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Abstract
Wecontinue our previous study on the sub-shock formation in a binarymixture of gases
(Ruggeri in Phys. Fluids 34: 066116, 2022) by considering the dissipation due to the
bulk viscosity in both constituents. We use the model of a mixture of gases proposed
by T. Arima, T. Ruggeri, M. Sugiyama, and S. Taniguchi (Arima in Rend. Lincei
Mat. Appl. 28: 495, 2017). For prescribed values of the mass ratio of the constituents
and the degrees of freedom of molecules, we classify the regions depending on the
concentration and theMach number forwhich the sub-shockmay exist inside the shock
profile of one or both constituents or not. Furthermore, we perform for some mixtures
of gas numerical calculations of the profile, showing the role of the dissipation with
respect to the Eulerian gases. As we expect, the shock profile is more regularized,
and in the case that it exists sub-shocks, the amplitude of the sub-shock is reduced
compared to those of non-dissipative gases.

Keywords Shock structure · Polyatomic gases · Dynamic pressure · Sub-shock
formation · Bulk viscosity

Mathematics Subject Classification 35L67 · 76L05 · 76N30 · 35L02
1 Introduction

In a recent paper [1], we considered a binary mixture of gases in which the single
constituents are non-dissipative gases (Eulerian gases) and we have studied the shock-
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structure profile. In particular, we have classified all possible regions of concentration
and Mach number for which we can have sub-shocks formation. This paper aims to
obtain results in a more realistic case where single constituents have dissipation. More
specifically, we consider polyatomic gases in which the bulk viscosity is dominant,
and we can neglect the shear viscosity and heat conductivity. For this kind of mixture,
we use the simple model in the framework of Rational Extended Thermodynamics
(RET) proposed by Arima, Ruggeri, Sugiyama, and Taniguchi [2] (see also [3]).

The main aim of this paper is to give a study to evaluate dissipation’s effects
by comparing the profile of shock waves and sub-shocks with the ones obtained in
a mixture of Eulerian fluids for some possible kinds of mixtures and some Mach
numbers.

2 Model of a binarymixture of RET6 gases

In [4–6], a hyperbolic model for a single fluid with 6 fields (RET6) was proposed
in the framework of RET, considering only the dynamical pressure as a dissipative
mechanism and the shear viscosity and the heat conductivity are neglected. This sim-
plified theory preserves the main physical properties of the more complex theory of
14 variables [7], in particular when the bulk viscosity plays a more important role
than the shear viscosity and the heat conductivity. This situation is observed in many
gases. In fact, the usefulness of the RET6 theory is shown through the analysis of the
ultrasonic sounds in a hydrogen gas [8] and the shock structure in a carbon dioxide
gas [9, 10] (see the book [11] for more details).

Starting from this model, in the paper [2], a model for a mixture in which each
component is this kind of gas was proposed. In the case of a binary mixture and
one-space dimension reads:1

∂ρ1

∂t
+ ∂ρ1v1

∂x
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∂ρ1v1
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+ ∂
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1 In [2] the production terms ê1 and ω̂1 differ from the present one by a factor 2. The present choice is
better to compare with previous results in the case of Eulerian gases.
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where the quantities with suffix α (= 1, 2) represent the corresponding quantities
for the constituent α: ρα , vα , pα , εα , and �α are, respectively, the mass density, the
velocity, the pressure, the specific internal energy, and the dynamical non-equilibrium
pressure. On the right-hand side, τα is the relaxation time for the dynamic pressure
and the production terms, m̂α , êα , and ω̂α represent the production terms evaluated for
zero velocity due to the interchange of the momentum, the energy, and the momentum
flux, respectively with the condition: m̂2 = −m̂1, ê2 = −ê1, ω̂2 = −ω̂1 in such way
for the the whole mixture is conserved mass, momentum and energy.

We consider a mixture of rarefied polyatomic gases described by the following
thermal and caloric equations of state:

pα = ρα

kB

mα

Tα, εα = Dα

2

kB

mα

Tα, (2)

where Tα , kB , mα , and Dα are, respectively, the temperature, the Boltzmann constant,
the mass of a molecule, and the degrees of freedom of a molecule. In the present
analysis, we consider polytropic gases in which the specific heat is independent of the
temperature, and therefore the degrees of freedom of a molecule Dα is a constant. We
recall that the ratio of the specific heats γα is related to Dα by the relation:

γα = Dα + 2

Dα

.

The production terms are determined by the entropy principle in [2] and are given:

m̂1 = ψ11�̂1, ê1 = 2(θ11η̂1 + κ11ζ̂1), ω̂1 = 2(κ11η̂1 + φ11ζ̂1)

with
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2T1
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2T2
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1 − �2

p2
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,

ζ̂1 = − 1

2T1

D1

(D1 − 3)

�1

p1
+ 1

2T2

D2

(D2 − 3)

�2

p2
,

where ψ11 > 0 and the matrix

(
θ11 κ11
κ11 φ11

)
is positive definite.

Here, uα = vα − v is the diffusion velocity, where v is the mixture velocity v =
1
ρ

∑2
α=1 ραvα and ρ is the total mass density ρ = ∑2

α=1 ρα .
By taking sum of (1), we have the following equivalent system

∂ρ

∂t
+ ∂ρv

∂x
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= 2(ê1 + m̂1v),

∂

∂t

{
ρ1(v1)

2 + 3(p1 + �1)
}

+ ∂

∂x

{[
ρ1v

2
1 + 5(p1 + �1)

]
v1

}

= −3�1

τ1
+ 2(ω̂1 + m̂1v), (3)

where the total pressure p, the global specific internal energy ε, the global dynamic
pressure �, the deviatoric part of the global shear stress σ , the global heat flux q, and
a new quantity Q are given by [2]:

p =
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1

2
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)
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{
1

2
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α + 5

2
(pα + �α)

}
uα.

(4)

It is noticeable that there appear in the system (3) global shear stress and global heat
flux due to the presence of the diffusion velocity even if we neglect these dissipative
quantities in the field equations for each constituent.
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The system (3) with (2) and (4) is a hyperbolic system of 8 scalar equations in
1-dim for the 8 components of the fieldsU, namely, the total mass density, the mixture
velocity, the global internal energy or an average temperature, the global dynamic
pressure, and the corresponding variables for the species 1.

In equilibrium in which T1 = T2 = T the global pressure and the internal intrinsic
energy can be written in the form

p(E) = kB

m
ρT , ρε

(E)
int = D

2

kB

m
ρT (5)

provided that we introduce [12]

1

m
= c

m1
+ (1 − c)

m2
, D(c) = c

m(c)

m1
D1 + (1 − c)

m(c)

m2
D2, (6)

with m and D being the average mass, and a sort of average degrees of freedom D
of molecules, respectively, and c (0 < c < 1) being the concentration related to the
mass densities:

ρ1 = ρc, ρ2 = ρ(1 − c).

The associate equilibrium subsystem of (3), according to the definition given in
[13], is given by the conservation laws (3)1,2,3,5 where we put the equilibrium values
v1 = v2 = v, T1 = T2 = T , and �1 = �2 = 0 in which the production terms in
(3)4,6,7,8 vanishing:

∂ρ

∂t
+ ∂ρv

∂x
= 0,

∂ρ1

∂t
+ ∂ρ1v

∂x
= 0,

∂ρv

∂t
+ ∂

∂x

(
ρv2 + p(E)

)
= 0,

∂

∂t

(
1

2
ρv2 + ρε

(E)
int

)
+ ∂

∂x

{(
1

2
ρv2 + ρε

(E)
int + p(E)

)
v

}
= 0,

(7)

with p(E) and ε
(E)
int given in (5). The equilibrium subsystem is of course the same as

the Eulerian mixture.

3 Characteristic velocities in equlibrium

The characteristic velocities for a single fluid with RET6 were evaluated in [6] and
as the left-hand side of the system (1) are two blocks of single fluids, we have the
following characteristic velocities in an equilibrium state in which v1 = v2 = v and
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T1 = T2 = T :

v −
√
5

3

kB
m1

T , v −
√
5

3

kB
m2

T , v (with multiplicity 4),

v +
√
5

3

kB
m2

T , v +
√
5

3

kB
m1

T

while the characteristic velocities of the equilibrium subsystem (7) are

v −
√

γ
kB
m

T , v (twice), v +
√

γ
kB
m

T ,

where

γ = D + 2

D
.

From now we consider the positive eigenvalues with respect to the rest frame of the
fluid and introduce the characteristic velocities in an equilibrium state for constituents
1 and 2

λ1 = v +
√
5

3

kB
m1

T , λ2 = v +
√
5

3

kB
m2

T (8)

and the characteristic velocities of the equilibrium subsystem

λ̄ = v +
√

γ
kB
m

T . (9)

We notice that the expressions of the characteristic velocities of the full system are
independent of the ratio of specific heat of the constituents γα while the ones of the
equilibrium subsystem depend on γ . This is a peculiar property of the system of RET6
according to a general theorem given in [14].

We consider the first species the one for which m1 ≤ m2 and we call μ the ratio of
the masses of the constituents defined by

μ = m1

m2
, 0 < μ ≤ 1,

and with this choice λ2 ≤ λ1 holds.
The subcharacteristic conditions for convexity argument according to a theorem in

[13] hold and we have:

λ̄ ≤ λ1.
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Now we need to evaluate for the following if λ̄ is greater or less than λ2. It is easy,
taking into account (8) and (9), to prove the following result:

Statement 1 - For any 1 < γ1 < 5/3, and 1 < γ2 < 5/3,

case A): If μ ≤ μ∗ = 3γ1/5 ∈]0, 1[, there exists a c∗ ∈ ]0, 1[ such that:

for 0 < c ≤ c∗, λ̄ ≤ λ2 < λ1

for c∗ < c < 1, λ2 < λ̄ < λ1

where c∗is solution of λ̄ = λ2, i.e. γ /m = 5/(3m2);
case B): If μ > μ∗, then λ2 < λ̄ < λ1 for any c ∈ ]0, 1[ .

(10)

4 Shock-structure solution

The shock structure is a traveling wave solution, depending on a single variable ϕ =
x − st with s being the velocity of the shock wave,

U ≡ U(ϕ), ϕ = x − st

with constant equilibrium boundary conditions at infinity:

lim
ϕ→+∞U = U0, lim

ϕ→−∞U = UI.

We call the state U0 as the unperturbed state and the state UI as the perturbed state,
respectively. Hereafter, the quantities with the subscript 0 represent the quantities
evaluated in the unperturbed state, and the quantities with subscript I represent the
ones evaluated in the perturbed state.

We can choose without loss of generality the unperturbed velocity v0 = 0. The
equilibrium states are:

U0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ0
v0 = 0

T0
�0 = 0

(ρ1)0 = c0ρ0
(v1)0 = v0 = 0

(T1)0 = T0
(�1)0 = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, UI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρI
vI
TI

�I = 0
(ρ1)I = cIρI
(v1)I = vI
(T1)I = TI
(�1)I = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

As is well known the perturbed equilibrium state is connected with the unperturbed
one through the Rankine-Hugoniot equation of the equilibrium sub-system (7), and
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therefore we have:

ρI = (1 + D0)M2
0

D0 + M2
0

ρ0, vI = D0(M2
0 − 1)

(D0 + 1)M0
a0,

TI = (D0 + M2
0 ){(2 + D0)M2

0 − 1}
(D0 + 1)2M2

0

T0,

cI = c0.

(12)

Here the unperturbed Mach number M0 is defined as usual by

M0 = s − v0

a0
, (13)

with a0 being the sound velocity in the unperturbed state:

a0 =
√

γ0
kB

m0
T0, γ0 = D0 + 2

D0
,

and D0 being the degrees of freedom of a molecule in the unperturbed state D0 =
D(c0) (see (6)2), whilem0 = m(c0) being the equilibrium averagemass of themixture
(see (6)1).

Note that relations between mixture state variables ρI, vI, TI and ρ0, u0, T0, cor-
respond to the solution of the usual Rankine-Hugoniot relations between the state
variables at the shock wave for a single fluid for the system of Euler equations. It is
also noticeable that the concentration is the same in both equilibrium states, cI = c0,
and in the sequel it will be termed equilibrium concentration, without special regard to
upstream or downstream state. Finally, downstream equilibrium can be regarded as a
one-parameter family of states parametrized by theMach number (i.e., shock velocity:
see (17)), UI ≡ UI(U0, M0). In this way, the Mach number is naturally introduced in
the model through the boundary conditions.

5 Sub-shocks formation

We consider the shock family bifurcating from the trivial zero shock solution obtained
as s = λ̄0. The Lax condition [15] gives the admissibility conditions as λ̄0 < s < λ̄I,
which can be equivalently expressed as M0 > 1.

According to the theorem in [16], the non-existence of the smooth shock structure
is proved when the shock velocity is greater than the maximum characteristic velocity
in the unperturbed state. Therefore in the present case, see (10) we have the following

Statement 2 – A continuous C1 shock-structure solution cannot exist for a binary
mixture of gases in which each constituent has a bulk viscosity when the shock
velocity satisfies
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s > λ10, (14)

i.e. a shock structure with velocity s greater than λ10 has a sub-shock inside.

To know if other sub-shock can exist, we recall the observation that a sub-shock can
arise when s meets an eigenvalue λ [17]. Now, as we do not know the analytical expres-
sion of the eigenvalues along the shock-structure solution, we focus on the eigenvalues
in the two equilibrium states. In the unperturbed state U0, all the eigenvalues λ0 are
constant values, while in the perturbed equilibrium one UI, all λI are functions of s.
Taking into account that for s = λ̄0 we have the null shock and therefore λI(λ̄0) = λ0.
When s increases, for the genuine non-linearity, all λI(s) are increasing functions of
s. As a consequence, the only candidates in the state UI to meet s are the eigenvalues
that are in the unperturbed state U0 less than λ̄0, while s can meet in the state U0 all
the eigenvalues greater of λ̄0.

Therefore taking into account the inequalities between the eigenvalues given in (10)
we can have:

Statement 3 – For any 1 < γ1 < 5/3, and 1 < γ2 < 5/3, there may exist a
sub-shock before the maximum characteristic velocity in the unperturbed state,
according with:

case A): If μ ≤ 3γ1/5, and

when 0 < c0 ≤ c∗, for s > λ20,

when c∗ < c0 < 1, for s > s∗, solution of λ2I(s
∗) = s∗,

case B): If μ > 3γ1/5, for s > λ20 for any c0 ∈ ]0, 1[ .

(15)

Remark 1 – These conditions are necessary but not sufficient for the existence of the
sub-shock. In fact, there are cases in which the singularity is not verified due to an
indeterminate form 0/0. For more precise details, see the reference [1].

Using dimensionless variables the condition (14) of Statement 2, taking into account
(8), (11), (13) and (6), becomes:

M0 > M10 = λ10

a0
=

√
5m0D0

3m1(D0 + 2)
=

√
5D0

3(D0 + 2) {c0 + (1 − c0)μ}

in which we are sure that there is a subshock in the shock profile of species 1.
While the conditions (15) of Statement 3 becomes in the case A) for 0 < c0 ≤ c∗,

M0 > M∗
20 with M∗

20 being the solution of

M2I(M∗
20, c0, μ) = M∗

20, (16)
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Fig. 1 Different regions in the
plane (c0, M0) of possible
sub-shocks. D1 = 5, D2 = 7,
and μ = 0.4. The dotted curves
are the ones of a mixture of
Eulerian gases. The circles
represent the parameters adopted
for numerical calculations
shown in Sec. 6

wherewe have indicates M2I = λ2I/a0. By inserting the Rankine-Hugoniot conditions
(12), we obtain

M2I = D0(M2
0 − 1)

(D0 + 1)M0
+

√
5D0(D0 + M2

0 ){(2 + D0)M2
0 − 1}

3(D0 + 2)(D0 + 1)2M2
0

m0

m2

and we obtain the solution of (16):

M∗
20 =

√
D0{5m0 + 3(D0 + 2)m2}
(D0 + 2)(5D0m0 − 3m2)

.

For c∗ < c0 < 1 we may have a subshock if

M0 > M20 = λ20

a0
=

√
5m0D0

3m2(D0 + 2)
=

√
5D0μ

3(D0 + 2) {c0 + (1 − c0)μ} .

In the case B) of Statement 3 have a subshock for M0 > M10 andmay have a subshock
for M0 > M20. In both cases A) and B), the existence of the sub-shock is concerned
the shock profile of species 2.

The topology of regions depends on M∗
20 that for some values of μ < μ∗ can have

an asymptote or can intersect M10. The complete analysis will be an object of a future
paper. In the present analysis, we consider only the case A) with μ = 0.4 and we omit
also the case B). Our aim is mainly to compare in this case the behavior of the shock
structure with the one in which the constituents are Eulerian gases. Using the results
in the paper [1], we also depict the corresponding curves predicted by the Eulerian
theory as M (Euler)

10 and M∗(Euler)
20 , and we can have the following regions described in

Fig. 1.
According to (15), for case A), it is sure that no sub-shock arises when M0 < M20

for 0 < c0 ≤ c∗ and M0 < M∗
20 for c∗ < c0 < 1, and that a sub-shock for constituent 1

emerges when M0 > M10. However, it is not sure whether a sub-shock for constituent
2 appears or not when M0 > M20 or M0 > M∗

20. The possibility of the sub-shock
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Table 1 Summary of the
possibility of the sub-shock
formation for the classified
regions in the plane (c0, M0)
shown in Fig. 1. The symbols S1
and S2 represent the sub-shock
for constituent 1 and the
sub-shock for constituent 2,
respectively. The corresponding
conclusions for a binary mixture
of Eulerian gas are also shown in
the last columns

Region S1 S2 S(Euler)
1 S(Euler)

2

1 No No No Maybe

2 No No No No

3 No Maybe No No

4 No No No No

5 No Maybe No Maybe

6 No Maybe Yes No

7 No No Yes No

8 No Maybe Yes Maybe

9 Yes Maybe Yes Maybe

10 Yes Maybe Yes No

11 Yes No Yes No

formation is summarized in Table 1. In this table, "Maybe" indicates that the condition
is only necessary but not sufficient for the sub-shock existence (see Remark 1).

6 Numerical analysis

In this section, we perform numerical calculations for obtaining the shock-structure
solutions to compare the solutions obtained by the RET6 mixture theory with the ones
by the Eulerian mixture of gas and to verify in the uncertain cases if sub-shocks arise.
For this purpose, we solve the Riemann problem for the PDE system (1) instead of
solving the ODE system. This strategy is based on the conjecture proposed by Ruggeri
and coworkers about the large-time behavior of the Riemann problem with or without
structure [18, 19] for a system of balance laws [20–22] – following an idea of Liu [23].
According to the conjecture, the solution of the Riemann problem of the whole system
converges to the corresponding shock structure for a large time if the Riemann initial
data correspond to a shock familyS of the equilibrium subsystem. This strategy allows
us to use the Riemann solvers [24] for numerical calculations of the shock structure
with or without sub-shocks, and it has been validated in several shock phenomena [1,
3, 20, 22, 25–27].

In the present analysis, by adopting theUniformly accurate Central Scheme of order
2 (UCS2) [28],we performnumerical calculations on the shock structure obtained after
a long time for the Riemann problem consisting of two equilibrium states U0 and UI
satisfying (11) at x = 0. For convenience, we introduce the following dimensionless
variables scaled by the quantities evaluated in the unperturbed state and an arbitrary
characteristic time for numerical computations tc:

ρ̂ = ρ

ρ0
, v̂ = v

a0
, T̂ = T

T0
, �̂ = �

ρ0
kB
m0

T0
,

ϕ̂ = ϕ

tc a0
, x̂ = x

tc a0
, t̂ = t

tc
, τ̂ = τ

tc
,
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Fig. 2 Profiles of the dimensionless global mass density, mixture velocity, and average temperature at
t̂ = 100 (Solid curves). D1 = 5, D2 = 7, μ = 0.4, c0 = 0.25, and M0 = 1.15. These parameters lie
in the region 3 and are indicated by circle No. i in Fig. 1. The temporal and spatial numerical meshes are
�t̂ = 0.005 and �x̂ = 0.04. The theoretical predictions by the theory of a mixture of Eulerian gases are
also shown (dashed curves)

Fig. 3 Profiles of the dimensionless global mass density, mixture velocity, and average temperature at
t̂ = 100 (Solid curves). D1 = 5, D2 = 7, μ = 0.4, c0 = 0.25, and M0 = 1.3. These parameters lie in
the region 5 and are indicated by circle No. ii in Fig. 1. The temporal and spatial numerical meshes are
�t̂ = 0.0025 and �x̂ = 0.02. The theoretical predictions by the theory of a mixture of Eulerian gases are
also shown (dashed curves)

ψ̂ = tc
ρ0T0

ψ11, θ̂ = tc

ρ0
kB
m0

T 2
0

θ11, κ̂ = tc

ρ0
kB
m0

T 2
0

κ11, φ̂ = tc

ρ0
kB
m0

T 2
0

φ11, (17)

where T is an average (non-equilibrium) temperature proposed in [29] in an implicit
way:

ρεint = ρ1ε1(ρ1, T ) + ρ2ε2(ρ2, T ) = ρ1ε1(ρ1, T1) + ρ2ε2(ρ2, T2).

In the present analysis, we adopt the following parameters; D1 = 5, D2 = 7,
μ = 0.4, ψ̂ = θ̂ = κ̂ = 0.2, φ̂ = 0.3, τ̂1 = 1, and τ̂2 = 2. We compare the
profiles of global quantities predicted by a mixture of RET6 and Eulerian gases for
M0 = 1.15, 1.3, 1.47 in Figs. 2 – 4, respectively. The parameters correspond to the
ones by circles i - iii shown in Fig. 1 and lie in the regions 3, 5, and 8 where the
sub-shock formation for constituent 2 is unclear as summarized in Table 1.

Figure 2 shows that the thickness of the shock structure predicted by the RET6
theory is larger than the one predicted by the Eulerian theory. Moreover, although
only the shock-structure solution of the RET6 theory becomes in principle singular
for M0 = 1.15, we notice that both the RET6 and Eulerian theories predict continuous
shock structure as shown in Fig. 2. These results show the effect of the dissipation
makes the shock structure broader and smoother. Similarly, Fig. 3 shows the profiles
for M0 = 1.3 where the parameter lies in the region 5 in which the sub-shock for
constituent 2 may exist for both the RET6 and the Eulerian theories. It is confirmed
that the Eulerian theory predicts the sub-shock formation while the RET6 theory does
not.
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Fig. 4 Profiles of the dimensionless global mass density, mixture velocity, and average temperature at
t̂ = 100 (Solid curves). D1 = 5, D2 = 7, μ = 0.4, c0 = 0.25, and M0 = 1.47. These parameters lie in
the region 8 and are indicated by circle No. iii in Fig. 1. The temporal and spatial numerical meshes are
�t̂ = 0.0025 and �x̂ = 0.02. The theoretical predictions by the theory of a mixture of Eulerian gases are
also shown (dashed curves)

Lastly, we show the profiles for M0 = 1.47 in Fig. 4, which corresponds to the
region 8. Only the Eulerian theory predicts the multiple sub-shocks, and the RET6
theory predicts only-one sub-shock. It is emphasized that the amplitude of the sub-
shock predicted by the RET6 theory is smaller than the one predicted by the Eulerian
theory due to the effect of the dissipation, namely, the dynamic pressure.
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