2.6916 2.4854 2.6914

Table 3 Numerical stability verification of hoop stress amplitudes on

the inner surface of the upper tunnel under vertically incident P and

SV waves (g ¼ 1:0)

h N = 60, N1 = 40 N = 80, N1 = 60 N = 100, N1 = 80

r�hh;P

	

	

	

	

	

	
r�hh;SV

	

	

	

	

	

	
r�hh;P

	

	

	

	

	

	
r�hh;SV

	

	

	

	

	

	
r�hh;P

	

	

	

	

	

	
r�hh;SV

	

	

	

	

	

	

90� 5.1599 0.0000 5.5634 0.0000 5.6326 0.0000

60� 2.7410 4.1179 2.8433 4.4156 2.8458 4.4159

30� 0.6851 5.5921 1.2882 7.1904 1.2872 7.1895

0� 11.6011 3.5452 12.6431 6.1269 12.6434 6.1259

-30� 3.6969 13.1779 3.9972 17.3228 3.9970 17.3233

-60� 0.3768 7.0274 0.9150 9.2243 0.9142 9.2220

-90� 4.1719 0.0000 4.5758 0.0000 4.5754 0.0000
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Figure 3 shows the surface displacement amplitudes of

the half space compared with the well-known results of the

elastic half space by Liu et al. (2013) for vertically incident

P waves and the buried depth of d/a1 = 1.5. The parame-

ters are defined as D/a1 = 200, a2=a1 ¼ a01=a
0
1 ¼ 1.1,

l2=l1 ¼ 0.8, Poisson ratio v = 1/3 and g = 0.5. It is

shown that the results of this study are in good agreement

with the references.

5 Numerical results

A pair of vertically overlapping circular lined tunnels is

shallowly buried in the elastic half space, with the buried

depth of the upper tunnel d/a1 = 4.0, and the inner and

outer radius ratios a1/a1 = 0.9 and a01=a
0
2 = 0.9. Consid-

ering the variation of the distance between the two tunnels,

we choose D/a1 = 3.0, 4.0, 5.0 (the normal range in

practical engineering).

The practical parameters of the lining and the medium in

the half-space are defined as follows: the radius and

thickness of a real tunnel are a1 = 3 and 0.33 m,

Table 4 Numerical stability verification of hoop stress amplitudes on

the inner surface of the lower tunnel under vertically incident P and

SV waves (g ¼ 1:0)

h N = 60, N1 = 40 N = 80, N1 = 60 N = 100, N1 = 80

r�hh;P

	

	

	

	

	

	
r�hh;SV

	

	

	

	

	

	
r�hh;P

	

	

	

	

	

	
r�hh;SV

	

	

	

	

	

	
r�hh;P

	

	

	

	

	

	
r�hh;SV

	

	

	

	

	

	

90� 3.8507 0.0000 3.7493 0.0000 3.7496 0.0000

60� 1.6496 13.3879 1.5015 15.5293 1.5012 15.5293

30� 7.8644 21.4634 7.6897 25.3231 7.6905 25.3227

0� 7.0338 15.5180 6.9707 17.5244 6.9710 17.5245

-30� 13.3862 8.8110 13.8012 10.8929 13.8006 10.8922

-60� 6.0876 12.2754 6.0504 12.7566 6.0502 12.7570

-90� 0.4880 0.0000 0.4305 0.0000 0.4306 0.0000

Fig. 2 Comparing present results for normalized displacement amplitude of the ground surface and normalized hoop stress amplitude of the

single tunnel with the results of Luco and Barros (1994) for vertically incident P waves with the buried depth of the upper tunnel (d=a1 = 1.5 and

d=a1 = 5), distance between the twin tunnels (D=a1 = 200), frequency (g = 0.5), and Poisson ratio (t = 1/3)

Fig. 3 Comparing present results for normalized displacement amplitude on the half space of the single tunnel with the results of Liu et al.

(2013) for vertically incident P waves with the buried depth of the upper tunnel (d=a1 = 1.5), distance between the twin tunnels (D=a1 = 200),

frequency (g = 0.5), and Poisson ratio (t = 1/3)
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respectively. Considering the variation of the stiffness and

density of the lining material, take the soft lining,

homogenous lining, and rigid lining for parameter analysis.

The stiff tunnel (q2=q1 = 5/4, cb2=cb1 = 5/1) corresponds

to the reinforced concrete tunnel in soft soil layer such as in

Tianjin, Shanghai of China. The lining of the stiff twin

tunnels are made of concrete and the density of tunnels

lining is q2 ¼ 2000 kg/m3. The shear wave velocity in the

lining is cb2 ¼ 2000 m/s. Poisson ratio of half space and

tunnels is v1 ¼ v2 ¼ 0.25, and damping ratio is f = 0.001.

In contrast, the soft tunnel (q2=q1 = 4/5, cb2=cb1 = 1/3)

denotes the case such that a shotcrete tunnel in granite.

Moreover, the unlined tunnel is identical to the case of

q2=q1 = 1/1, cb2=cb1 = 1/1. For the convenience of anal-

ysis, the parameters used in follows are relative values,

such as the non-dimensional frequency. For simplify, only

the vertically incident P and SV waves are considered

herein with ha(hb) = 0�.

5.1 Dynamic hoop stress and deformation of vertically

overlapping tunnels

First, define the dimensionless dynamic stress amplitudes

as r�hh ¼ rhh=r0j j ¼ rhh=lk2b1

	

	

	

	

	

	
, where kb1 is the wave-

number of SV waves in an elastic half space. Since the

stress of the soft lining is not very large, we only study the

hoop stress of the rigid lining in this paper. Figures 4 and 5

show the distribution of the hoop stress along the inner

surface of the twin tunnels for vertically incident P and SV

waves with distance D/a1 = 3.0, 4.0, 5.0. For comparison,

the case of single tunnel (identical with the upper tunnel) is

also presented. The dimensionless frequency takes

g = 0.5, 1.0, 2.0, respectively. It shows that the hoop stress

under high frequency is quite different from those under

low frequency. For low frequency (g = 0.5), the hoop

stress of the upper tunnel under different intervals between

tunnels (D/a1 = 3.0, 4.0, 5.0) is similar to those of the

single one. However, the hoop stress in the lower tunnel is

significantly different among different intervals. For

example, the max hoop stress value for D/a1 = 5.0 is 19.6,

while the max hoop stress is 10.7 for D/a1 = 3.0 under P

waves. From Figs. 4 and 5, we can observe that when the

frequency is 0.5, the depth of the lower tunnel (the normal

distance for practical subways) has little impact on the

hoop stress, but the impact to the upper tunnel becomes

significant when the frequency is 2.0, and the shielding

effect decreases with the increase of the distance between

the twin tunnels. The results coincide with the conclusion

in Huang and Zhang (2013). At the high frequency

(g = 2.0), the effect of the distance between the twin

tunnels seems to be not so noticeable, but the hoop stress of

the single tunnel is significantly larger than that of the

upper tunnel. For example, the max hoop stress value of the

single tunnel is 26.88, while that of the twin tunnels is only

9.35. It can be attributed to the strong scattering of high-

frequency waves around the lower tunnel which leads to

the significant attenuation of incident waves. This phe-

nomenon implies that the lower tunnel may play a pro-

tective role for the seismic safety of the upper tunnel for

high-frequency waves. Note that Chen and Chen (2008)

have investigated the seismic response of vertical double-

layered metro tunnels under near-fault strong ground

motion by FEM, and similar conclusions have been

obtained. While, the studies of Liang et al. (2003, 2004)

indicate significant amplification effects due to the

dynamic interaction of horizontally twin tunnels, which are

substantially different from the model of vertically over-

lapping tunnels in this study.

Figures 6 and 7 illustrate the hoop stress amplitude

spectrums on surface of twin tunnels under vertically

incident P and SV waves for D/a1 = 3.0. We select the

observation points on the inner surface of the tunnel

located at h = 0�, ± 30�, ± 90� for P waves incidence, and

h = 0�, ± 30� for SV waves. It is clearly shown that the

stress amplitude highly depends on the incident frequency

and the space location, and there are many peaks and

troughs of the spectrum curve with the peak values usually

appearing in low-frequency region g\0.5. As for P waves,

the hoop stress amplitude can reach up to 29.5 at h = 0�,
but the amplification effects seem not remarkable at the

apex of arch (h = 90�). In addition, both the peak value

and the spectrum characteristic of the upper tunnel are

significantly different from those of the lower tunnel. In

general, for the lower tunnel, there are more peak fre-

quencies and the peak value is slightly larger than that of

the upper tunnel in this case. Compared with the case of P

waves, the dynamic stress concentration seems more sig-

nificant for SV waves and the peak value appears around

h = 30� for low-frequency waves and around h = 0� for

high-frequency waves. In addition, the spectrum for inci-

dent SV waves oscillates more violently than that for P

waves.

Considering the incidence of P waves and the variation

of the interval between the tunnels D/a1 = 3.0, 4.0, 5.0,

Figs. 8 and 9 illustrate the hoop stress amplitude spectrums

at the points h = 0� and h = 30� on the inner surface of

these twin tunnels and the corresponding single tunnel

(only the upper tunnel or the lower tunnel exists). It shows

that in low-frequency region (g B 0.5), the peak stress

amplitude of the upper tunnel is close to the single-tunnel

case. However, for the high frequencies, at h = 0�, the
hoop stress amplitude of the single tunnel is much larger

than the case of twin tunnels. For example, at g = 1.56, the

hoop stress amplitudes of the single tunnel and the upper

one of twin tunnels with D/a1 = 3.0 are 13.80 and 7.25,
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Fig. 4 Hoop stress amplitudes of the inner wall of twin tunnels and the single tunnel (identical with the upper tunnel) subject to vertically

incident P waves, with frequency (g = 0.5, 1.0, 2.0), distance between the twin tunnels (D=a1 = 3, 4, 5), and the rigid lining (q1=q2 = 0.8,

cb1=cb2 = 0.2)

Fig. 5 Hoop stress amplitudes of the inner wall of twin tunnels and the single tunnel (identical with the upper tunnel) subject to vertically

incident SV waves, with frequency (g = 0.5, 1.0, 2.0), distance between the twin tunnels (D=a1 = 3, 4, 5), and the rigid lining (q1=q2 = 0.8,

cb1=cb2 = 0.2)
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respectively. But at the point h = 30�, the influence of the

lower tunnel seems not so noticeable.

Figures 10 and 11 illustrate the hoop stress amplitude

spectrums at points h = 0� and h = 30� on the inner

surface of these twin tunnels and the corresponding

single tunnel for incident SV waves. It shows that in

low-frequency region (g B 0.5), the peak stress

amplitude of the upper tunnel can be larger than the

single-tunnel case. For high-frequency waves, in con-

trast, the shielding effect of the lower tunnel is very

pronounced. For example, at g = 1.5, the stress ampli-

tude at h = 0� of the single tunnel is 38.4, while for the

upper one of twin tunnels, the amplitudes are 22.7, 20.8,

and 25.7 for D/a1 = 3.0, 4.0 and 5.0 respectively. As for

Fig. 6 Hoop stress amplitude spectrums at different points (h = 0�, ±30�, ±90�) on the inner wall of twin tunnels, with the distance between the
twin tunnel (D=a1 = 3), and the rigid lining (q1=q2 = 0.8, cb1=cb2 = 0.2), subject to vertically incident P waves

Fig. 7 Hoop stress amplitude spectrums at different points (h = 0�, ±30�, ±90�) on the inner wall of twin tunnels, with the distance between the
twin tunnel (D=a1 = 3), the rigid lining (q1=q2 = 0.8, cb1=cb2 = 0.2), subject to vertically incident SV waves

Fig. 8 Hoop stress amplitude spectrums at h = 0� on the inner wall of twin tunnels, with the buried depth of the single tunnel (d=a1 = 4 denotes

the single upper tunnel, d=a1 = 7 denotes the single lower tunnel), the distance between the twin tunnels (D=a1 = 3, D=a1 = 4, D=a1 = 5), and

the rigid lining (q1=q2 = 0.8, cb1=cb2 = 0.2), subject to vertically incident P waves
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the lower tunnel, the displacement spectrum character-

istics become more complicated with the variation of D/

a1. As the buried depth increase, the spectrum curves

oscillate more rapidly. Comparing the case D/a1 = 3.0

with the corresponding single-tunnel case, we can

observe that, for the high-frequency waves, the stress

amplitude in the lower tunnel is decreased under the

influence of the upper tunnel.

Figures 12 and 13 illustrate the imaginary and the real

parts of the deformation of the inner wall of tunnels for

vertically incident P and SV waves with D/a1 = 3.0 and

the non-dimensional frequency g = 0.5, 1.0, 2.0. It is

Fig. 9 Hoop stress amplitude spectrums at h = 30� on the inner wall of twin tunnels, with the buried depth of the single tunnel (d=a1 = 4

denotes the single upper tunnel, d=a1 = 7 denotes the single lower tunnel), the distance between the twin tunnels (D=a1 = 3, D=a1 = 4,

D=a1 = 5), and the rigid lining (q1=q2 = 0.8, cb1=cb2 = 0.2), subject to vertically incident P waves

Fig. 10 Hoop stress amplitude spectrums at h = 0� on the inner wall of the twin tunnels and the single tunnel, with the buried depth of the single
tunnel (d=a1 = 4 denotes the single upper tunnel, d=a1 = 7 denotes the single lower tunnel), distance between the twin tunnels (D=a1 = 3,

D=a1 = 4, D=a1 = 5), and the rigid lining (q1=q2 = 0.8, cb1=cb2 = 0.2), subjected to vertically incident SV waves

Fig. 11 Hoop stress amplitude spectrums at h = 30� on the inner wall of the twin tunnels and the single tunnel, with the buried depth of the

single tunnel (d=a1 = 4 denotes the single upper tunnel, d=a1 = 7 denotes the single lower tunnel), distance between the twin tunnels

(D=a1 = 3, D=a1 = 4, D=a1 = 5), and the rigid lining (q1=q2 = 0.8, cb1=cb2 = 0.2), subject to vertically incident SV waves

Earthq Sci (2016) 29(3):185–201 195

123



Fig. 12 Comparisons of the real part and the imaginary part deformation of the twin tunnels’ inner wall by the initial shape, with frequency (g = 0.5,

1.0, 2.0), distance between the twin tunnels (D=a1 = 3), and the rigid lining (q1=q2 = 0.8, cb1=cb2 = 0.2), subject to vertically incident P waves

Fig. 13 Comparisons of the real part and the imaginary part deformation of the twin tunnels’ inner wall by the initial shape, with frequency

(g = 0.5, 1.0, 2.0), distance between the twin tunnels (D=a1 = 3), and the rigid lining (q1=q2 = 0.8, cb1=cb2 = 0.2), subject to vertically

incident SV waves
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shown that the deformation feature of the upper tunnel may

be largely different from that of the bottom one, and for

high-frequency waves, the shielding effect of the lower

tunnel on the upper one can be also clearly seen for both P

and SV waves.

5.2 Ground surface displacement response

above the twin tunnels

Figures 14 and 15 show the vertical and horizontal surface

displacement amplitudes on the ground surface above the

tunnels for incident P and SV waves, considering the

variation of the stiffness and the distance between these

two tunnels. For comparison, the case of single tunnel

(identical with the upper tunnel) is also presented. The non-

dimensional frequency takes g = 0.5, 1.0 and 2.0,

respectively. The surface displacement amplitudes are

normalized by the displacement amplitudes of incident

waves throughout the paper. For simplicity, only the ver-

tically incident seismic waves are considered.

It can be seen that the incident frequency has large

influence on the surface displacement response. For the soft

tunnels, the amplification or deamplification effects

strongly depend on the incident frequency. For the rigid

tunnels, the shielding effect on nearby ground surface

seems relatively more prominent. For example, at g = 2.0

the displacement amplitude at x=a1 = 0.0 is only 0.27 and

0.42 for P, SV waves incidence respectively, while it is 2.0

for the free field. Furthermore, the displacement amplitudes

and spatial distribution above the vertically overlapping

tunnels are similar to those of the single one, and the

influence of the distance between the twin tunnels on the

Fig. 14 The vertical displacement amplitudes of ground surface above the twin tunnels and the case of the single tunnel (identical with the upper

tunnel), for soft lining (q1=q2 = 1.25, cb1=cb2 = 3.0), homogenous lining (q1=q2 = 1.0, cb1=cb2 = 1.0), rigid lining (q1=q2 = 0.8,

cb1=cb2 = 0.2), with incident frequency (g = 0.5, 1.0, 2.0), distance between the twin tunnels (D=a1 = 3, D=a1 = 4, D=a1 = 5), subject to

vertically incident P waves
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surface displacement amplitudes is not so noticeable,

especially for high-frequency cases.

Figures 16 and 17 show the surface displacement

amplitude spectrums of the points (x=a1 = 0.0,

x=a1 = 2.0) near the lined tunnels under vertically incident

P and SV waves for both the vertically overlapping tunnels

and the single tunnel (identical with the upper tunnel). It

shows that the lining material of the tunnel has a significant

effect on the surface displacement amplitudes and spatial

distribution around the tunnels. In the case of soft lining

and homogenous lining, the spectrum curves oscillate

violently, while the spectra curves oscillate relatively

smoothly for the rigid lining tunnel. As for incident P

waves at low frequencies, the amplification effect is

noticeable. For an example, at g = 0.54, the displacement

amplitude at the point x=a1 = 0.0 for the soft tunnel is up

to 3.0 in the case of D=a1 = 3.0, which is about 50 %

larger than that of the free field. However, in the case of

rigid tunnels, mainly the shielding effect of the tunnels can

be observed, and the surface displacement amplitudes

above the single tunnel are larger than those of the twin

tunnels. Because under such circumstance, the twin tunnels

have more pronounced shielding effect on the seismic

waves. Moreover, the effect of the distance between twin

tunnels on the surface displacement amplitudes seems not

so significant. As for incident SV waves, it seems that the

displacement spectrum curves oscillate more quickly, and

note that in the case of rigid tunnels, the amplification

effect can be observed above the tunnel (x=a1 = 0.0) with

the peak amplitude of horizontal displacement 2.36 for

D=a1 = 3.0 and g = 0.32, which is slightly larger than that

of the single-tunnel case.

Fig. 15 The horizontal displacement amplitudes of ground surface above the twin tunnels and the case of the single tunnel (identical with the

upper tunnel), for soft lining (q1=q2 = 1.25, cb1=cb2 = 3.0), homogenous lining (q1=q2 = 1.0, cb1=cb2 = 1.0), rigid lining (q1=q2 = 0.8,

cb1=cb2 = 0.2), with incident frequency (g = 0.5, 1.0, 2.0), distance between the twin tunnels (D=a1 = 3, D=a1 = 4, D=a1 = 5), subject to

vertically incident SV waves
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It should be mentioned that in above examples we only

considered the small damping case (the damping ratio is

0.001). We calculated the displacement amplitudes of

ground surface with the damping ratio 0.001, 0.01, 0.05.

The displacement amplitudes of ground surface decrease

with the increase of damping ratio, and the decrease ratio is

less than 10 % for the calculated frequency range

g 2 ½0; 2�. Thus, for brevity, we did not analyze the impact

Fig. 16 The vertical displacement amplitudes spectrums of ground surface above the twin tunnels and the case of the single tunnel (identical

with the upper tunnel), for soft lining (q1=q2 = 1.25, cb1=cb2 = 3.0), homogenous lining (q1=q2 = 1.0, cb1=cb2 = 1.0), rigid lining

(q1=q2 = 0.8, cb1=cb2 = 0.2), distance between the twin tunnels (D=a1 = 3, D=a1 = 4, D=a1 = 5), subject to vertically incident P waves. a
x=a1 ¼ 0:0, b x=a1 ¼ 2:0

Fig. 17 The horizontal displacement amplitudes spectrums of ground surface above the twin tunnels and the case of the single tunnel (identical

with the upper tunnel), for soft lining (q1=q2 = 1.25, cb1=cb2 = 3.0), homogenous lining (q1=q2 = 1.0, cb1=cb2 = 1.0), rigid lining

(q1=q2 = 0.8, cb1=cb2 = 0.2), distance between the twin tunnels (D=a1 = 3, D=a1 = 4, D=a1 = 5), subject to vertically incident SV waves. a
x=a1 ¼ 0:0, b x=a1 ¼ 2:0
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of the damping ratio by the scattering of plane harmonic

waves in detail.

6 Conclusions

The scattering of plane harmonic waves by a pair of ver-

tically overlapping lined tunnels shallowly buried in an

elastic half space is solved by a high-precision IBIEM. The

convergence and numerical stability of the IBIEM for this

model are verified. Through detailed numerical analysis,

several beneficial conclusions can be drawn.

(1) Numerical results have been shown that the scattering

of seismic wave strongly depends on the distance

between these twin tunnels, the material properties of

the lining and the non-dimensional frequency. The

dynamic interaction between these twin tunnels

cannot be neglected.

(2) It has been shown that the lower tunnel may play a

protective role of isolating the P and SV waves of

high frequency, leading to the great decrease of

dynamic hoop stress amplitude of the upper tunnel, up

to 50 % smaller than the case of the single tunnel at

some frequencies. However, for the low-frequency

SV waves, on the contrary, additional amplification

effect between these twin tunnels can be observed at

some locations in the upper tunnel.

(3) The soft tunnels may have significant amplification

effect on the ground motion above the tunnels, while

the rigid tunnels mainly have shielding effect on the

nearby surface displacement response. The influence

of the vertically overlapping tunnels seems slightly

larger than that of the single-tunnel case.

(4) The deformation feature and the dynamic stress of the

upper tunnel are significantly different from those of

the lower tunnel, and there are more peaks and

troughs of the spectrum curve of the lower tunnel

with large buried depth.

This study was limited to the frequency domain analy-

sis. But from the perspective of engineering, it is more

attractive in the time domain. Moreover, the half-space

model is suitable for the thick near-surface layer. For more

general scenarios, the layered half-space model should be

adopted. We leave these limitations for the future study.
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