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Abstract Soil-structure interaction (SSI) of a building

and shear wall above a foundation in an elastic half-space

has long been an important research subject for earthquake

engineers and strong-motion seismologists. Numerous

papers have been published since the early 1970s; however,

very few of these papers have analytic closed-form solu-

tions available. The soil-structure interaction problem is

one of the most classic problems connecting the two dis-

ciplines of earthquake engineering and civil engineering.

The interaction effect represents the mechanism of energy

transfer and dissipation among the elements of the dynamic

system, namely the soil subgrade, foundation, and super-

structure. This interaction effect is important across many

structure, foundation, and subgrade types but is most pro-

nounced when a rigid superstructure is founded on a rela-

tively soft lower foundation and subgrade. This effect may

only be ignored when the subgrade is much harder than a

flexible superstructure: for instance a flexible moment

frame superstructure founded on a thin compacted soil

layer on top of very stiff bedrock below. This paper will

study the interaction effect of the subgrade and the super-

structure. The analytical solution of the interaction of a

shear wall, flexible-rigid foundation, and an elastic half-

space is derived for incident SH waves with various angles

of incidence. It found that the flexible ring (soft layer)

cannot be used as an isolation mechanism to decouple a

superstructure from its substructure resting on a shaking

half-space.

Keywords Out-of-plane SH waves � Closed-form
analytic solution � Rigid-flexible foundation � Fourier-
bessel series � Soil-structure interaction

List of symbols

a Radius of the semi-circular rigid foundation

�a Radius of the semi-circular flexible foundation

an Coefficients of the free-field waves

B Width of building

An Complex constants

B 1ð Þ
n ;B 2ð Þ

n
Complex constants

Cb Shear wave velocity in the soil

Cbb Shear wave velocity in the building

Cbf Shear wave velocity in the flexible foundation

ff Force per unit length acting on the rigid

foundation from the flexible foundation

fb Height of the building

H 1ð Þ
n xð Þ Hankel function of the first kind with argument

x and order n

H 2ð Þ
n xð Þ Hankel function of the second kind with

argument x and order n

i Imaginary unit

n Subscripts used for sequence number

Jn xð Þ Bessel function of the first kind with argument

x and order n

k Wave number in the soil k ¼ x2=Cb

kb Wave number in the building kb ¼ x2=Cbb

MB Mass of shear wall per unit length

MR Mass of rigid foundation per unit length

MF Mass of flexible ring per unit length

c Angle of incidence for SH waves
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D Amplitude of the displacement of the

foundation

w Amplitude of the displacement of the total

wave field in the soil

w ffð Þ Amplitude of the displacement of the free-field

wave in the half-space soil

w Bð Þ Amplitude of the displacement of the wave

field in the building

w Rð Þ Amplitude of the displacement of the wave

field in the rigid foundation

w Sð Þ Amplitude of the displacement of the scattered

wave field in the soil

wðiÞ Amplitude of the displacement of the incident

plane wave in the soil

wðrÞ Amplitude of the displacement of the reflected

plane wave in the soil

l Shear modulus of the soil

lb Shear modulus of the shear wall

q Density of the soil

qb Density of the shear wall

qr Density of the rigid foundation

qf Density of the flexible ring

x Circular frequency of the incident SH waves

dn Unit impulse function

e Dimensionless parameters

1 Introduction

The study of soil-structure interaction (SSI) began during

the late 19th century. In the early part of the 20th century, it

slowly evolved and developed due to research on the

design of nuclear power plants and on improvements in the

safety of building structures due to significant earthquake

events around the world. More recently, the sophistication

of SSI modeling has grown at a fast pace due to the

increasing computational ability of computer technology

and in response to the demands of research in the field of

non-linearity of building materials and soil media.

Reissner (1936) observed the natural effect of soil

inertia and established that it lay in the inertial properties of

the soil media. He also discovered that the radiation

damping into the soil contributed a great deal to the

response of a structure, thus marking the beginning of SSI

study using the analytical method. A number of years later,

Housner (1957) demonstrated that the variation of density

and elasticity in the soil media caused a change in seismic

wave propagation velocity that led to the reflection and

refraction of incoming seismic energy. This phenomenon is

understood as wave passage or kinematic interaction.

Additionally, the weight of a structure generates inertial

forces that impinge on the soil media when responding to

seismic waves, causing additional deformation in the soil

known as inertial interaction. The integration of the

dynamic response of a structure and the supporting soil

media causes the inertia effects. The structure deforms to

dissipate the energy caused by incoming seismic waves

and, in turn, the waves scatter away from the structure,

increasing the soil deformation.

The topic was taken up again in 1969 by Luco (1969),

who focused on the diffraction of normal incidence plane

SH waves by an elastic shear wall resting on a rigid semi-

circular foundation embedded in soil media. Trifunac

(1972) generalized Luco’s analytical solution into cases for

arbitrary oblique incidence angles of SH waves. Analytical

solutions of the dynamic interaction of shear walls with

circular rigid foundations embedded in the half-space were

derived and evaluated. This analysis demonstrated that

waves scattered from a rigid foundation contribute signif-

icantly to the surface ground motion near the shear wall

and at distances at least one order of magnitude greater

than the characteristic length of the foundation. Therefore,

waves reflected and diffracted by the foundation must not

be neglected when the Fourier amplitude ratios of

accelerograms recorded in and around the building are used

to study SSI. For this reason, when considering rigid shear

walls founded on hard soil excited by low frequency waves

(long period waves), it is possible to obtain base dis-

placements and base shear forces which are higher when

the values are computed neglecting SSI. However, when

considering rigid shear walls founded on soft soil excited

by higher frequency waves, the SSI has a significant effect

on displacement and base shear force and should be care-

fully considered. In more flexible structures, the effect of

interaction can vary widely for a single structure-soil

couplet and must be considered as depending on the har-

monic interaction of the native vibrational frequency of the

superstructure with the transmitted frequency of specific

seismic waves in the soil as affected by the soil’s stiffness.

In the early 1970s, Lee and Westley (1973) investigated

the influence of SSI effects on the seismic response of

nuclear reactors using a three-dimensional model subjected

to vertical propagation of SH waves. The normal incidence

SH waves used the analytical method along the two

orthogonal directions and a spring-mass model for struc-

tures attached to the foundations. Luco and Contesse

(1973) presented closed-form analytic solutions for the

two-dimensional out-of-plane problems related to the

interaction between elastic shear walls fixed on rigid cir-

cular foundations that are subjected to vertical and oblique

angles of incident harmonic SH waves. Wong and Trifunac

(1975) extended the analytical solutions for the incident

plane SH waves to shallow or deep elliptical rigid foun-

dations, as well as to multiple buildings and foundations.

The solutions to these problems showed that buildings that
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are closely spaced could affect the fundamental frequencies

(or period) of the neighboring buildings due to SSI.

Lee (1979) studied three-dimensional analytical solu-

tions for the interaction of a single degree-of-freedom

oscillator supported by a semi-spherical foundation for the

harmonic P-, SV-, and SH waves. Kobori and Kusakabe

(1980) investigated rigid rectangular and circular founda-

tions welded to the surface of elastic half-spaces, and

subjected to harmonic seismic waves. Triantafyllidis and

Prange (1988) studied the dynamic interaction of two rigid

circular foundations embedded in elastic half-space, and

subjected to Rayleigh waves impinging at an arbitrary

angle. These studies demonstrated that forces react on the

foundations perpendicular to the incidence of propagation,

in addition to forces in the direction of the motion.

Todorovska (1993) studied the in-plane foundation-soil

interaction of circular foundations embedded in elastic soil

media. The research mainly focused on the influences of

wave passage and the depth of the foundation below the

half-space for in-plane SSI. In the same year, Hryniewicz

(1993) investigated two two-dimensional trip foundations

based on a semi-infinite medium embedded in a homoge-

neous half-space excited by anti-plane SH waves.

Figure 1 is the realization of the two-dimensional

mathematical model in this paper presenting the interaction

of an elastic shear wall (structure), flexible-rigid founda-

tion, and the elastic half-space for incident plane SH

waves. The foundation consists of a semi-circular rigid

foundation which is wrapped with an elastic semi-circular

flexible foundation. The lower semi-circular section can be

modeled as flexible for soft soil or as rigid for hard soil—

such as bedrock—which provides a more accurate mathe-

matical model for the shear wall or structure interacting

with the soil media. This accuracy is important in modeling

an SSI with a stiffer layer of soil overlaying a more flexible

layer. An engineer goes through a decision making process

when selecting the optimum type of foundation system for

soil deposits that are soft and not suitable to support the

superstructure. Selecting an optimum system is based on

the principle that cost-effective alternatives such as soft

ground improvements must be sought first before consid-

ering relatively costly foundation alternatives (mat or pile

deep foundation). Soil treatment and stabilization are

techniques to enhance some aspects of soil behavior and

improve the strength and bearing capacity of soft ground

conditions. Through the process of soil treatment, the

property of soil supporting the superstructure foundation is

modified and improved in comparison to the surrounding

strata. This layer of modified soil will alter the seismic

wave propagating from the half-space to the superstructure

foundation. The model in this paper will accurately analyze

this interaction and assist in selection of optimum foun-

dation systems.

In this paper, the displacement of the shear wall struc-

ture and flexible/rigid foundation and the ground motion

close to the subjected structure are investigated and com-

pared the results with Luco (1969) and Trifunac (1972)

which studied the interaction of a shear wall, rigid foun-

dation, and the half-space for incident SH waves. Luo

(2008) also studied this problem but the derivation and

final equations here are much simplified with improved

convergency and accuracy of numerical results. Moreover,

the emphasis here is different, where the graphs computed

here are confirmed with the results of Trifunac (1972) for

only rigid foundation case, and the effect of shear wall

structure response due to the flexible ring is studied. The

base shear force of the wall structure is also studied with

various thicknesses and stiffnesses of the flexible ring.

2 The mathematical model

2.1 The model

The model studied in this paper is a two-dimensional

rectangular building resting on a semi-circular rigid foun-

dation of radius a which is wrapped with an elastic semi-

circular flexible foundation of radius �a embedded in a half-
Fig. 1 The mathematical model SSI with semi-circular flexible and

rigid foundation
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space, as illustrated in Fig. 1. All materials here are

assumed to be homogeneous, elastic, and isotropic. The

material constants, namely shear modulus and wave speed

of the half-space soil, building, and flexible foundation are

denoted by l;Cb and lb;Cbb , and lf ;Cbf . The contacts

between the soil, foundation, and building are assumed to

be fixed with no slippage between them and with the

assumption that the foundation is removable.

A train of parallel harmonic incident SH waves impinge

on the foundation from half-space at an incidence angle c
with respect to the horizontal axis. The width and height of

the structure are 2a and H, respectively. A Cartesian

coordinate system x; yð Þ and a corresponding polar coor-

dinate system r; hð Þ have been defined with the origin at the
center of the semi-circular foundation.

2.2 The free-field waves in the half-space

The incident wave field consists of a train of plane waves

of unit amplitude with harmonic frequency x, wave speed

Cb, and wave number k ¼ kb ¼ x
�
Cb. The incident waves

can be expressed in both the rectangular and polar coor-

dinates as follows:

w ið Þ x; yð Þ ¼ ei kxx�kyyð Þ ¼ ei x cos c�y sin cð Þ;

w ið Þ r; hð Þ ¼ eikr cos c cos h�sin c sin hð Þ ¼ eikr cos cþhð Þ;
ð1Þ

and the reflected plane waves can be written as

w rð Þ x; yð Þ ¼ ei kxxþkyyð Þ ¼ ei x cos cþy sin cð Þ;

w rð Þ r; hð Þ ¼ eikr cos c cos hþsin c sin hð Þ ¼ eikr cos c�hð Þ:
ð2Þ

The e�ixt harmonic time factor is present in all wave

equations, and will be understood to be omitted from all

equations. Here c is the angle of incidence or reflection

with respect to the horizontal axis; kx ¼ k cos c and ky ¼
k sin c represent the components of the SH wave number k

along the x- and y-axes, respectively. Applying the Jacobi–

Anger Expansion (Pao and Mow 1973),

e�ikr cos h ¼
X1

n¼0

en �ið ÞnJn krð Þ cos nh; ð3Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary complex unit, and Jn :ð Þ is

the Bessel function of the first kind with order n.

eikr cos c�hð Þ ¼
X1

n¼0

eni
nJn krð Þ cos n c� hð Þ½ �;

eikr cos c�hð Þ ¼
X1

n¼0

eni
nJn krð Þ cos nc cos nh� sin nc sin nc½ �:

ð4Þ

The two formulas in Eqs. (1) and (2) can be expanded

into infinite series by using polar coordinates r; hð Þ. The

free-field wave field is then given by the sum of the rep-

resented waves that are finite everywhere in the half-space

for n = 0, 1, 2, 3….

w ffð Þ r; hð Þ ¼ w ið Þ þ w rð Þ ¼ eikr cos cþhð Þ þ eikr cos c�hð Þ;

w ffð Þ r; hð Þ ¼
X1

n¼0

2eni
nJn krð Þ cos nc cos nh

¼
X1

n¼0

anJn krð Þ cos nh;

ð5Þ

where an ¼ 2eni
n cos nc are the coefficients of the free-field

waves, and e0 ¼ 1; en ¼ 2 for n[ 0. The wave field in the

half-space scattered from the flexible foundation is written as

w Sð Þ r; hð Þ ¼
X1

n¼0

AnH
1ð Þ
n krð Þ cos nhð Þ for n� a; ð6Þ

where An are the unknown complex numbers to be

determined by boundary conditions and the wave

function, and H 1ð Þ
n e�ixt represents outgoing waves toward

infinity satisfying Sommerfeld’s radiation condition. The

expression of the wave inside the flexible foundation is

w Fð Þ r; hð Þ ¼
X1

n¼0

B 1ð Þ
n H 1ð Þ

n kfrð Þ þ B 2ð Þ
n H 2ð Þ

n kfrð Þ
h i

cos nh

ð7Þ

for a� r� �a and 0� h� p where H 1ð Þ
n kfrð Þ and H 2ð Þ

n kfrð Þ
are the Hankel functions of the first or second kind with

argument kfr and order n; B 1ð Þ
n and B 1ð Þ

n are the unknown

complex numbers to be determined by boundary conditions

and the wave functions.

2.3 The wave field within the structure

As pointed out by Trifunac (1972), the displacement of the

shear wall, in the z-direction (out-of-plane), has the same

harmonic frequency x as the rigid foundation, and w Bð Þ

must satisfy the Helmholtz wave equation with y, the axis

pointing vertically down (Fig. 1):

ow Bð Þ

oy2
þ k2bw

Bð Þ ¼ 0 for � H� y� 0 ð8Þ

with kb ¼ x
�
Cbb being the building shear wave number,

and Cbb the wave speed in the shear wall. The shear wall

must satisfy the boundary conditions of

ryz ¼ lb
ow Bð Þ

oy
¼ 0 at y ¼ �H; at top of shear wall;

w Bð Þ ¼ De�ixt at y ¼ 0; at bottom of shear wall:

ð9Þ

Dependence on x in the shear wall is eliminated in

Eq. (8) by the assumption that the foundation is rigid. The

solution of Eqs. (8) and (9) is then given by
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w Bð Þ yð Þ ¼ De�ixt cos kby� tan kbH sin kbyð Þ: ð10Þ

The shear stress along the interface of building and

foundation could be derived as

syz
��
y¼0

¼ lb
ow Bð Þ

oy

����
y¼0

¼ � lbkb tan kbHð ÞD: ð11Þ

The base shear force per unit length of the shear wall f bz can

be expressed as

f bz ¼ �Dlbkb 2að Þ tan kbH ¼ �x2MB

tan kbH

kbH

� �
D: ð12aÞ

From Eq. (12a), a dimensionless function proportional to

the base shear force acting on the shear wall can be

expressed as

f bz
x2MB

¼ � tan kbH

kbH

� �
D: ð12bÞ

2.4 The action of flexible foundation on the rigid

foundation

The action of flexible foundation on the rigid foundation,

f fz , can be expressed in term of stress as follows:

f fz ¼ �
Z p

0

srzjr¼aadh

f fz ¼ �lfkfa
X1

n¼0

B 1ð Þ
n H 1ð Þ0

n kfað Þ þ B 2ð Þ
n H 2ð Þ0

n kfað Þ
h i

�
Z p

0

cos nhdh; ð13Þ

where
R p
0
cos nhdh ¼ p; n ¼ 0

0; n 6¼ 0

�
. So f fz can be rewritten as

f fz ¼ plfkfa B
1ð Þ
0 H

1ð Þ
1 kfað Þ þ B

2ð Þ
0 H

2ð Þ
1 kfað Þ

h i
: ð14Þ

3 The boundary conditions

3.1 Displacement and stress continuity

The free-stress boundary conditions of the ground surface

should be satisfied by the free-field waves w ffð Þ and the

scattered waves w Sð Þ. The displacement and stress conti-

nuity equations along the semi-circular interface at

0� h� p and r ¼ �a, respectively are

w ffð Þ þ w Sð Þ��
r¼�a

¼ w Fð Þ��
r¼�a

for 0� h� p; ð15Þ

l
o

or
w ffð Þ þ w Sð Þ
� 	����

r¼�a

¼ lf
o

or
w Fð Þ
� 	����

r¼�a

for 0� h� p:

ð16Þ

Substitution of Eqs. (5), (6), and (7) into Eqs. (15) and (16)

leads to the following two boundary condition equations,

for n = 0, 1, 2, 3, …,

anJn k�að Þ þ AnH
1ð Þ
n k�að Þ ¼ B 1ð Þ

n H 1ð Þ
n kf �að Þ þ B 2ð Þ

n H 2ð Þ
n kf �að Þ;

ð17Þ

anJ
0
n k�að Þ þ AnH

1ð Þ0
n k�að Þ

¼ j B 1ð Þ
n H 1ð Þ0

n kf �að Þ þ B 2ð Þ
n H 2ð Þ0

n kf �að Þ
h i

;
ð18Þ

where j ¼ lfkf=lk is the material property ratio in the

equation for the stress continuity boundary condition.The

boundary condition at the interface of rigid and flexible

foundations can be expressed as given below:

w Fð Þ��
r¼a

¼ w Rð Þ��
r¼a

¼ De�ixt ð19Þ

Substitute Eq. (7) into Eq. (19) to solve for B 2ð Þ
n ,

B
1ð Þ
0 H

1ð Þ
0 kfað Þ þ B

2ð Þ
0 H

2ð Þ
0 kfað Þ ¼ D for n ¼ 0

B 1ð Þ
n H 1ð Þ

n kfað Þ þ B 2ð Þ
n H 2ð Þ

n kfað Þ ¼ 0 for n[ 0
ð20Þ

B 2ð Þ
n can be written in terms of B 1ð Þ

n and D as follows:

B 2ð Þ
n ¼

D� B
1ð Þ
0 H

1ð Þ
0 kfað Þ

H
2ð Þ
0 kfað Þ

for n ¼ 0

�B 1ð Þ
n H 1ð Þ

n kfað Þ
H 2ð Þ

n kfað Þ
for n[ 0:

8
>>><

>>>:

ð21Þ

3.2 The dynamic equation for the rigid foundation,

wf ¼ De�ixt

As pointed out by Luco (1969) and Trifunac (1972), dis-

placement of the foundation D can be determined by the

kinetic equation for the rigid foundation,

MR €w
Rð Þ ¼ �ðf fz þ f bz Þe�ixt; ð22Þ

where €w Rð Þ ¼ �Dx2e�ixt, MR is the mass of the rigid

foundation per unit depth in the z-axis and w Rð Þ represents
the displacement function of the rigid foundation in terms

of time factor t as described in Eq. (19).The foundation

displacement D can be solved from Eqs. (12a), (14), and

(22),

D ¼
lfkfpa H

1ð Þ
1 kfað Þ � H

1ð Þ
0

kfað Þ
H

2ð Þ
0

kfað Þ
H

2ð Þ
1 kfað Þ

� �

x2MR þ lbkb 2að Þ tan kbH � lfkfpa
H

2ð Þ
1

kfað Þ
H

2ð Þ
0

kfað Þ

� �

2

664

3

775B
1ð Þ
0 :

ð23Þ

Equation (23) can be further simplified as
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D ¼
� 4i

pkfaH
2ð Þ
0

kfað Þ

kf �a
2a

2 MR

MF
þ MB

MF

tan kbH
kbH

� 	
� H

2ð Þ
1

kfað Þ
H

2ð Þ
0

kfað Þ

2

64

3

75B 1ð Þ
0 ¼ D0B

1ð Þ
0 : ð24Þ

where

D0 ¼
� 4i

pkfaH
2ð Þ
0

kfað Þ

kf �a
2a

2 MR

MF
þ MB

MF

tan kbH
kbH

� 	
� H

2ð Þ
1

kfað Þ
H

2ð Þ
0

kfað Þ

ð25Þ

MB, MR, and MF are the masses of the building, rigid

foundation, and flexible ring, respectively; qb, qr, qf stand
for the density of those three media, sequentially; and

the Wronskian W H 1ð Þ
n kfað Þ;H 2ð Þ

n kfað Þ

 �

¼ Hð1Þ0
n kfað ÞH 2ð Þ

n




kfað Þ � Hð1Þ
n kfað ÞHð2Þ0

n kfað Þ� ¼ �4i=pkfa. Other terms can

be found in the ‘‘Appendix’’ section.

As pointed out by Luco (1969), the natural frequencies

of a shear wall on a fixed foundation correspond to

kbH ¼ 2nþ 1ð Þp=2. And D becomes zero at the values of

kbH mentioned in the equation above.

Substitute Eq. (24) into Eq. (21), B 1ð Þ
n can be derived

explicitly in terms of B 2ð Þ
n ,

B 2ð Þ
n ¼

D0B
1ð Þ
0
�B

1ð Þ
0
H

1ð Þ
0

kfað Þ
H 2ð Þ

0 kfað Þ
for n ¼ 0

� B
1ð Þ
n H

1ð Þ
n kfað Þ

H 2ð Þ
n kfað Þ

for n[ 0

8
>><

>>:

B 2ð Þ
n ¼ dnD0 � H 1ð Þ

n kfað Þ
H 2ð Þ

n kfað Þ

" #

B 1ð Þ
n for n ¼ 0; 1; 2; 3; 4. . .

ð26Þ

where dn ¼
1 for n ¼ 0

0 for n[ 0

�
.

By substituting Eq. (26) into Eqs. (17) and (18), we can

solve for wave function coefficients An and B 1ð Þ
n explicitly.

anJn k�að Þ þ AnH
1ð Þ
n k�að Þ

¼ H 1ð Þ
n kf �að Þ þ dnD0 � H 1ð Þ

n kfað Þ
H 2ð Þ

n kfað Þ
H 2ð Þ

n kf �að Þ
 !" #

B 1ð Þ
n ;

ð27Þ

anJ
0
n k�að Þ þ AnH

1ð Þ0
n k�að Þ

¼ j H 1ð Þ0
n kf �að Þ þ dnD0 � H 1ð Þ

n kfað Þ
H 2ð Þ

n kfað Þ
H 2ð Þ0

n kf �að Þ
 !" #

B 1ð Þ
n :

ð28Þ

From Eq. (27), An can be derived and expressed in terms of

an and B 1ð Þ
n .

An ¼
G 1ð Þ

n

H 1ð Þ
n k�að ÞH 2ð Þ

n kfað Þ

" #

B 1ð Þ
n � Jn k�að Þ

H 1ð Þ
n k�að Þ

" #

an; ð29Þ

where G
ð1Þ
n ¼ Hð1Þ

n kf �að ÞHð2Þ
n kfað Þ � Hð1Þ

n kfað ÞHð2Þ
n kf �að Þþ

dnD0H
ð2Þ
n kf �að Þ.

Substitute Eq. (29) into Eq. (28), B
ð1Þ
n can be solved

explicitly.

B 1ð Þ
n ¼

J0n k�að ÞHð1Þ
n k�að Þ � Jn k�að ÞHð1Þ0

n k�að Þ

 �

Hð2Þ
n kfað Þan

jGð2Þ
n Hð1Þ

n k�að Þ � G
ð1Þ
n Hð1Þ0

n k�að Þ
;

ð30Þ

where G 2ð Þ
n ¼ Hð1Þ0

n kf �að ÞH 2ð Þ
n kfað Þ � H 1ð Þ

n kfað ÞHð2Þ0
n kf �að Þ þ

dnD0H
ð2Þ0
n kf �að Þ ¼ �4i=pkfaþ dnD0H

ð2Þ0
n kf �að Þ: Solve for

B 1ð Þ
n from Eq. (30),

B 1ð Þ
n ¼

� 2i

pk�a

� �
H 2ð Þ

n kfað Þ

�G
1ð Þ
n H 1ð Þ0

n k�að Þ þ jG 2ð Þ
n H 1ð Þ

n k�að Þ

2

664

3

775an; ð31Þ

where Wronskian W Jn k�að Þ;H 1ð Þ
n k�að Þ

� 

¼ � Jn k�að Þð

H 1ð Þ0
n k�að Þ � J0n k�að ÞH 1ð Þ

n k�að ÞÞ ¼ �2i=pk�a. Derive equation

for B
1ð Þ
0 (n = 0) from Eq. (31),

B
1ð Þ
0 ¼

� 2i
pk�a

� 

H

2ð Þ
0 kfað Þa0

�G
1ð Þ
0 H

1ð Þ0
0 k�að Þ þ jG 2ð Þ

0 H
1ð Þ
0 k�að Þ

¼
� 2i

pk�a

� 

H

2ð Þ
0 kfað Þa0

G
1ð Þ
0 H

1ð Þ
1 k�að Þ þ jG 2ð Þ

0 H
1ð Þ
0 k�að Þ

ð32Þ

By combining Eqs. (28), (29), and (31), we can derive the

expressions for wave function coefficients An and B
ð2Þ
n as

the following:

An ¼
� 2i

pk�a

� 

G

1ð Þ
n

H
1ð Þ
n k�að Þ

� �

�G
1ð Þ
n H 1ð Þ0

n k�að Þ þ jG 2ð Þ
n H 1ð Þ

n k�að Þ
� Jn k�að Þ
H 1ð Þ

n k�að Þ

2

664

3

775an;

ð33Þ

B 2ð Þ
n ¼

� 2i
pk�a

� 

dnD0 � H 1ð Þ

n kfað Þ

 �

�G
1ð Þ
n H 1ð Þ0

n k�að Þ þ jG 2ð Þ
n H 1ð Þ

n k�að Þ

" #

an: ð34Þ

4 Numerical analysis of displacement

As pointed out by Trifunac (1972), the condition for the

envelope of the rigid foundation displacement, D, corre-
sponding to the case of which j ¼ 1; �a ! a, is given by

De ¼ J1 kað Þ � J0 kað Þ
H

1ð Þ
0 kað Þ

H
1ð Þ
1 kað Þ

" #

� J20 kað Þ þ Y2
0 kað Þ

Y0 kað ÞJ1 kað Þ � Y1 kað ÞJ0 kað Þ

� �
a0: ð35Þ
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The backbone curve of D could be understood as the

displacement of the rigid foundation whose density is

identical to that of the surrounding soil by setting

MB=MF ¼ 0 and MR=MF ¼ 1.

D0 ¼
� 4i

pkaH 2ð Þ
0 kað Þ

ka

2

MR

MF

� �
� H

2ð Þ
1 kað Þ

H
2ð Þ
0 kað Þ

2

66664

3

77775
a0 ð36Þ

To characterize the problem, the dimensionless parameter

is defined as e ¼ kbH=kfa ¼ bfH=bba. It is seen that the

flexible, slender, and tall shear walls are described by large

values of e.
First, the correctness of the numerical results can be

verified by comparing the results from the rigid semi-

circular foundation case. This is done by setting

j ¼ lfkf=lk ¼ 1; �a ! a. Figure 2 represents the plots of

the displacement on a Cartesian coordinate system with the

x-axis being ‘wave number’ and the y-axis being ‘dis-

placement’ and the initial conditions shown in the legends.

Fig. 2 Effect of interaction on D the amplitude of foundation

vibration. i �a=a ¼ 1, j ¼ 1, MB/MS = 1, MF/MS = 1, e = 0, 2, 4. ii
MB/MS = 1, MF/MS = 1, e = 0, 2, 4 (Trifunac 1972)

Fig. 3 Effect of interaction on D the amplitude of foundation

vibration. i �a=a ¼ 1.25, j ¼ 2, MB/MS = 1, MF/MS = 1, e = 0, 2,

4. ii �a=a ¼ 1.25, j ¼ 2, MB/MS = 2, MF/MS = 1, e = 0, 2, 4 iii
�a=a ¼ 1.25, j ¼ 2, MB/MS = 4, MF/MS = 1, e = 0, 2, 4
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The abscissa in these figures is the dimensionless frequency

xa=b and the ordinate is the foundation displacement D.
The displacement D would be equal to one if the movement

of the rigid foundation does not depend on the shear wall.

This serves as a reference value which shows the influence

of the interaction of structure and soil on the movement of

the foundation and consequently on the base shear force.

The results and plots are in line with Luco (1969) and

Trifunac (1972).

Fig. 4 Effect of interaction on D the amplitude of foundation

vibration. i �a=a ¼ 1:50, j ¼ 2, MB/MS = 1, MF/MS = 1, e = 0, 2,

4. ii �a=a ¼ 1:50, j ¼ 2, MB/MS = 2, MF/MS = 1, e = 0, 2, 4. iii
�a=a ¼ 1:50, j ¼ 2, MB/MS = 4, MF/MS = 1, e = 0, 2, 4

Fig. 5 The base shear force. i j ¼ 1, MB/MS = 4, MF/MS = 1,

e = 2. ii j ¼ 1:5, MB/MS = 4, MF/MS = 1, e = 2. iii j ¼ 2, MB/

MS = 4, MF/MS = 1, e = 2
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Figures 3 and 4 represent the displacement curves for

�a=a ¼ 1:25 and �a=a ¼ 1:50, respectively. The zeros cor-

respond to the fixed-base natural frequencies of the shear

wall. It can be seen that the thickness of the flexible ring

has strong effect on the displacement amplitude of the rigid

foundation. As the ratio of �a=a becomes large, peaks of the

displacement amplitude increase significantly. The dis-

placement amplitude increases greatly for low frequencies

and is dependent on the amplitude of the wave in the

flexible ring coefficient B
1ð Þ
0 . It is also noticed that the

structure response is independent of the angle of incidence

and only depending on the foundation displacement D.
Figure 5 represents the base shear force acting on the

flexible shear wall for e ¼ 2. When there is no interaction,

the base shear force is infinite for the fixed-base natural

frequencies of the shear wall. When the interaction is

considered, the base shear force is bounded for all fre-

quencies. It can be seen that the thickness of the flexible

ring has little effect on the peaks of the base shear force.

Figure 6 describes the dimensionless base shear coeffi-

cient of the flexible wall structure. For the lower frequen-

cies range which is of special importance for earthquake

engineering, the peaks of the base shear forces are

increased in proportion to the ratio of j ¼ lfkf=lk and

decreased for larger �a=a. It is also indicated that the base

shear force is bounded faster for higher value of material

property ratio.

5 Conclusions

The analytical solution of the interaction of a shear wall,

flexible-rigid foundation, and an elastic half-space is

derived for incident SH waves with various angles of

incidence. Comparison of these displacement amplitude

plots and the ones in which the superstructure sits only on

the rigid foundation shows that the flexible ring has the

effect of diminishing the ground displacement amplitude

as the building absorbs wave energy and scatters it back

into the half-space that results in increased displacement

amplitude of the foundation and decreased amplitude of

ground displacement. This is an important phenomenon

that differs from the typical SSI models in the absence of

the flexible ring. It also found that the flexible ring (soft

layer) cannot be used as an isolation mechanism to

decouple a superstructure from its substructure resting on

a shaking half-space due to the fact that waves are

transmitted into and scattered from the flexible

foundation.

Interesting results are shown in the graphs of displace-

ment amplitude. The foundation displacement is zero for a

rigid foundation with a fixed-base excited at the natural

frequency of the shear wall. This concurs with the Luco

(1969) and Trifunac (1972) results. However, for a heavy

and flexible structure the peaks of displacement increase

for low frequency waves as the thickness of the flexible

foundation layer increases.

Fig. 6 The dimensionless base shear. i j ¼ 1, MB/MS = 4, MF/

MS = 1, e = 2. ii j ¼ 1:5, MB/MS = 4, MF/MS = 1, e = 2. iii j ¼ 2,

MB/MS = 4, MF/MS = 1, e = 2
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Base shear forces increase as the rigidity of the flex-

ible foundation layer increases in comparison to the

surrounding soil medium. Interestingly, for high fre-

quency waves, peaks of the base shear force are the same

for all ratios of �a=a. For shear walls founded on soft soil

and for low frequencies, the base shear forces are higher

than values computed for shear walls supported on hard

soil. The structure response is independent of the angle

of incidence and only depending on the foundation

displacement.

All of the above analytical solutions are for cases where

the foundations are rigid, non-elastic movable foundations.

Analytic solutions are possible because the foundation has

rigid displacement characterized by only one parameter. A

more realistic assumption would be to allow the foundation

to be elastic. As such, analytic solutions for soil-structure

interaction of a building and shear wall on an elastic

foundation deserve investigation, but this, of course, is a

very challenging research problem.

This paper serves as an intermediate step for such a goal.

It considers the soil-structure interaction of a shear wall on

a semi-elastic foundation, with the rigid semi-circular

foundation being supported by an elastic ring wrapped

around it as the outside layer of the foundation. However,

the solution presented in this paper, though analytic, cannot

be directly adapted to solutions representing a fully flexible

foundation. A sequel to this paper will be to present a new

model with the same foundation geometry, namely an

elastic ring around a rigid foundation, with a new shape of

the superstructure where the analytic solution of the SSI

problems can later be more easily adapted to the SSI of a

flexible foundation.
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Appendix

The mass of the soil in place of foundation, MS per unit

length is

MS ¼
qpa2

2
¼ lpa2

2C2

� �
k

k

� �2

¼ lpa2k2

2x2
: ðA:1Þ

The mass of the building, MB per unit length is

MB ¼ 2qbaH ¼ 2lbaH

C2
b

� �
kb

kb

� �2

¼ 2lbk
2
baH

x2
ðA:2Þ

lbkbR2mp
lkpa

¼ lbkbR2mp
lkpa

� �
kbH

kbH

� �
¼ lbk

2
b R2mpHð Þ

lkpa kbHð Þ

¼ lbk
2
b 2aHð Þ

lkpa kbHð Þ ðA:3Þ

lbkbR2mp
lkpa

¼ x2Mb

2x2Ms

pk2a2

� �
kbHð Þ

¼ ka

2

� �
Mb

Ms

� �
1

kbH

� �
:

ðA:4Þ

The mass of the rigid foundation, MR per unit length is

MR ¼ qrpa
2

2
: ðA:5Þ

The mass of the flexible ring foundation,MF per unit length

is

MF ¼
qfp�a

2

2
¼ lfp�a

2

2C2
f

� �
k2f
k2f

� �
¼ lfk

2
f p�a

2

2x2
; ðA:6Þ

where H
ð1Þ0
0 kfað Þ ¼ �H

1ð Þ
1 kfað Þ; Hð2Þ0

0 kfað Þ ¼ �H
2ð Þ
1 kfað Þ;

lb ¼ x2MB=2k
2
baH; x2 ¼ lfk

2
f p�a

2=2MF; and 2albkb
tan kbH ¼ 2akb x2MB=2k

2
baH

� 

tan kbH ¼ x2MB=kbHð Þ

tan kbH.
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