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Abstract In this paper, we propose a nearly analytic

exponential time difference (NETD) method for solving

the 2D acoustic and elastic wave equations. In this method,

we use the nearly analytic discrete operator to approximate

the high-order spatial differential operators and transform

the seismic wave equations into semi-discrete ordinary

differential equations (ODEs). Then, the converted ODE

system is solved by the exponential time difference (ETD)

method. We investigate the properties of NETD in detail,

including the stability condition for 1-D and 2-D cases, the

theoretical and relative errors, the numerical dispersion

relation for the 2-D acoustic case, and the computational

efficiency. In order to further validate the method, we apply

it to simulating acoustic/elastic wave propagation in mul-

tilayer models which have strong contrasts and complex

heterogeneous media, e.g., the SEG model and the Mar-

mousi model. From our theoretical analyses and numerical

results, the NETD can suppress numerical dispersion

effectively by using the displacement and gradient to

approximate the high-order spatial derivatives. In addition,

because NETD is based on the structure of the Lie group

method which preserves the quantitative properties of dif-

ferential equations, it can achieve more accurate results

than the classical methods.

Keywords ETD � Lie group method � Numerical

approximations and analysis � Computational

seismology � Numerical dispersion � Nearly analytic

discrete operator

1 Introduction

To determine the Earth’s structure, it is necessary to

develop an accurate and efficient method for modeling

seismic wave propagation in the Earth’s media. In this

effort, wave field simulation has become a powerful tool in

seismological research in the last few decades. To improve

the computational accuracy and efficiency of wave field

simulation, many numerical techniques have been devel-

oped. Currently, widely used methods include the finite

difference (FD) method (e.g., Kelly et al. 1976; Dablain

1986; Igel et al. 1995; Blanch and Robertson 1997; Car-

cione and Helle 1999), the finite element method (e.g.,

Erikson and Johnson 1991), the pseudo-spectral (PS)

method (e.g., Kosloff and Baysal 1982), the spectral ele-

ment method (e.g., Komatitsch and Vilotte 1998; Ko-

matitsch et al. 2000), the reflectivity method (e.g., Booth

and Crampin 1983a, b; Chen 1993), and the boundary

integral equation-discrete wavenumber method (e.g.,

Bouchon 1996; Zhou and Chen 2008). Each method has its

own advantages and disadvantages, which we have

reviewed briefly in our previous work (Yang et al. 2004).

It is well-known that the FD methods have a number of

significant advantages as compared with the other methods

due to their easy implement, fast calculations, low computer

storage requirements, and high parallelism. Because of these

advantages, FD is the method used most frequently in wave

field simulations in seismology. However, classical FD

methods often produce serious numerical dispersion when

computation grids are too coarse or when velocity models

have strong contrasts across the interfaces (Dablain 1986;

Yang et al. 2006). There are usually two ways to suppress

numerical dispersion. One way is to increase the number

of spatial sampling grid points in a wavelength, and the other

is to use a high-order numerical discrete method.
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Unfortunately, using fine space grids results in a significant

increase in memory requirements and computational cost,

and a higher-order method does not guarantee lower

numerical dispersion (Fei and Larner 1995). To solve the

problem, Yang et al. (2003) introduced a type of nearly

analytic discrete (NAD) operator to approximate the high-

order spatial derivatives. These NAD operators use only

three grid points in a spatial direction to achieve the fourth-

order spatial accuracy, and operators can efficiently suppress

the numerical dispersion. Based on the idea, a range of dif-

ferent effective numerical algorithms have been proposed by

Chen et al. (2010), Tong et al. (2011), and Ma et al. (2011).

In the last few years, many numerical integration tech-

niques have been designed to solve the ordinary differential

equations (ODEs). These integration methods include the

symplectic methods of Hamiltonian systems, the Lie group

method (Munthe-Kaas and Zanna 1997; Munthe-Kass

1999; Iserles et al. 2000), the exponential time difference

method (Cox and Matthews 2002; Minchev 2003; Krogstad

2005; Sun et al. 2008), and the precise integration method

(Tang and Yang 2007; Li et al. 2010). Geometric integra-

tion methods usually preserve the important qualitative

properties for some special ODEs and have better stability

for some differential equations with a special structure. The

numerical result of the integration methods is usually more

accurate than those of the classical methods.

In this paper, we develop a nearly analytic exponential

time difference (NETD) method by combining the basic idea

of the Lie group method with the NAD method to solve

seismic wave equations, which can effectively suppress the

numerical dispersion and preserve the qualitative properties

of PDEs. In this method, first, we use the nearly analytic

operator to approximate the high-order spatial differential

operator and convert the wave equations into semi-discrete

ODEs. Then we solve the resulting ODE system using the

exponential time difference method. We compare the results

from the NETD with those of the Lax–Wendroff correction

(LWC) scheme and the staggered grid (SG) scheme. The

numerical results computed by NETD are also compared

with the exact solution. Our numerical experiments show

that the NETD method has weak numerical dispersion both

when coarse grids are used and when the velocity models

have large contrasts between the neighboring layers. From

our process to obtain the NETD method, we can see that the

new method is based on the geometric integration methods

such as the Lie group method and the ETD method. Since

these geometric integration methods can preserve qualitative

properties of differential equations, we hope that the NETD

method can achieve a more accurate result. As a result, the

NETD method has quite a few advantages over other

methods such as numerical dispersion, numerical error, and

computational cost.

2 NETD method for the acoustic wave equation

In this section, we introduce and describe in detail the

derivation of the NETD method for solving acoustic wave

equation. The method comprises three major steps: the

exponential time difference method, the transformation of

the wave equations, and the semi-implicit scheme.

2.1 Exponential time difference method

Consider the stiff system

du

dt
¼ Lu þ Nðu; tÞ; ð1Þ

where L is a higher-order linear term and N is a lower-order

nonlinear term.

In order to solve Eq. (1), we first multiply the equation

by an integrating factor

d

dt
expð�LtÞuð Þ ¼ expð�LtÞNðu; tÞ; ð2Þ

and then integrate Eq. (2) over a single temporal step of

length s,

unþ1 ¼ expðLsÞun þ expðLsÞ
Zs

0

expð�LsÞNðuðtn þ sÞ; tn þ sÞds: ð3Þ

Using the truncated Taylor series expansion of Nðu; tÞ at

tn to approximately calculate the integration in Eq. (3), we

can obtain a numerical solution of Eq. (1). For example, we

let Nðuðtn þ sÞ; tn þ sÞ � Nðun; tnÞ, thus the numerical

scheme can be written as

unþ1 ¼ expðLsÞun þ L�1 expðLsÞ � Ið ÞNðun; tnÞ: ð4Þ

On the other hand, Scheme (4) can be also obtained

from the idea of the Lie group method. We let

G ¼ GLðdÞ n Rd be the semi-direct product of the general

linear group and Rd. The Lie algebra of G is given as

g ¼ glðdÞ n Rd with the Lie bracket

ðA; aÞ; ð~A; ~aÞ
� �

¼ ½A; ~A�;A~a � ~Aa
� �

; ð5Þ

and exponential mapping

expðA; aÞ ¼ expðAÞ;A�1 expðAÞ � Ið Þa
� �

: ð6Þ

Now we can rewrite Eq. (1) in the form

du

dt
¼ ðL;Nðu; tÞÞ � u ¼ Fu;tðuÞ; ð7Þ

where ðA; aÞ � u ¼ Au þ a and where the algebra action is

given as
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kððA; aÞ; uÞ ¼ KðexpðA; aÞ; uÞ
¼ expðAÞu þ A�1 expðAÞ � Ið Þa: ð8Þ

Now Eq. (7) can be solved under the Lie group structure.

To solve the equation, the ‘‘frozen vector field’’ technique

is used here. Speaking in detail, let Fû;t̂ðuÞ be the frozen

vector field at the point ðû; t̂Þ,
Fû;t̂ðûÞ ¼ ðL;Nðû; t̂ÞÞ � u ¼ Lu þ Nðû; t̂Þ: ð9Þ

The flow of this vector field is

unþ1 ¼ kðsFû;t̂; unÞ ¼ KðexpðsFû;t̂Þ; unÞ
¼ expðLsÞun þ L�1 expðLsÞ � Ið ÞNðû; t̂Þ: ð10Þ

Let û ¼ un, t̂ ¼ tn, thus Eq. (10) can be converted to

Scheme (4).

2.2 Transformation of wave equations

The acoustic wave equation in a 2-D homogeneous iso-

tropic medium is written as

o2u

ot2
¼ c2

0Du; ð11Þ

where u and c0 are the displacement and the acoustic

velocity, respectively, and D ¼ o2

ox2
þ o2

oz2
is the Laplace

operator.

Let

w ¼ ou

ot
; U ¼ u;

ou

ox
;
ou

oz

� �T

; W ¼ w;
ow

ox
;
ow

oz

� �T

:

Equation (11) can be rewritten as

oU

ot
¼ W

oW

ot
¼ c2

0

o2U

ox2
þ o2U

oz2

� �
:

8>><
>>:

ð12Þ

We use the fourth-order NAD operator (see Appendix 1

for details) to approximate the high-order spatial deriva-

tives in Eq. (12). Then Eq. (12) can be transformed into an

ODE system as follows:

d

dt

U

W

 !

j;k

¼ 0 I
X 0

� �
U

W

 !

j;k

þNðU;WÞ: ð13Þ

The first part of the right side of Eq. (13) is a linear

combination of u, w and their gradient at the grid point

ðxj; zkÞ, and the second part is a linear combination of u, w

at its neighboring grid point. I is a 3 � 3 identity matrix

and X is a 3 � 3 matrix that depends on the spatial discrete

operator.

We let

Yj;k ¼ U;Wð ÞT
j;k; L ¼ 0 I

X 0

� �

and regard N as a nonlinear function of Yj;k. Therefore, Eq.

(13) can be rewritten as

dYj;k

dt
¼ LYj;k þ NðYj;kÞ: ð14Þ

Now Eq. (14) can be solved by the exponential time

difference method. For instance, we can write a numerical

scheme

Ynþ1
j;k ¼ expðLDtÞYn

j;k þ L�1 expðLDtÞ � Ið ÞNðYnÞ; ð15Þ

where Dt is the temporal step size.

2.3 Implicit scheme

In order to improve the stability of the NETD method, we

reform Scheme (15) into an implicit scheme. By replacing

Yn with 1
2
ðYnþ1 þ YnÞ, we can rewrite Scheme (15) as

I � 1

2
L�1 expðLDtÞ � Ið ÞN

� �
Ynþ1

¼ expðLDtÞ þ 1

2
L�1 expðLDtÞ � Ið ÞN

� �
Yn: ð16Þ

Let Y� ¼ I � 1
2

L�1 expðLDtÞ � Ið ÞN
� �

Ynþ1; such that

Eq. (16) can be rewritten as follows:

Y� ¼ expðLDtÞ þ 1

2
L�1 expðLDtÞ � Ið ÞN

� �
Yn

I � 1

2
L�1 expðLDtÞ � Ið ÞN

� �
Ynþ1 ¼ Y�:

8>>><
>>>:

ð17Þ

Now we can explicitly solve the system of linear

equations in Scheme (17). Let

1

2
L�1 expðLDtÞ � Ið ÞN ¼ B;

and use the truncated power series expansion

ðI � BÞ�1 � I þ B þ B2:

Thus, we can rewrite Scheme (17) explicitly as

Y� ¼ expðLDtÞ þ 1
2

L�1 expðLDtÞ � Ið ÞN
� �

Yn

Ynþ1 ¼ I þ B þ B2ð ÞY�:

�
ð18Þ

3 NETD method for elastic wave equations

In this section, we briefly introduce the NETD method for

solving elastic wave equations. In a 2-D anisotropic med-

ium, the elastic wave equation can be written as
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orij

oxj

þ fi ¼ q
o2ui

ot2
; ð19Þ

where qðx; zÞ is the density, ui and fi are the displacement

and the force component in the ith direction, respectively,

and rij is the stress tensor.

Using the stress–strain relation, we can transform Eq.

(19) into the following vector equation:

q
o2U

ot2
¼ DU þ f ; ð20Þ

where U ¼ u1; u2; u3ð ÞT
, f ¼ f1; f2; f3ð ÞT

, and D is the sec-

ond-order spatial partial differential operator.

Let W ¼ oU

ot
, then Eq. (20) can be rewritten as

oU

ot
¼ W

oW

ot
¼ 1

q
DU þ 1

q
f :

:

8>><
>>:

ð21Þ

Equation (21) can be solved by the NETD method as the

previous.

4 Stability criteria

It is important to keep the numerical calculation stable;

therefore, it is necessary to investigate the stability condi-

tion of the NETD method. Following the analysis process

presented by Yang et al. (2006), we perform a series of

mathematical derivations, and thereby obtain the stability

condition of the NETD method for solving acoustic wave

equations in 1-D and 2-D acoustic cases.

For 1-D homogeneous cases, the Courant number is

restricted by

a ¼ c0Dt=h� 0:4232: ð22Þ

We assume that the computational domain is subdivided

by uniform grids h ¼ Dx ¼ Dzð Þ, such that the stability

condition of the NETD method for solving 2-D acoustic

wave equations in homogenous media is given by

a ¼ c0Dt=h� 0:2583: ð23Þ

Note that the maximal Courant number of NETD for the

2-D case is relatively compact, which means the time step

maybe restricted to relatively small values in some cases.

As a result, the iterative steps in time advancing may be

increased.

It is usually difficult to determine the stability condition

for heterogeneous cases. However, it can be approximated

using a local homogeneous case. We assume that Eqs. (22)

and (23) are approximately correct for a heterogeneous

medium if the maximal wave velocity c0 is used.

5 Error analysis

5.1 Theoretical analysis

In this section, we first analyze the theoretical error of the

NETD method. Using the Taylor series expansion, we

conclude that the NETD method is fourth-order accurate

with respect to space. From the truncated Taylor series

expansion of Nðu; tÞ suggested by Krogstad (2005), we can

know that the truncation error of Scheme (3) is OðDt2Þ.

5.2 Numerical errors

To further investigate the numerical errors of the NETD

method, we consider the following initial 2-D problem:

o2u

ox2
þ o2u

oz2
¼ 1

c2
0

o2u

ot2

u x; z; 0ð Þ ¼ cos � 2pf0

c0

x cos h0 �
2pf0

c0

z sin h0

� �

ou x; z; 0ð Þ
ot

¼ �2pf0 sin � 2pf0

c0

x cos h0 �
2pf0

c0

z sin h0

� �

8>>>>>>><
>>>>>>>:

;

ð24Þ

where c0 is the velocity of the plane wave, h0 is the

incident angle at time t ¼ 0, and f0 is the frequency. The

exact solution of this initial problem is

u x; z; tð Þ ¼ cos 2pf0 t � x

c0

cos h0 �
z

c0

sin h0

� �	 

: ð25Þ

In the numerical experiment, we choose the computa-

tional domain as 0\x� 6 km; 0\z� 6 km, the frequency

is f0 ¼ 30 Hz, the wave velocity c0 = 4,000 m/s, and the

angle h0 ¼ p=4. The relative error ðErÞ for the 2-D case is

defined by

Erð%Þ ¼
(

1PN
i¼1

PN
j¼1 u xi; zj; tn

� �� �2
XN

i¼1

XN

j¼1

un
i;j � u xi; zj; tn

� �h i2

)1
2

:

ð26Þ

Figure 1 shows the computational results of the relative error

Er at different times under the condition of Dx ¼ Dz. The three

lines of Er corresponding to the SG method with the fourth-order

accuracy, the LWC method with the fourth-order accuracy, and

the NETD method, respectively, are shown in a semi-log scale

in Fig. 1. In Fig. 1a, we choose a spatial grid size of Dx ¼
Dz ¼ 40 m and the number of grid points as 151 � 151. The

spatial size, as shown in Fig. 1b, is Dx ¼ Dz ¼ 30 m, and the

number of grid points is 201 � 201. In the calculations, we fix

the same time grid size of Dt ¼ 5 � 10�4 s for both the
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numerical experiments. From the figures, it is evident that of the

three methods the NETD method has the smallest relative error

Er for the chosen computational parameters. Thus, it is

numerically evident that the NETD method is fourth-order

accurate with respect to space.

Next, we discuss the order of convergence for the NETD

method. We consider the 1-D initial problem:

o2u

ox2
¼ 1

c2
0

o2u

ot2

u x; 0ð Þ ¼ cos � 2pf0

c0

x

� �

ou x; 0ð Þ
ot

¼ �2pf0 sin � 2pf0

c0

x

� �
:

8>>>>>>><
>>>>>>>:

ð27Þ

The exact solution of the initial problem is

Table 1 Numerical errors and convergence orders of the NETD

method

h EL1 EL2 OL1 OL2

2.000E-01 2.379E-01 9.053E-02

1.000E-01 1.162E-02 6.201E-03 4.356 3.868

5.000E-02 8.981E-04 3.382E-04 3.694 4.197

3.333E-02 1.596E-04 5.983E-05 4.158 4.169

Fig. 1 The relative errors of the fourth-order LWC method, the fourth-order SG method, and the NETD method measured by Er (Formula (26))

are shown in a semi-log scale for the 2-D initial problem (24). The spatial increments are a Dx ¼ Dz ¼ 40 m and b Dx ¼ Dz ¼ 30 m,

respectively. The time step is 0.5 ms for both the figures

Fig. 2 The EL1 � h graph (a) and EL2 � h graph (b) in the log–log scale
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u x; tð Þ ¼ cos 2pf0 t � x

c0

� �	 

: ð28Þ

We choose the 1-D computational domain as

0\x� 10 km and fix the propagation time at T ¼ 0:5 s:

In this example, we choose a frequency of f0 ¼ 4 Hz, and a

wave velocity of c0 = 4,000 m/s. In Table 1, we show the

numerical errors of the variable u. For the fixed spatial grid size

h, the error of the numerical solution uh with respect to the exact

solution u measured in the discrete L1; L2 norms is given by

ELk ¼ h
XN

j¼1

uhðxj; TÞ � uðxj; TÞ
�� ��k

 !1
k

; k ¼ 1; 2: ð29Þ

From Table 1, if we choose two different spatial increments

hi; hi�1 and two errors Ei
Lk and Ei�1

Lk corresponding to Lk, the

orders of numerical convergence can be given as in Dumbser

et al. (2007):

OLk ¼ log
Ei

Lk

Ei�1
Lk

 !,
log

hi

hi�1

� �
; k ¼ 1; 2: ð30Þ

Table 1 shows the numerical errors and the convergence

orders. The first column shows the spatial increment h, and the

other four columns show L1 and L2 errors and the corresponding

convergence orders OL1 and OL2 . Figure 2a is the EL1 � h graph

in a log–log scale, whereas Fig. 2b is the EL2 � h graph in a log–

log scale. The errors EL1 and EL2 decrease as the spatial grid size

h decreases, and the graphs in Fig. 2 show two straight lines

each of which have an approximate slope of 4. Thus, we can

infer that the NETD method is convergent.

6 Numerical dispersion analysis

Following the dispersion analysis presented by Dablain

(1986) and Yang et al. (2006), we obtain the dispersion

relations of the NETD method for the 2-D acoustic wave

equations (presented in detail in Appendix 3). We define

the spatial sampling ratio first proposed by Moszo et al.

(2000) as Sp ¼ h=k;, in which k denotes the wavelength.

The dispersion ratio R is defined as R ¼ cnum=c0;, in

which cnum and c0 denote the numerical and true velocity,

respectively. Figures 3, 4, and 5 show the numerical dis-

persion surfaces for different Courant numbers of LWC,

SG, and NETD. In each method, the dispersion curves of

a fixed wave propagation direction gradually deviate from

R ¼ 1 as Sp increases. This means the number of grid

points in a wavelength decreasing results in a worse

approximation. However, we find that the deviation of the

entire dispersion surface for NETD is less than that of

Fig. 3 The ratio R of the numerical wave velocity to the phase velocity versus the sampling rate Sp for different propagation directions for the

LWC method. The Courant numbers are a a ¼ 0:1, b a ¼ 0:15, and c a ¼ 0:2, respectively
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Fig. 4 The ratio R of the numerical wave velocity to the phase velocity versus the sampling rate Sp for different propagation directions for the

SG method. The Courant numbers are a a ¼ 0:1, b a ¼ 0:15, and c a ¼ 0:2, respectively

Fig. 5 The ratio R of the numerical wave velocity to the phase velocity versus the sampling rate Sp for different propagation directions for the

NETD method. The Courant numbers are a a ¼ 0:1, b a ¼ 0:15, and c a ¼ 0:2, respectively

Earthq Sci (2014) 27(1):57–77 63

123



LWC and SG. This indicates that of the three methods

NETD is the most accurate. In addition, the numerical

dispersion for NETD, as compared with those for LWC

and SG, has less numerical dispersion anisotropy because

its dispersion curve for a fixed sampling rate Sp varies

much more slowly with the wave propagation angle h.

Table 2 shows the maximum and minimum dispersion

ratios Rmax and Rmin and the maximum dispersion errors

of LWC, SG, and NETD for three Courant numbers as

shown in Figs. 3, 4, and 5. From Table 2, it is evident that

the dispersion error of NETD is less than 10 % in all

directions. However, the maximum relative errors of

LWC and SG can be as high as about 25 % in some wave

propagation directions.

7 Comparison with analytic solutions

To investigate the validity of NETD, in the following

section, we compare the numerical solutions generated by

NETD with the results from analytic methods, the fourth-

order LWC, and the fourth-order SG in a homogeneous

medium model and in a two-layer model.

7.1 Homogeneous medium model

In this experiment, we compare the numerical solutions

computed by NETD with an analytic solution for the

acoustic wave equation in a homogeneous medium. Con-

sider Eq. (11) with an explosive source, in this case is a

Ricker wavelet with a frequency of f0 ¼ 20 Hz. The source

function is given by

f ðtÞ ¼ �5:76f 2
0 1 � 16 0:6f0t � 1ð Þ2
h i

exp �8 0:6f0t � 1ð Þ2
h i

:

ð31Þ
We choose the domain of 0� x� 10 km and 0� z� 10 km

with a velocity of c0 ¼ 4 km/s. The source is located at the

center of the computational domain, and the receiver is located

at (x = 6 km, z = 5 km). Figure 6a–c shows the waveforms

generated by NETD for various spatial and temporal grid

sizes and the analytic results at the receiver. In Fig. 6, the spatial

steps are chosen as (a) h ¼ Dx ¼ Dz ¼ 40 m, (b) h ¼ Dx

¼ Dz ¼ 40 m, and (c) h ¼ Dx ¼ Dz ¼ 20 m, respectively.

The temporal grid sizes are (a) Dt ¼ 0:001 s, (b)

Dt ¼ 5 � 10�4 s, and (c) Dt ¼ 2:5 � 10�4 s, respectively. In

Fig. 6a–c, the numerical results computed by the NETD

method are gradually identical to those generated by the

analytic method as the spatial and temporal grid sizes decrease,

indicating both the convergence and the validity of the NETD

method.

7.2 Two-layer model

In the second example, we compare the numerical solutions

computed using the NETD, the fourth-order LWC, and the

fourth-order SG with the analytic solution for the acoustic

wave equation in a two-layer model. We choose the

computational domain of 0� x� 20 km and 0� z� 20 km.

The velocity for the two-layer model is 2.4 km/s in the

upper layer and 4.8 km/s in the lower layer. The interface

is located at a depth of 8 km. The explosive source is a

Ricker wavelet with a frequency of 15 Hz. The source is

located at (x = 10 km, z = 7 km) and the receiver is

located at (x = 10 km, z = 6 km). We choose the spatial

increment as Dx ¼ Dz ¼ 40 m and the temporal increment

as Dt ¼ 0:001 s, which results in four sampling points in a

minimal wavelength. In this experiment, the analytical

solution is computed by the Cagniard–de Hoop method

(Aki and Richards 1980; Berg et al. 1993).

Figure 7a–c presents the comparisons of the waveforms

generated by the NETD, the fourth-order LWC, and the

fourth-order SG methods; and the analytic solution at the

receiver R. The solid lines represent the analytical solution

and the dashed lines the numerical solutions, respectively.

For the relatively coarse grid (four sampling points per

minimal wavelength), the fourth-order LWC and the

fourth-order SG suffer from serious numerical dispersions

(Fig. 7b, c). Compared with the waveforms of those other

methods, the results from NETD and from the analytic

method (Fig. 7a) match well. This demonstrates that

NETD can provide accurate numerical solutions when

coarse grids are used and when there are large velocity

contrasts across the interface.

Table 2 The minimum and maximum ratios of the numerical phase

velocity to the exact phase velocity for LWC, SG, and NETD for the

Courant number a ¼ 0:1; 0:15; 0:2

Method a

0.10 0.15 0.20

Rmax=h LWC 1:0000 ð0; 2pÞ 1:0000 ð0; 2pÞ 1:0000 ð0; 2pÞ
SG 1:0000 ð0; 2pÞ 1:0000 ð0; 2pÞ 1:0000 ð0; 2pÞ
NETD 1:0067 ð0; 2pÞ 1:0153 ð0; 2pÞ 1:0275 ð0; 2pÞ

Rmin=h LWC 0:7342; p=2 0:7332;p=2 0:7316;p=2

SG 0:7444; p=2 0:7466;p=2 0:7496;p=2

NETD 0:9003; p=2 0:9003;p=2 0:9003;p=2

Error

(%)

LWC 26.57 26.67 26.83

SG 25.56 25.34 25.04

NETD 9.97 9.97 9.97

The maximum relative error is given by Error ¼ R � 1j jmax�100 %
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Fig. 7 Comparisons of waveforms generated by numerical schemes

on the grids (Dx ¼ Dz ¼ 40 m) and the analytic method for the two-

layer acoustic model. The numerical waveforms are generated by

a the NETD method, b the fourth-order LWC method, and c the

fourth-order SG method, respectively

Fig. 6 Comparison of waveforms for the displacement generated by

the NETD and the analytic method for the acoustic wave equation in

the homogeneous medium. The spatial and temporal increments are a
h ¼ Dx ¼ Dz ¼ 40 m and Dt ¼ 0:001 s, b h ¼ Dx ¼ Dz ¼ 40 m and

Dt ¼ 5 � 10�4 s, and c h ¼ Dx ¼ Dz ¼ 20 m and Dt ¼ 2:5 � 10�4 s,

respectively
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Fig. 8 The waveforms generated by a the NETD method, b the

fourth-order LWC method, and c the fourth-order SG method for the

2-D homogeneous medium at receiver R1

Fig. 9 The waveforms generated by a the NETD method, b the

fourth-order LWC method, and c the fourth-order SG method for the

2-D homogeneous medium at receiver R2
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8 Numerical dispersion and efficiency

To investigate the validity of suppressing the numerical

dispersion and the computational efficiency of the NETD

method, we consider the acoustic wave equation in a

homogeneous medium with a velocity of c0 ¼ 4 km/s: In the

first example, we choose the computational domain of

0� x� 20 km and 0� z� 20 km and a uniform spatial grid

(h ¼ Dx ¼ Dz ¼ 50 m) is used. The source with a frequency

of f0 ¼ 20 Hz is located at the center of the computational

domain, whose time variation is given by Eq. (30). The

receivers R1 and R2 are located at (x = 12 km, z = 10 km)

and (x = 11 km, z = 11.73 km), respectively. In the

experiment, we compared the waveforms generated by the

NETD, the fourth-order LWC, and the fourth-order SG at

receiver R1 and R2.

Figure 8a–c shows the waveforms generated by the

NETD, the fourth-order LWC, and the fourth-order SG at

receiver R1, respectively, and Fig. 9a–c shows the wave-

forms generated by the NETD, the fourth-order LWC, and

the fourth-order SG at receiver R2, respectively. The fig-

ures do not show obvious numerical dispersion from the

waveforms generated by NETD at either receiver, whereas

the waveforms generated by the other two methods do

suggest numerical dispersion. This indicates that the NETD

effectively suppresses numerical dispersion as compared

with the other two methods, when coarse grids (four

sampling grid points per wavelength) are used. In addition,

the waveforms generated by NETD at receiver R1 are

identical to the waveforms at receiver R2, whereas both the

waveforms generated by the other two methods at receiver

R1 show more serious dispersion than waveforms at

receiver R2. This demonstrates that the NETD has less

numerical dispersion anisotropy than the other methods as

noted in Sect. 6.

In the second example, we compare the computational

efficiency and cost of NETD with those of LWC and SG. In

this experiment, the computational domain chosen is

0� x� 10 km and 0� z� 10 km: The source is still loca-

ted at the center of this domain and the other computational

parameters are the same as in the last example. Figure 10a–

c shows the wave field snapshots at T ¼ 1:0 s on the coarse

spatial grid condition (Dx ¼ Dz ¼ 50 m) of the NETD, the

fourth-order LWC, and the SG, respectively. Restricted by

the stability condition, the temporal grid size is chosen as

Dt ¼ 0:002 s. Figure 10a shows a clean result, whereas

Fig. 10b, c shows serious numerical dispersion. To avoid

numerical dispersion in the results from LWC and SG, we

use finer grids (h ¼ Dx ¼ Dz ¼ 20 m). Figure 11a, b shows

the wave field snapshots at T ¼ 1:0 s of LWC and SG on

the fine grids, in which the same Courant number in the

computation shown in Fig. 10a is used. By comparing

Figs. 10a and 11, we find that the NETD method on the

coarse grids can produce a result that is comparable with

those of LWC and SG on much finer girds. As a result, the

computational cost of generating a comparably accurate

result using NETD is much less than the costs associated

with the other two methods. In this example, NETD took

about 26 s to compute Fig. 10a, whereas LWC and SG

spend about 65 and 68 s on generating Fig. 11a and b,

respectively. This means that NETD is about 2.5 times

faster and 2.62 times faster than LWC and SG, respec-

tively. In addition, NETD requires less computational

storage. For example, NETD requires 18 arrays to store all

the computational information needed in the method and

the numbers for the grid points of each array are 201 � 201

on coarse grids. The fourth-order LWC and SG need only

three and five arrays, respectively. But to avoid numerical

dispersion, a finer grid is needed for both LWC and SG. As

a result, the numbers of the grid points of LWC and SG are

both 501 � 501 (10 spatial grid points per wavelength).

Therefore, NETD requires only 96.58 % of the storage

required by LWC and requires only 57.95 % of the storage

required by SG.

9 Numerical simulations

In this section, we use our proposed method to simulate the

seismic wave propagating in multilayer media with strong

velocity contrasts, a complex geological medium, and

heterogeneous media in order to further demonstrate the

validity of the NETD method.

9.1 Three-layer model

In the first example, we choose a three-layer model with a

computational domain of 0� x� 6 km and 0� z� 6 km as

shown in Fig. 12. The velocity is 3.0 km/s in the top layer,

2.0 km/s in the middle thin layer, and 4.0 km/s in the

bottom layer. There are strong velocity contrasts between

the adjacent layers. We locate the same explosive source

given by Eq. (30) with a frequency of f0 ¼ 25 Hz at the

center of the domain. The spatial and temporal increments

are chosen as Dx ¼ Dz ¼ 20 m (four sampling grid points

per minimum wavelength) and Dt ¼ 5 � 10�4 s,

respectively.

Figure 13 shows the wave field snapshots generated by

NETD at time T ¼ 0:3 s, T ¼ 0:5 s, T ¼ 0:8 s, and

T ¼ 1:0 s. There are no reflection waves in the snapshot at

time T ¼ 0:3 s, as the acoustic wave propagates in the

middle layer (an isotropic homogeneous medium). The

snapshots at T ¼ 0:5 s, T ¼ 0:8 s, and T ¼ 1:0 s show that

the reflected and transmitted waves propagate from the

upper and bottom interfaces. In short, the four snapshots in
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Fig. 10 Snapshots of acoustic wave field at T ¼ 1:0 s on the coarse grid (Dx ¼ Dz ¼ 50 m) generated by a the NETD method, b the fourth-order

LWC method, and c the fourth-order SG method, respectively

Fig. 11 Snapshots of acoustic wave field at T ¼ 1:0 s on the fine grid (Dx ¼ Dz ¼ 20 m), generated by a the fourth-order LWC method and

b the fourth-order SG method
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Fig. 13 clearly show the wave propagation phenomena

including reflection and transmission at the interfaces

without visible numerical dispersion. Figure 14 shows the

wave field snapshots generated by the fourth-order LWC at

time T ¼ 1:0 s for the same computational parameters as

those shown in Fig. 13. The snapshot in Fig. 14 shows

serious numerical dispersion. The comparison in this

experiment demonstrates that NETD can better deal with

the models with strong velocity between the adjacent layers

on coarse spatial grids than LWC.

9.2 Corner–edge model

In the second experiment, we consider a quite complex

model. The corner–edge model consisting of three domains

(I, II, and III) is shown in Fig. 15. The velocity is 2.0 km/s

in domain I, 3.0 km/s in domain II, and 4.0 km/s in

domain III, respectively. The size of the entire domain is

0� x� 12 km and 0� z� 12 km, and the same source as

Fig. 12 The three-layer model with a size of 0� x� 6 km,

0� z� 6 km and the two strong inner horizontal interfaces at a depth

of z ¼ 2:0 km and z ¼ 3:33 km. The source is located at the center of the

model. The respective velocity for each layer is 3.0, 2.0, and 4.0 km/s

Fig. 13 Snapshots of acoustic wave fields at time a 0.3 s, b 0.5 s, c 0.8 s, and d 1.0 s for the three-layer model generated by the NETD method
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the previous examples with a frequency of f0 ¼ 20 Hz

located at the center of the model is used. The chosen

spatial increment is Dx ¼ Dz ¼ 30 m and the chosen tem-

poral increment is Dt ¼ 7:5 � 10�4 s. Thus, there are five

sampling grid points per minimum wavelength.

Figure 16 shows the wave field snapshots generated

by the NETD at time T ¼ 0:5 s, T ¼ 1:0 s and T ¼ 1:5 s.

The snapshots show complex reflected and transmitted

waves from the horizontal inner interface and the ver-

tical inner interface without visible numerical disper-

sion. This demonstrates that the NETD can effectively

simulate wave propagation in a quite complex geologi-

cal case.

9.3 Marmousi model

In the following example, we choose the heterogeneous

Marmousi model (Versteeg and Grau 1991) shown in

Fig. 17. In the experiment, the number of grid pints is

384 � 122 and the spatial and temporal increments are

Dx ¼ Dz ¼ 24 m and Dt ¼ 4:36 � 10�4 s, respectively.

The source, which has a frequency of f0 ¼ 15Hz, is located

in the middle on the surface. The maximal acoustic

velocity of this model is 5.5 km/s, so there are four grid

points in a minimal wavelength.

Figure 18 shows the wave field snapshots at time

T ¼ 0:6 s, T ¼ 0:9 s, T ¼ 1:2 s, , and T ¼ 1:5 s: The per-

fectly matched layer absorbing boundary condition (Dimitri

and Jeroen 2003; Frank et al. 1996) is used in this experiment.

There is no visible numerical dispersion in the four wave

field snapshots. Figure 19 shows the synthetic seismogram on

the surface generated by the NETD. The seismogram is

recorded at time T ¼ 3:0 s by 122 receivers with a space

interval of 24 m apart on the surface. It is known that Mar-

mousi model is widely used as a performance measure for

various methods. The numerical results indicate that NETD

can effectively simulate wave propagation in an extremely

complex case.

9.4 SEG model

In the last example for the acoustic wave, we choose the

SEG model (Fig. 20) to test the performance of NETD. In

the experiment, the number of mesh points is 400 � 201,

and the chosen space and time step are Dx ¼ Dz ¼ 10 m

and Dt ¼ 2:0 � 10�4 s, respectively. We locate the same

explosive source as the previous experiments with a fre-

quency of f0 ¼ 30 Hz in the middle of the surface.

Figure 21 shows the wave field snapshots at time T ¼
0:3 s, T ¼ 0:5 s, T ¼ 0:8 s, T ¼ 1:0 s, and T ¼ 1:2 s: The

perfectly matched layer absorbing boundary condition is

used in this experiment. We can see that the five wave

field snapshots show no visible numerical dispersion. The

synthetic seismogram in Fig. 22 generated by the NETD

method is recorded at time T ¼ 1:6 s by 201 receivers on

the surface. We can see that Fig. 22 shows a clear

waveform and the different reflected waves from different

interior interfaces are evident. For example, R1, R2, R3,

and R4 are reflected waves from the nearly horizontal

interfaces D1, D2, D3, and D4, respectively. The

numerical results further indicate that the NETD can be

used to simulate the wave propagation in a complex

medium. In addition, the snapshots demonstrate that the

NETD method can be combined with the perfectly mat-

ched layer absorbing boundary condition successfully and

effectively.

Fig. 14 Snapshots of acoustic wave fields at 1.0 s for the three-layer

model generated by the LWC method

Fig. 15 The corner–edge velocity model
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9.5 Homogeneous elastic model

For the elastic case, first we consider the following elastic

wave equations in a 2D homogeneous TI medium:

q
o2u

ot2
¼ c11

o2u

ox2
þ c13 þ c44ð Þ o

2w

oxoz
þ c44

o2u

oz2
þ f1

q
o2w

ot2
¼ c44

o2w

ox2
þ c13 þ c44ð Þ o2u

oxoz
þ c33

o2w

oz2
þ f2

8>><
>>:

;

ð32Þ

where u and w are the displacement components in the

x- and z-directions, respectively. c11, c13, c33, and c44 are

the elastic constants; q is the medium density; and f1 and

f2 are the force source components in the x- and z-

directions.

In this example, the chosen computational parameters are

c11 ¼ 45, c13 ¼ 9:6, c33 ¼ 37:5, c44 ¼ 12 GPa , and q ¼ 1:0

g/cm3. The number of mesh points is 401 � 401, the spatial

grid increment is Dx ¼ Dz ¼ 30 m, and the time increment is

t ¼ 6:7 � 10�4 s. The source located at the center of the

computational domain is a Ricker wavelet same as the previous

experiments, which has a frequency of f0 ¼ 30 Hz:

Figure 23a, b shows the x- and z-component snapshots

at T ¼ 0:6 s generated by the NETD method, respectively.

The snapshots show clear wave field information of the

displacement without visible numerical dispersion. In

addition, we can see clearly the cusps and the anisotropy

of the velocity of the wave propagating from Fig. 23.

In short, the numerical results demonstrate that the

Fig. 16 Snapshots of acoustic wave fields at time a 0.5 s, b 1.0 s, and c 1.5 s for the corner–edge model generated by the NETD method

Fig. 17 The Marmousi model
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NETD method can simulate the elastic wave propagation

effectively.

9.6 Two-layer elastic model

In the last elastic example, we choose a two-layer model

with large velocity contrasts across the interface. The size

of the computational domain is 0� x� 4 km and

0� z� 4 km, and we locate the horizontal strong interface

at depth of 2.4 km. The Lame constants and densities of

the two-layer model are q1 ¼ 1:5 g/cm3, k1 ¼ 1:5 GPa,,

l1 ¼ 2:5 GPa in the top layer and q2 ¼ 2:0 g/cm3,

k2 ¼ 11:0 GPa, l2 ¼ 15:0 GPa in the bottom layer. These

computational parameters correspond to the P- and SV-

wave velocities of 1.63 and 1.29 km/s in the top layer, and

3.61 and 2.74 km/s in the bottom layer. The chosen spatial

increment is Dx ¼ Dz ¼ 15 m, and the chosen temporal

increment is t ¼ 5 � 10�4 s. The source, which has a

frequency of f0 ¼ 20 Hz, is a symmetric Ricker wavelet

located at (2 and 1.85 km). Figure 24a, b shows the x-

direction and z-direction snapshots at T ¼ 0:6 s, generated

by the NETD. The numerical results clearly show the

elastic wave propagation phenomena in the two-layer

model, which indicates that the NETD can also be used in

a multilayer medium with strong interfaces for elastic

wave cases.

10 Conclusions

In this paper, we proposed a new NETD method for solving

seismic wave equations and investigated in detail the prop-

erties of the NETD method, including its accuracy, stability,

numerical dispersion, and computational efficiency. Both

Fig. 18 Snapshots of acoustic wave fields at time a 0.6 s, b 0.9 s,

c 1.2 s, and d 1.5 s for the Marmousi model generated by the NETD

method

Fig. 19 The synthetic seismogram on the surface, generated by the

NETD method for the Marmousi model

Fig. 20 The SEG model
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theoretical analyses and numerical experiments show that

the NETD method has the fourth-order accuracy in space

and the second-order accuracy in time. The numerical

experiments also show that the NETD method can be widely

used in seismic modeling from acoustic/elastic homoge-

neous; multilayer and complex heterogeneous models such

as the Marmousi and SEG models.

The proposed method is based on the idea of the Lie

group method, and it belongs to the category of integration

method in that it preserves qualitative properties of the

ODEs, so the NETD provides more accurate results than

LWC and SG. For example, the relative error of NETD is

much smaller than those of LWC and SG methods. Fur-

thermore, because of the simultaneous use of wave dis-

placement, particle velocity, and their respective gradients

to reconstruct the wave displacement and velocity fields,

the method effectively suppresses the numerical dispersion

when coarse spatial grid is used and when there are strong

velocity contrasts across the interface in a complex med-

ium. As a result, the NETD has high computational effi-

ciency and low memory requirement as compared with

LWC and SG. However, the stability criterion of the

NETD method is relatively compact. It needs to be further

improved in the future.

bFig. 21 Snapshots of acoustic wave fields at time a 0.3 s, b 0.5 s,

c 0.8 s, d 1.0 s, and e 1.2 s for the SEG model generated by the

NETD method

Fig. 22 The synthetic seismogram on the surface generated by the

NETD method for the SEG model
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Appendix 1: Approximations of high-order spatial

derivatives

To compute the high-order spatial derivatives in the wave

equations (12) and (21), we follow Tong et al. (2011) and

Yang et al. (2006, 2007) and obtain the approximation

formulae. For convenience, we list the formulae used in the

NETD method as follows:
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� �n

i;j

¼ 2

Dx2
un

iþ1;j � 2un
i;j þ un

i�1;j

� 


� 1

2Dx

ou

ox

� �n

iþ1;j

� ou

ox

� �n

i�1;j

 !
; ð33Þ

o2u

oz2

� �n

i;j

¼ 2

Dz2
un

i;jþ1 � 2un
i;j þ un

i;j�1

� 


� 1

2Dz

ou

oz

� �n

i;jþ1

� ou

oz

� �n

i;j�1

 !
; ð34Þ

Fig. 23 Snapshots of the elastic wave field in the 2-D homogeneous TI medium at time 0.6 s generated by the NETD method: a the x-direction

component and b the z-direction component

Fig. 24 Snapshots of the x-direction and the z-direction components for the two-layer elastic model at time 0.6 s generated by the NETD method
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where u denotes the displacement.

Appendix 2: Stability condition of NETD

We use the Fourier method to obtain the stability condition

of the NETD method. We consider the scalar wave equa-

tion in homogeneous media for 1-D and 2-D cases.

Substituting the harmonic solution 1-D case

�Vn
j ¼

un

un
x

wn

wn
x

0
BB@

1
CCA exp i �kjhð Þð Þ; ð40Þ

2-D case

�Vn
j;k ¼

un

un
x

un
z

wn

wn
x

wn
z

0
BBBBBB@

1
CCCCCCA

exp i�kh j cos h þ k sin hð Þð Þ; ð41Þ

into the NETD method, we can obtain the following

equation:

�Vnþ1 ¼ G �Vn; ð42Þ

where w ¼ ou

ot
and the amplification matrix G is in the form

G ¼ I � 1

2

K�2 I � cos Kað Þð ÞM 0

K�2 sin Kað ÞM 0

 ! !�1

cos Kað Þ K�1 sin Kað Þ
�K sin Kað Þ cos Kað Þ

 ! 

þ 1

2

K�2 I � cos Kað Þð ÞM 0

K�2 sin Kað ÞM 0
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the 1-D case:

K ¼
2 0

0 2
ffiffiffi
3

p
� �

;
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4 c2

h2 cos ðkhÞ �i c2

h
sin ðkhÞ

15ic2

h3 sin ðkhÞ � 3c2

h2 cos ðkhÞ
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;

and the 2-D case:
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K ¼
2
ffiffiffi
2

p
0 0

0 2
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3

p
0

0 0 2
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3

p
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CA;

M ¼
m11 m12 m13

m21 m22 m23

m31 m32 m33

0
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1
CA;

m11 ¼ 4c2

h2
cos �kh cos hð Þ þ cos �kh sin hð Þð Þ;

m12 ¼ �ic2

h
sin �kh cos hð Þ;

m13 ¼ �ic2

h
sin �kh sin hð Þ;

m21 ¼ 5ic2

h3
2 sin �kh cos hð Þ þ sin �kh cos hð Þ cos �kh sin hð Þð Þ;

m22 ¼ � c2

h2
2 cos �kh cos hð Þ þ cos �kh cos hð Þ cos �kh sin hð Þð Þ;

m23 ¼ c2

h2
sin �kh cos hð Þ sin �kh sin hð Þ;

m31 ¼ 5ic2

h3
2 sin �kh sin hð Þ þ sin �kh sin hð Þ cos �kh cos hð Þð Þ;

m33 ¼ � c2

h2
2 cos �kh sin hð Þ þ cos �kh sin hð Þ cos �kh cos hð Þð Þ;

where �k is the wavenumber, h ¼ Dx ¼ Dz is the spatial

increment, and a is the Courant number defined by a ¼ cDt
h
:

Because of the complexity of the matrix G, it is difficult

to analytically determine the stability condition of the

method. In this paper we numerically obtain the stability

condition for the 1-D and 2-D cases by solving the

Eigenvalue problem k Gð Þj j � 1: The 1-D case

a� amax � 0:4232; ð43Þ

and the 2-D case

a� amax � 0:2583; ð44Þ

where amax denotes the maximum courant number.

Appendix 3: Derivation of 2-D dispersion relations

To derive the numerical dispersion of the NETD scheme for

the 2-D case, we consider the following harmonic solution

�Vn
j;k ¼

u
ux

uz
w
wx

wz

0
BBBBB@

1
CCCCCA

exp i nxnumDt þ �kh j cos h þ k sin hð Þð Þð Þ:

ð45Þ

By substituting the solution into the scheme, we can

obtain the numerical dispersion relation as follows:

det eicI � G
� �

¼ 0; ð46Þ

where c ¼ xnumDt, G is the same matrix as in Appendix 2,

and I is an identity matrix. From the dispersion relation

(46), we can obtain the ratio of the numerical velocity to

the exact velocity c0 as follows:

R ¼ cnum

c0

¼ c
2paSp

; ð47Þ

where a is the Courant number and Sp is the spatial sam-

pling rate defined by Moszo et al. (2000).
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