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Abstract
A formal description of quaternions by means of exterior calculus is presented. Con-
sidering a three-dimensional space-time characterized by three time-like coordinates,
we have been able to consistently recover a suitable formulation of quaternions by
means of the properties arising from exterior algebra and calculus. As an application,
it is also illustrated how rotationsmay bewritten in terms of quaternions, in accordance
with definition provided in exterior algebra.
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1 Introduction

Space-time exterior calculus serves as a valuable instrument that allows one to
develop theories in mathematical physics involving general-graded multivectors in
a framework of arbitrary time and space dimensions [1]. A generalized theory of elec-
tromagnetism, for instance, has been formulated through the properties of exterior
calculus in [2]. The introduction of exterior-algebraic variational methods permits one
to find the dynamical equations of a system as the Euler–Lagrange equations [3] and
to discover the conserved quantities such as the equivalent stress-energy-momentum
tensor and the angularmomentum. In particular, for a suitably-definedLagrangian den-
sity depending onmultivector fields, it is possible to find a manifestly-symmetric form
for the stress-energy-momentum tensor [4, 5], imposing the invariance of the action
to infinitesimal space-time translations, while the invariance with respect to rotations
allows one to recover the conservation law for the equivalent angular momentum [6].

In this paper, we are going to define a suitable basis for quaternions in the context of
exterior algebra, by considering a space-time characterized by three time dimensions.
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Quaternions are mathematical objects first described in 1843 by W. R. Hamilton [7],
who devised them and their operations to deal with three-dimensional problems in
mechanics. Later on, Clifford assimilated quaternions in geometric algebra, nowa-
days known as Clifford algebra [8]. Indeed, quaternions include vector calculus in
three dimensions and its characteristic operations of scalar and vector product and,
historically, the algebraic description of quaternions might be considered as the ori-
gin of non-commutative algebra [9]. Hamilton real quaternions, in particular, are the
result of researching a way to extend the complex number to a higher-dimensional sys-
tem [10]. Algebraically, quaternions are an example of a non-commutative division
ring. Specifically, they satisfy the properties of a ring, as they form a closed set under
addition and multiplication, as both addition and multiplication are associative and
distributive, and admit an identity element. However, they do not satisfy the property
of commutativity for multiplication, and for this reason quaternions identify a division
ring but not a field.

In this work, we provide the definition and characterization of quaternions bymeans
of the formalism of exterior calculus, presenting how the main operations appear
in terms of the tools implemented in exterior algebra. A different approach would
consider Clifford algebra from the point of view of differential forms, in order to
describe quaternions and the related quantities [11]. However, for the purposes of this
article, we are not explicitly adopting this latter approach, since a match is possible
between differential forms and exterior calculus [2, 3].

Hereinafter, in Sect. 2 we briefly review the main concepts of the general (k, n)-
dimensional construction of exterior algebra, suggesting some references for readers
interested to deepen the topic. For the scope of this article, we will then limit our
dimensions to three time-like coordinates. Section 3 is the core of the article where
quaternions in exterior algebra are introduced and described. In particular, in Sect. 3.1
we present the setup of the problem in the (3, 0) space-time and in Sect. 3.2 we
provide some necessary tools from exterior calculus which play a key role for the
rest of the theory. We deduce the exterior-algebraic formulation of quaternions in
Sect. 3.3 and, subsequently, we introduce the application to rotations of the exterior-
algebraic quaternions in Sect. 4. Ultimately, we conclude the article with some final
considerations in Sect. 5.

2 Basics in exterior calculus

In its most general formulation, exterior calculus takes into consideration a flat space-
time Rk+n with k temporal dimensions and n spatial dimensions, called (k, n) space-
time. In thismathematical framework,wewrite the canonical basis {ei }k+n−1

i=0 , referring
to indices from 0 to k − 1 as the time coordinates and to the following n indices as the
space coordinates.

Next, we proceed to introduce the fundamental elements of exterior algebra that are
necessary for the purposes of this article, while readers seeking a more comprehensive
understanding may find further exploration of the subject in [1].
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2.1 Exterior product, multivectors andmain properties

A natural extension of the canonical vector basis can be done by means of the exterior
(or wedge) product ∧ [12, p. 2], and we define a grade-r multivector basis in a (k, n)

space-time, where r ≤ k + n, as in [1, Eq. (5)],

eI = ei1 ∧ ei2 ∧ · · · ∧ eir , (1)

where I = (i1, . . . , ir ) conventionally corresponds to the list of the ordered non-
repeated indices i1, . . . , ir . Using the basis and the notation adopted in (1), we define
a multivector or grade r as

a(x) =
∑

I∈Ir
aI (x)eI , (2)

where Ir is the set of all ordered lists I with non-repeated r indices, for r =
0, 1, . . . , k + n − 2, k + n − 1. Henceforth, we refer to the grade of the multivector
field also as gr(a) = r and the length of the list I is denoted as |I |.

Let us nowbriefly summarize themain operations and properties amongmultivector
fields, defined according to (2). First, the dot product · between two arbitrary grade-r
multivector basis eI and eJ is defined as

eI · eJ = �I J = �i1 j1�i2 j2 . . . �ir jr , (3)

where I and J are the ordered lists of r indices, I = (i1, i2, . . . , ir ) and J =
( j1, j2, . . . , jr ), and �I J is the generalized metric tensor, where �i j = 0 if i �= j ,
�i i = −1 for i = 0, . . . , k − 1 and �i i = +1, for i = k, . . . , k + n − 1.

We have introduced the exterior product between vector basis in (1) and we now
define the same operation between two multivector basis eI and eJ , having grades
respectively r = |I | and r ′ = |J |, namely

eI ∧ eJ = σ(I , J )eI+J , (4)

where σ(I , J ) is the signature of the permutation sorting the elements of this concate-
nated list of |I | + |J | indices, and I + J represents the resulting sorted list.

We then proceed to describe two generalizations of the dot product, namely the left
and right interior products. Let us consider two basis multivectors eI and eJ , such that
I is a subset of J , thus |I | ≤ |J | and I ⊆ J . Then the left interior product, denoted as
, is defined as

eI eJ = �I Iσ(J \ I , I )eJ\I , (5)

and the right interior product, denoted as , is defined as

eJ eI = �I Iσ(I , J \ I )eJ\I , (6)
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where the vector eJ\I has grade |J | − |I | and it is composed by the elements of J
not in common with I . Left and right interior products are connected to each other by
means of the relation [1]

eI eJ = eJ eI (−1)|I |(|J |−|I |), (7)

and both these operations coincide with the dot product in (3) in the case that the two
lists have the same grade |I | = |J |, namely

eI eJ = eI eJ = eI · eJ , |I | = |J |. (8)

Furthermore, for a grade-r multivector basis eI , we may denote what we call as the
Grassmann or Hodge complement [13] and we write it [1, Sect. 2.1]

eHI = �I ,Iσ(I , I c)eI c , (9)

where I c is the complement list composed of all the labels but the elements of I and
identifying the grade-(k + n − r) dual multivector. Similarly, we express the inverse
Hodge transformation as

eH
−1

I = �I c,I cσ(I c, I )eI c . (10)

3 Quaternions in exterior algebra

3.1 Setup of the problem

Let us consider a space-time composed of three time-like coordinates. Conventionally,
we name these coordinates ei, ej and ek and, as a consequence, the generalized metric
tensor admits non-vanishing terms �ii = �jj = �kk = −1. In this framework,
from (9) and (10) we can easily recover the following expressions for the Hodge and
inverse Hodge dual of vectors, respectively

eHi = −σ(i, jk)ejk (11)

eH
−1

i = σ(jk, i)ejk, (12)

and the same relations for bivectors, specifically

eHij = σ(ij, k)ek (13)

eH
−1

ij = −σ(k, ij)ek, (14)

pointing out that eH
−1

i = −eHi and eH
−1

ij = −eHij , due to the nature of the (3, 0)-
dimensional space-time.

We then define entities denoted as Q, constructed from four real numbers, a, b,
c and d. One of them, generally a, is multiplied by a scalar basis, which might be
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specifically written as e∅ but it is omitted without any confusion. The three remaining
numbers b, c and d, are instead multiplied by the three basis elements of our (3, 0)
space-time. Hence, we write Q as

Q = a + bei + cej + dek, (15)

and, hereinafter, we will name the full set of objects characterized in (15) with the
symbol Q and we may simply refer by the element Q as Q ∈ Q.

3.2 Exterior product and its variants

Exterior product, also known as wedge product, may increase the degree of the oper-
ation we are computing [1], as we have noticed in (1) and (4).

Property 3.1 We assume that the basis elements we are taking into consideration do
not exceed grade one. Thus, in case we find bivectors, we write them by means of
their Hodge complement, using (14). In this way, objects as outlined in (15) define a
closed group, since the basic operation of exterior product among elements like (15)
generate objects with the same structure, as will be further explored in the subsequent
sections of this paper. Bivectors appear as

epq = ep∧veceq = σ(pq, r)er , (16)

where p, q, r = i, j, k assume the values of the three time-like coordinates of our
space-time. In these specific cases, we are using the symbol ∧vec, in order to identify
this particular operation and to avoid confusion. ¶

Property 3.1 has the effect of identifying the two-dimensional surface described
by a bivector by means of its orientation in the three dimensional space that we
are considering. In fact, in our (3, 0) space-time as in R

3, there is an equivalence
between the operations of wedge product and cross product [14], which we identify
with the symbol ∧vec in order to avoid confusion. Thus, the product ∧vec has the role
of “vectorizing” the bivector and, in other words, we identify the wedge product ∧vec
with the standard cross product × between two vectors in R

3.
To conclude this section, we introduce a generalized product among elements of

Q, represented as ∧Q. Given two objects Q1,Q2 ∈ Q, we define

Q1∧QQ2 = Q1 · Q2 + Q1∧vecQ2, (17)

where the first term on the right-hand-side is the dot product producing the scalar part
of the result, while the second term on the right-hand-side determines the vector part
by means of the product defined in (16).

3.3 Definition of time-like quaternions

Under the conditions that we have introduced in the previous section, we can iden-
tify Q ∈ Q in (15) as the exterior-algebraic representation for the quaternions in
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Clifford algebra [15, Sect. 1.1]. The configuration presented in 2.1 can already be
connected with the setup described in [16, Sect. 1], where the negative (resp. positive)
signature is related to time-like (resp. space-like) coordinates. Thus, we find a time-
like representation of quaternions in exterior calculus, which is also equivalent to the
Clifford-algebraic time-like representation in Minkowski 3-space [17, 18].

In the first instance, employing the product defined at (17), we can easily deduce
the property

ei∧Qei = ej∧Qej = ek∧Qek = ei∧Qej∧Qek = −1, (18)

having its correspondence in the classical definition of the algebra of quaternions [19].
Furthermore, we can also prove the equivalence of the Hamilton product between

two elements, which for us is simply identified with the wedge product between
two objects. Let us consider two objects P,Q ∈ Q, satisfying the properties above
mentioned, defined respectively

P = p0 + p1ei + p2ej + p3ek, (19)

Q = q0 + q1ei + q2ej + q3ek. (20)

The Q-product between them is

P∧QQ = α + βei + γ ej + δek, (21)

where α = (p0q0 − p1q1 − p2q2 − p3q3), β = (p0q1 + q0 p1 + p2q3 − p3q2),
γ = (p0q2 +q0 p2 +q1 p3− p1q3) and δ = (p0q3+q0 p3+ p1q2 −q1 p2), recovering
the standard expression known in literature as Hamilton product [20, Sect. 5.4]. We
may also write the quaternions in (19) and (20) separating explicitly the scalar from
the vectorial part, namely

P = p0 + p, (22)

Q = q0 + q, (23)

where p = (p1, p2, p3) and q = (q1, q2, q3) are three-component vectors in terms of
the time-like basis triplet {ei, ej, ek}. The Hamilton product in (21) is then expressed
in terms of (22) and (23) as

P∧QQ = p0q0 + p · q + q0p + p0q + p∧vecq, (24)

or, recalling that the vectors p and q have a three-dimensional time-like vector basis,
we write in an explicit way the scalar product as

P∧QQ = p0q0 − p1q1 − p2q2 − p3q3 + q0p + p0q + p × q, (25)

where we have expressed the vector wedge product∧vec as the standard cross product,
without any confusion.
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As for the classical definition of the quaternions, wemight also define the conjugate
of an object Q ∈ Q, represented by Q∗, namely

Q∗ = a − bei − cej − dek, (26)

and identified by the opposite sign in the vector elements.

Proposition 1 For P,Q ∈ Q, it holds that

(P∧QQ)∗ = Q∗∧QP∗, (27)

where the generalized product ∧Q is defined in (17) and the conjugate changes the
sign of the time-vector elements according to (26).

Proof In order to prove the relation in (27), we consider P and Q as written in (22)
and (23), respectively. On the left hand side of (27) we recognize the conjugate of the
expression in (24), namely

(P∧QQ)∗ = p0q0 + p · q − q0p − p0q − p × q, (28)

by simply changing the sign of the vector terms. On the right hand side, we have
instead to evaluate

Q∗∧QP∗ = (q0 − q)∧Q(p0 − p), (29)

which results, after a few computations,

Q∗∧QP∗ = p0q0 + p · q − q0p − p0q − q × p. (30)

Since in the last term holds that −q × p = p × q, then Proposition 1 is proved. 
�
We are also able to write the squared norm of Q in accordance with the standard

definition

|Q|2 = Q∧QQ∗ = q20 + q21 + q22 + q23 , (31)

and we tipically refer to unit quaternions in the case when the norm is unitary. In
addition, we can evaluate the norm of the generalized product in (17), which reads

|P∧QQ|2 = |P|2|Q|2. (32)

Proof It is possible to demonstrate this latter expression in a few steps. First, we may
apply the definition of the squared norm as in (31) and we get

|P∧QQ|2 = (P∧QQ)∧Q(P∧QQ)∗. (33)
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Subsequently, using (27), we are able to write

|P∧QQ|2 = P∧QQ∧QQ∗∧QP∗ = P∧QP∗|Q|2 = |P|2|Q|2, (34)

likewise (32), employing again the definition of the norm in (31). 
�
We investigate the inverse of a quaternionQ ∈ Q, which we are going to nameQ−1

adopting the common notation, satisfying the relations

Q−1∧QQ = 1 = Q∧QQ−1, (35)

where 1 is the identity operator. Taking into account the equality on the left of (35),
we multiply both terms on the right for the factor ∧QQ∗ and we get

Q−1∧QQ∧QQ∗ = Q∗. (36)

Recognizing the norm |Q|2 = Q∧QQ∗, it is then easy to derive

Q−1 = Q∗

|Q|2 . (37)

We could have found the same result by considering the identity on the right of (35)
and multiplying for the factor Q∗∧Q on the left, since Q∧QQ∗ = Q∗∧QQ.

Remark 1 Note that in the case of unit quaternion, namely |Q|2 = 1, we have that
Q−1 = Q∗, in analogy with rotation matrices.

4 Quaternions and rotations

One of the most important application concerning quaternions is surely dealing with
rotations. In fact, it is particularly remarkable to use quaternions for three-dimensional
rotations in order to reduce memory consumption and compute matrices faster, e.g. in
computer graphics [21, Sect. 11-2].

In order to represent vector rotations with quaternions, we first need a unit quater-
nion, which can be written in the form [22, Chap. X]

Q = cosϕ + sin ϕ e, (38)

where the vector part could bemade explicit as e = q1ei + q2ej + q3ek√
q21 + q22 + q23

. Second, given

two vectors a = (a1, a2, a3) and b = (b1, b2, b3), we notice that they can be expressed
as pure quaternions, which are a particular kind of quaternion with vanishing scalar
term, defined by A = 0 + a and B = 0 + b. Then, the unit quaternion in (38) can be
written as a quotient of these two latter pure quaternions, namely

cosϕ + sin ϕ e = B∧QA−1, (39)
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where the inverse of A is defined, in accordance with (37), as

A−1 = − a
|a|2 . (40)

To employ the expressionB∧QA−1 in (39), it is necessary to satisfy a few requirements
on the two vectors a and b: they should have the same length |a| = |b| and ϕ should be
the angle between them. Furthermore, vectors a and b have both to be perpendicular
to e so that the three {a, b, e} identify a right-handed set. Once satisfying the required
premises, it is easy to verify that the right hand side of (39) becomes

B∧QA−1 = 1

|a|2 (−a · b + a × b) , (41)

or, alternatively,

B∧QA−1 = 1

|a|2 (a1b1 + a2b2 + a3b3 + a × b) . (42)

An additional intuitive explanation to (39)might also be deduced from (41). The scalar
part −a · b is indeed cosϕ, due to the condition |a| = |b| and to the definition of the
angle ϕ. Moreover, since e is perpendicular to both a and b, it is then straightforward
to prove that a × b = sin ϕ e.

We can simply motivate the analogy with rotations and, as a consequence, a geo-
metrical interpretation, by multiplying, in generalized sense ∧Q, both sides of (39) by
the quantity A and taking advantage of (35), so that we obtain the relation

B = Q∧QA, (43)

and substituting the expression for the quaternion in (38), we get

Q∧QA = a cosϕ + e × a sin ϕ. (44)

Looking at (44), we recognize the equivalent expression for a rotation by the angle ϕ of
a with respect to e. In this specific case, the rotation is confined to a two-dimensional
plane which is perpendicular to e [23].

In general, a rotation through an angle ϕ about a unit vector u = (u1, u2, u3),
expressed in the three-dimensional time-like basis, is written by means of the unit
quaternion [22, Chap. X]

Q = cos
ϕ

2
+ u sin

ϕ

2
. (45)

Then, we consider a pure quaternion R = 0 + r, generated by the vector r, and we
write its transformation as

R′ = Q∧QR∧QQ−1, (46)
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withR′ = 0+r′ and r′ corresponding to the rotated three-dimensional vector. To clarify
this latter concept, let us investigate an example. We consider (45) where u = ei and
r = ej. As a consequence, (46) may be written as follows

r′ =
(
cos

ϕ

2
+ ei sin

ϕ

2

)
∧Qej∧Q

(
cos

ϕ

2
− ei sin

ϕ

2

)
, (47)

which can be simplified, after a few computations,

r′ =
(
cos

ϕ

2
+ ei sin

ϕ

2

)
∧Q

(
ej cos

ϕ

2
+ ek sin

ϕ

2

)
(48)

= ej
(
cos2

ϕ

2
− sin2

ϕ

2

)
+ 2 ek sin

ϕ

2
cos

ϕ

2
(49)

= ej cosϕ + ek sin ϕ. (50)

Focus our attention on the final expression in (50), resulting

r′ = e′
j = ej cosϕ + ek sin ϕ, (51)

it is remarkable that it corresponds to the vector obtained by rotating, in positive sense,
ej about ei through an angle ϕ.

5 Conclusions

In this paper, we have provided a description of quaternions from the perspective of
exterior algebra. We have seen how the exterior product may be adapted in the three-
dimensional time-like reference frame, in order to determine a natural characterization
of some mathematical objects, which are perfectly compatible with the standard defi-
nition of quaternions. We have also discussed the application to rotations, in its more
basic representation of rotation matrices. Beyond the purposes of this work but con-
cerning rotational problems, some interesting insight could be found considering the
Lagrangian approach and the conservation of angular momentum, as in [6]. Work-
ing on this topic, an interesting approach from the algebraic point of view, could be
inspired by [15, Ch. 6], describing the expressions found for angular momentum and
spin in exterior calculus in view of the results obtained.

Another possible extension of the quaternionic multiplications might be done in
regards of generalized Maxwell equations in exterior algebra, which have been found
following two different approaches in [2] and [3]. Considering the results of this article,
multivectorial electromagnetism in exterior calculus could be extended as shown by E.
Kähler in [24].Moreover, inspired byN. Salingaros [25], other interesting observations
might arise, as a formal equivalence between r -vectors and p-forms, following the
steps as described in [26] and computing the suitable operations.

Furthermore, future perspectives can surely deal with other applications of quater-
nions, whose investigation touches different and varied topics and appears in a large
variety of physical problems.
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