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Abstract
We examine the p-nilpotency and supersolvablitiy of a finite group under the assump-
tion that certain subgroups of prime power order are S∗- embedded in the group
itself. In particular, we extend and generalize the recent results of Li (Commun.
Algebra 50(4):1585–1594, https://doi.org/10.1080/00927872.2021.1986056, 2022)
and the related results in the literature.
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Mathematics Subject Classification 20D10 · 20D20

1 Introduction

All the groups are considered to be finite and G always stands for a finite
group. Gp denotes a Sylow p-subgroup of G where p is a prime number.
We use conventional notions and notation as in [1]. Recall that a subgroup
A of G is said to be S-permutable in G if AGp = GpA for every Sylow
p-subgroup Gp of G [8]. Zhang and Wang [18] called a subgroup A of G S-
semipermutable in G if A permutes with every Sylow p-subgroup Gp of G such
that (p, |A|) = 1. Ballester-Bolinches and Pedraza-Aguilera [2] called a subgroup
A of G S-permutably embedded in G if all Sylow p-subgroups of A are also Sylow
p-subgroups of some S-permutable subgroup F of G. Obviously, the class of all
S-permutably embedded subgroups is wider than the class of all S-permutable sub-
groups. More recently, Li [9] introduced a new embedding property which covers both
of S-permutably embedded and S-semipermutable concepts as follows: A subgroup
A of G is said to be S∗-embedded in G if G has an S-permutable subgroup F such
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that AF is S-permutable in G and A ∩ F ≤ A∗, where A∗ is a subgroup contained in
A which is either S-permutably embedded or S-semipermutable in G.

By using this newconcept, Li [9] studied the group structurewhen certain subgroups
are S∗-embedded and obtained new results generalised many classical and recent
results in the literature. More precisely, he proved:

Theorem A ([8, Main Theorem]) Assume for each non-cyclic Sylow p-subgroup G p

of G, either of the following two conditions is held:

1. All maximal subgroups of G p not having a supersolvable supplement in G are
S∗-embedded in G.

2. All cyclic subgroups of G p of prime order or of order 4, that are without a super-
solvable supplement in G, are S∗-embedded in G.

Then, G is supersolvable.
Our main object in this paper is to go further in studying the influence of S∗-

embedded subgroups on the group structure. In fact, we prove:

Theorem B Suppose A � G such that G/A is p-nilpotent for some prime divisor p of
|G|. If A has a Sylow p-subgroup Ap such that NG(Ap) is p-nilpotent and all maximal
subgroups of Ap, that are without a p-nilpotent supplement in G, are S∗-embedded
in G, then G is p-nilpotent.

Theorem C Suppose A � G such that G/A is supersolvable. If all maximal subgroups
of each non-cyclic Sylow subgroup of A, that are without a supersolvable supplement
in G, are S∗-embedded in G, then G is supersolvable.

Theorem D Suppose A � G such that G/A is supersolvable. If all cyclic subgroups
of each non-cyclic Sylow subgroup of A of prime order or of order 4, that are without
a supersolvable supplement in G, are S∗-embedded in G, then G is supersolvable.

2 Preliminaries

Lemma 1 ([9, Theorem 3.2]) Assume p is some prime divisor of |G| satisfying
(|G|, p − 1) = 1, and G p is a Sylow p-subgroup of G. If all maximal subgroups
of G p, that are without a p-nilpotent supplement in G, are S∗-embedded in G, then
G is p-nilpotent.

Lemma 2 ([9, Lemma 2.5]) Let A be an S∗-embedded p-subgroup of G.

1. If A ≤ B ≤ G, then A is S∗-embedded in B.
2. If L � G and L ≤ A, then A/L is S∗-embedded in G/L.
3. If L � G and (|L|, |A|) = 1, then AL/L is S∗-embedded in G/L.
4. If L � G and A ≤ L, then G has an S-permutable subgroup F contained in L

such that AF is S-permutable in G and A ∩ F ≤ A∗.

Lemma 3 ([12, Theorem A]) Suppose that A is an S-permutable p-subgroup of G.
Then O p(G) is contained in NG(A).
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Lemma 4 ([17, Lemma 2.1(d)]) Suppose that A is a p-subgroup of G and B is a
normal p-subgroup of G. If A is either S-permutably embedded or S-semipermutable
in G, then A ∩ B is also S-permutable in G.

Lemma 5 Let A be a subgroup of G.

1. [3] If A is S-permutable in G, then A/AG is nilpotent.
2. [8] If A is S-permutable in G, then A is subnormal in G.
3. [16] If A is a subnormal p-subgroup of G, then A is contained in Op(G).
4. [13] ASG is an S-permutable subgroup of G, where ASG is a subgroup of A

generated by all S-permutable subgroups of G that contained in A.
5. [12] If A and B are S-permutable subgroups of G, then A∩B is also S-permutable

in G.

Lemma 6 ([10, 18]) Suppose that A is either S-permutably embedded or S-
semipermutable in G. If A is a p-subgroup contained in Op(G), then A is
S-permutable in G.

Lemma 7 ([9, Lemma 2.1(3)]) Suppose that p is some prime divisor of |G| satisfying
(|G|, p − 1) = 1. If G is p-supersolvable, then G is p-nilpotent.

Lemma 8 ([15, Lemma 2.4]) If A is a maximal subgroup of G and B is a normal
p-subgroup of G such that G = AB, then A ∩ B � G.

Lemma 9 ([11, Theorem 3.5]) If A � G such that G/A is supersolvable and all max-
imal subgroups of any Sylow subgroup of A are normal in G, then G is supersolvable.

Lemma 10 ([8]) Let A be an S-permutable subgroup of G.

1. If A ≤ B ≤ G, then A is S-permutable in B.
2. If L � G, then AL/L is S-permutable in G/L.

Lemma 11 ([5]) Suppose that A and B are normal supersolvable subgroups of G
with G = AB. If the indices |G : A| and |G : B| are relatively prime, then G is
supresolvable.

Lemma 12 ([16]) If A is a subnormal subgroup of G such that the number |G : A| is
not divisible by p, then every Sylow p-subgroup G p of G is contained in A.

3 Proofs

Theorem 1 Suppose G p is a Sylow p-subgroup of G for some prime divisor p of
|G|. If NG(Gp) is p-nilpotent and all maximal subgroups of G p, that are without a
p-nilpotent supplement in G, are S∗-embedded in G, then G is p-nilpotent.

Proof If p = 2, then, by Lemma 1,G is p-nilpotent. So, it can be assumed that p > 2.
Suppose the result is not true providing G as a counterexample of minimal order.
Following the method of the first part of the proof of [6, Theorem 2.3], we conclude
that all maximal subgroups of Gp are S∗-embedded in G. Now, we build up the proof
by the following steps:
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(1) Op′(G) = 1.
Assume that Op′(G) �= 1. Let X/Op′(G) be a maximal subgroup of the Sylow p-
subgroup GpOp′(G)/Op′(G) of G/Op′(G). Then Gp has a maximal subgroup
X1 such that X = X1Op′(G). Since X1 is S∗-embedded in G, it follows that
X1Op′(G)/Op′(G) is S∗-embedded inG/Op′(G) by Lemma 2(3). Also, we have
NG/Op′ (G)(GpOp′(G)/Op′(G)) = NG(Gp)Op′(G)/Op′(G) is p-nilpotent. Our
choice ofG implies thatG/Op′(G) is p-nilpotent. Consequently,G is p-nilpotent
which is a contradiction.

(2) If Gp ≤ A < G, then A is p-nilpotent.
Clearly, NA(Gp) ≤ NG(Gp) is p-nilpotent, and by Lemma 2(1) all maximal
subgroups of Gp are S∗-embedded in A. The minimal choice of G implies that A
is p-nilpotent.

(3) G is p-solvable.
By Thompson’s result [14, Corollary], Gp has a non-trivial characteristic sub-
group R such that NG(R) is not p-nilpotent. Let L be any characteristic subgroup
of Gp such that Op(G) < L ≤ Gp. Since L char Gp � NG(Gp), we have
L � NG(Gp). Hence Gp ≤ NG(Gp) ≤ NG(L) < G which implies that NG(L)

is p-nilpotent by step (2). If Op(G) = 1, then 1 < R ≤ Gp and hence NG(R)

is p-nilpotent; a contradiction. Thus, we may assume that Op(G) �= 1. Clearly,
NG/Op(G)(Gp/Op(G)) = NG(Gp)/Op(G) is p-nilpotent. By using Lemma
2(2), it is easy to see that G/Op(G) satisfies the hypothesis of the theorem. Our
choice of G implies that G/Op(G) is p-nilpotent, and thereby G is p-solvable.

(4) There exists a unique minimal normal subgroup L of G such that G/L is p-
nilpotent and G = L � X , where X is a maximal subgroup of G. Moreover,
L = CG(L) = F(G) = Op(G).
Let L be a minimal normal subgroup of G. Then L is an elementary abelian
p-group by steps (1) and (3). This implies L ≤ Op(G) ≤ Gp. If L = Gp,
then clearly, G/L is p-nilpotent. Thus, we may assume that L < Gp. In view of
Lemma 2(2), we can see that the hypothesis still holds for G/L . Our choice of G
implies that G/L is also p-nilpotent. Since the class of all p-nilpotent groups is
a saturated formation, it follows that L is the unique minimal normal subgroup
of G and L � �(G). Hence, there exists a maximal subgroup X of G such that
G = L � X , L = CG(L) = F(G) = Op(G).

(5) Finishing the proof.
Let X p be a Sylow p-subgroup of X such that Gp = LX p, and P1 be a maximal
subgroup of Gp containing X p. Then Gp = LX p = LP1. We may assume that
L �= Gp (Otherwise, G = NG(L) = NG(Gp) is p-nilpotent; a contradiction).
Since P1 is S∗-embedded in G, then there exists an S-permutable subgroup F of
G such that P1F is S-permutable in G and (P1 ∩ F) ≤ (P1)∗. If F = 1, then P1
is S-permutable in G which implies that P1 � GpO p(G) = G by using Lemma
3 and since P1 �= 1, we have L ≤ P1 by step (4) which means P1 = Gp; a
contradiction. Thus, we may assume that F �= 1. Assume that FG �= 1. Then
L ≤ FG ≤ F which implies that P1 ∩ L ≤ P1 ∩ F ≤ (P1)∗ ∩ L and so P1 ∩ L =
(P1)∗ ∩ L . Lemma 4 yields P1 ∩ L is S-permutable in G. If P1 ∩ L �= 1, then
L ≤ (P1 ∩ L)O

p(G)Gp ≤ (P1)Gp = P1 by Lemma 3; a contradiction. So, assume
P1∩ L = 1. This implies that |L| = p. Since X ∼= G/L = G/CG(L) � Aut(L),
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wehave |X | | (p−1). It follows that L is aSylow p-subgroupofG.Hence L = Gp;
a contradiction. Thus, FG = 1. In view of Lemma 5(1), we have F is a nilpotent
group. Then from step (1), F is a p-subgroup. By Lemma 5(2) and Lemma 5(3),
we have (P1)∗ ≤ P1 ≤ P1F ≤ Op(G) which implies that (P1)∗ ≤ (P1)sG by
using Lemma 6 and Lemma 5(4). Now, we have P1∩F ≤ (P1)∗ ≤ (P1)sG which
implies P1 ∩ F ≤ (P1)sG ∩ F . Hence, P1 ∩ F = (P1)sG ∩ F . In view of Lemma
5(5), we have P1 ∩ F is S-permutable in G. If P1 ∩ F = 1, then |F | = p. It
follows that P1F is a Sylow p-subgroup ofG. Hence, P1F = Gp = Op(G) = L;
a contradiction. Thus, it can be assumed that P1 ∩ F �= 1. Then, by using Lemma
3 and step (4), we have L ≤ (P1 ∩ F)G = (P1 ∩ F)O

p(G)Gp ≤ (P1)Gp = P1.
Hence Gp = LP1 = P1; a final contradiction. �	

Proof of Theorem B. Assume the result is not true providing G as a counterexample
of minimal order. Lemma 2(1) with Theorem 1, imply A is p-nilpotent. Let Ap′ be
the normal p-complement of A. Since Ap′ char A � G, then Ap′ � G. Assume
that |Ap′ | > 1. Clearly, A/Ap′ � G/Ap′ and (G/Ap′)/(A/Ap′) ∼= G/A is p-
nilpotent. Let X/Ap′ be a maximal subgroup of the Sylow p-subgroup Ap Ap′/Ap′ of
A/Ap′ . Then Ap has a maximal subgroup X1 such that X = X1Ap′ . If X1 possesses
a p-nilpotent supplement D in G, then DAp′/Ap′ is a p-nilpotent supplement of
X1Ap′/Ap′ in G/Ap′ . If X1 is S∗-embedded in G, it follows that X1Ap′/Ap′ is S∗-
embedded in G/Ap′ by using Lemma 2(3). Our choice of G implies that G/Ap′ is
p-nilpotent. Consequently, G is p-nilpotent which is a contradiction. Thus, it can
be assumed Ap′ = 1. Then A = Ap, which implies G = NG(A) = NG(Ap) is
p-nilpotent; a final contradiction. �	
Remark 1 The condition NG(Gp) is p-nilpotent in Theorem 1 and Theorem B is
necessary. For example, consider G = A5 and p = 3. Then all maximal subgroups of
any Sylow 3-subgroup G3 of G are S∗-embedded in G, but G is not 3-nilpotent.

We work toward the proof of Theorem C:

Theorem 2 Suppose that p is some prime divisor of |G| satisfies (|G|, p − 1) = 1,
and A � G such that G/A is p-nilpotent. If A has a Sylow p-subgroup Ap such that
all maximal subgroups of Ap, that are without a p-nilpotent supplement in G, are
S∗-embedded in G, then G is p-nilpotent.

Proof Assume the result is not true providingG as a counterexample ofminimal order.
By Lemma 2(1) and Lemma 1, we have that A is p-nilpotent. Let Ap′ be the normal
p-complement of A. Since Ap′ char A � G, then Ap′ � G. Assume that |Ap′ | > 1.
Clearly, A/Ap′ � G/Ap′ and (G/Ap′ )/(A/Ap′ ) ∼= G/A is p-nilpotent. Let X/Ap′
be amaximal subgroup of the Sylow p-subgroup Ap Ap′ /Ap′ of A/Ap′ . Then Ap has a
maximal subgroup X1 such that X = X1Ap′ . If X1 possesses a p-nilpotent supplement
D in G, then DAp′ /Ap′ is a p-nilpotent supplement of X1Ap′ /Ap′ in G/Ap′ . If X1
is S∗-embedded in G, then X1Ap′ /Ap′ is S∗-embedded in G/Ap′ by Lemma 2(3). So
G/Ap′ is p-nilpotent due to the minimal choice of G. It follows, G is p-nilpotent; a
contradiction. Thus, it can be assumed Ap′ = 1 which yields A = Ap is a p-group.
Let L/Ap be the normal p-complement ofG/Ap. Schur-Zassenhaus Theorem implies
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that L has a Hall p
′
-subgroup L p′ such that L = Ap � L p′ . Since L is p-nilpotent by

Lemma 2(1) and Lemma 1, it follows that L = Ap × L p′ . Hence, we have L p′ is the
normal p-complement of G, and thereby G is p-nilpotent; a contradiction. �	

Lemma 7 and Theorem 2 lead to the following corollary:

Corollary 1 Suppose A � G provided G/A is p-nilpotent, where p is the smallest
prime divisor of |G|. If A has a Sylow p-subgroup Ap such that all maximal subgroups
of Ap that are without a p-supersolvable supplement in G are S∗-embedded in G, then
G is p-nilpotent.

Proof Clearly, (|G|, p − 1) = 1 as p is the smallest prime divisor of |G|. Lemma 7
suggests all maximal subgroups of Ap that are without a p-nilpotent supplement in G
are S∗-embedded in G. Using Theorem 2, gives G is p-nilpotent. �	

Now we can prove Theorem C:

Proof of Theorem C. Assume the result is not true providing G as a counterexample of
minimal order. In view of Theorem A(1), we have A is supersolvable. Let Gp be a
Sylow p-subgroup of G, where p is the largest prime divisor of |G|. We distinguish
two cases.

Case 1. Gp ≤ A.
Then Gp � A as A is supersolvable. Since Gp char A � G, it fol-
lows that Gp � G. Now, we show that G/Gp is supersolvable. Clearly,
(A/Gp) � (G/Gp) and (G/Gp)/(A/Gp) ∼= (G/A) is supersolvable. Let
X/Gp be amaximal subgroup of the Sylow q-subgroup AqG p/Gp of A/Gp.
Then Aq has a maximal subgroup X1 such that X = X1Gp. If X1 has a
supersolvable supplement B in G, then BGp/Gp is a supersolvable supple-
ment of X1Gp/Gp in G/Gp. If X1 is S∗-embedded in G, then X1Gp/Gp

is S∗-embedded in G/Gp by using Lemma 2(3). The minimal choice of G
yields G/Gp is supersolvable and Gp is not cyclic. Let N be a minimal
normal subgroup of G contained in Gp. It is also easy to see that G/N is
supersolvable. Further, since the class of all supersolvable groups is a sat-
urated formation, it follows that N is the unique minimal normal subgroup
of G contained in Gp and N � �(G). Hence G possesses a maximal sub-
group X such that G = N X and N ∩ X = 1. Since Gp ∩ X is normalized
by G by using Lemma 8, it follows that N = Gp which yields Gp is an
elementray abelian p-group. Now, Let N1 be a maximal subgroup of N . If
N1 has a supersolvable supplement B in G, then G = N1B = N B and
N = N ∩ N1B = N1(N ∩ B), which implies that N ∩ B �= 1. Since
N ∩ B � G and N is a minimal normal subgroup of G, we have N ∩ B = N .
Consequently, N ≤ B which implies that G = B is supersolvable which is
a contradiction. Thus, we can assume that N1 is S∗-embedded in G. In view
of Lemma 2(4), G possesses an S-permutable subgroup F contained in Gp

such that N1F is S-permutable in G and N1 ∩ F ≤ (N1)∗. If F = 1, then N1
is S-permutable in G and N1 � GpO p(G) = G by using Lemma 3 and so
|Gp| = p; a contradiction. Thus, F �= 1. SinceGp is an elemntary abelian p-
group, then F � Gp. Applying Lemma 3 again, we get F � GpO p(G) = G.
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This implies F = Gp = N . Hence N1 ∩ F = N1 = (N1)∗, is S-permutable
in G by Lemma 6; again a contradiction as above.

Case 2. Gp � A.
In this case we distinguish the following two subcases.

Subcase (i). GpA < G.
Clearly, A � GpA and GpA/A ∼= Gp/Gp ∩ A is supersolvable. By
Lemma 2(1), all maximal subgroups of any non-cyclic Sylow subgroup
of A not having a supersolvable supplement in G are S∗-embedded in
GpA. Therefore, GpA is supersolvable due to the minimal choice of G.
Since GpA/A is a Sylow p-subgroup of G/A, where p is the largest
prime divisor of |G| andG/A is supersolvable, it follows thatGpA/A �
G/A and soGpA � G. SinceGp charGpA � G, thenGp � G. Hence
Gp ∩ A � G, where Gp ∩ A is a Sylow p-subgroup of A. By using
the same arguments as in Case 1, we have G/Gp ∩ A is supersolvable
and Gp ∩ A is a minimal normal subgroup of G. Set N = Gp ∩ A. By
our choice of G together with Lemma 9, N has a maximal subgroup
N1 such that N1 � G. If N1 possesses a supersolvable supplement B in
G, we have G is supersolvable as in Case 1; a contradiction. Thus, we
can assume that N1 is S∗-embedded in G. In view of Lemma 2(4), there
exists an S-permutable subgroup F of G contained in N such that N1F
is S-permutable in G and N1 ∩ F ≤ (N1)∗. By the maximality of N1 in
N , we have either N1F = N1 or N1F = N . If the former holds, then N1
is S-permutable in G. So, N1 � NO p(A) = A and hence A ≤ NG(N1)

by using Lemma 10(1) and Lemma 3. Applying Lemma 3 again, we
get Op(G) ≤ NG(N1) < G. Hence G possesses a maximal subgroup
X such that Op(G) ≤ NG(N1) ≤ X < G with |G : X | = p. Since
X/Op(G) � G/Op(G), then X � G. Due to the minimal choice of G,
we have X is supersolvable. Therefore,G = GpX and consequentlyG is
supersolvable by using Lemma 11; a contradiction. Thus, we can assume
that N1F = N . If F � G, then F = N which implies N1 ∩ F = N1 =
(N1)∗ is S-permutable inG by Lemma 6; a contradiction as above. Thus,
F � G. Since N is an elementary abelian p-group, then F � N . Hence
F � NO p(A) = A by Lemma 10(1) and Lemma 3 and so A ≤ NG(F).
Applying Lemma 3 again, there exists a maximal normal subgroup X
of G such that Op(G) ≤ NG(F) ≤ X < G with |G : X | = p. It
follows that X is supersolvable by our choice of G. So, G = GpX and
consequently G is supersolvable again by Lemma 11; a contradiction.

Subcase (ii). G = GpA.
Lemma 12 and Corollary 1 yield A contains all Sylow q-subgroups
of G with q �= p and G is a qr -nilpotent, where qr is the smallest
prime divisor of |G|. This implies that G has a Sylow tower group of
supersolvable type. Therefore, Gp � G as p is the largest prime divisor
of |G|. Applying Lemma 11, G is supersolvable; a final contradiction.�	

In order to show Theorem D, we need the following useful theorem:
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Theorem 3 Suppose A is a normal p-subgroup of G such that G/A is supersolvable.
If all cyclic subgroups of A of order p or of order 4 not having a supersolvable
supplement in G are S∗-embedded in G, then G is supersolvable.

Proof Assume the result is not true providingG as a counterexample ofminimal order.
It is easy to see that all proper subgroups ofG are supersolvable by using Lemma 2(1).
Hence G is a minimal non-supersolvable group. By Doerk’s result [4] G has a Sylow
p-subgroup Gp such that Gp � G for a prime divisor p of |G|, Gp/�(Gp) is a
minimal normal subgroup of G/�(Gp), and the exponent of Gp is either p or 4.
Clearly, A ≤ Gp (Otherwise, G ∼= G/Gp ∩ A � G/Gp × G/A is supersolvable; a
contradiction). We build up the proof by the following two steps.

(1) A = Gp.
Since A�(Gp)/�(Gp) � G/�(Gp), we have either A�(Gp) = Gp or A ≤
�(Gp). If the latter holds, then G/�(Gp) is supersolvable. It follows that, from
�(Gp) ≤ �(G), G/�(G) is supersolvable and so G is also supersolvable by a
well-known result of Huppert [7, p.713]; a contradiction. Thus, A�(Gp) = Gp

and thereby A = Gp as required.
(2) Finishing the proof.

Assume that |A/�(A)| = p. Then there exists x in A such that A/�(A) =<

x�(A) > which implies that A is cyclic and consequently G is supersolv-
able which is a contradiction. So, |A/�(A)| = pn , n > 1 and A/�(A) =<

x1�(A), x2�(A), ..., xn�(A) > as A/�(A) is an elementary abelian p-group.
Hence, we have A =< x1, x2, ..., xn >. Set Ai =< xi > for all i = 1, 2, ..., n. So,
we have |Ai | = p or 4. Now, the hypothesis of the theorem assures that Ai either
has a supersolvable supplement inG say B or Ai is S∗-embedded inG. If Ai is not
S∗-embedded in G, then G = Ai B and so A = A ∩G = A ∩ Ai B = Ai (A ∩ B).
Obviously, (A ∩ B)�(A)/�(A) � G/�(A) as A/�(A) is abelian. In view of
step (1), A/�(A) is a minimal normal subgroup of G/�(A) which implies that
either (A ∩ B)�(A) = A or (A ∩ B) ≤ �(A). If the latter holds, then A = Ai

is cyclic and so G is supersolvable; a contradiction. Hence (A ∩ B)�(A) = A
and so A ∩ B = A which implies that G = B is supersolvable; contradicts
our choice of G. Thus, we can assume that Ai is S∗-embedded in G. In view
of Lemma 2(4), then G possesses an S-permutable subgroup F contained in
A such that Ai F is also S-permutable in G and Ai ∩ F ≤ (Ai )∗. By Lemma
10(2) and the fact that A/�(A) is abelian, it is easy to see that F�(A)/�(A)

is S-permutable in G/�(A) and F�(A)/�(A) � A/�(A). Applying Lemma
3, we have F�(A)/�(A) � (A/�(A))(Op(G/�(A)) = G/�(A). Again, the
minimal normality of A/�(A) in G/�(A) implies that either F�(A) = A or
F�(A) ≤ �(A). If the latter holds, Ai�(A)/�(A) = Ai F�(A)/�(A) is S-
permutable in G/�(A) by using Lemma 10(2). If F�(A) = A, then we have
F = A. Therefore, Ai ∩ F = Ai = (Ai )∗ is S-permutable in G by Lemma
6, and so Ai�(A)/�(A) is S-permutable in G/�(A) by Lemma 10(2). By [13,
Lemma 2.11], there exists a maximal subgroup X�(A)/�(A) of A/�(A) such
that X�(A)/�(A) � G/�(A); a final contradiction. �	

Proof of TheoremD. Assume the result is not true providing G as a counterexample
of minimal order. If the order of A is of prime power, then G is supersolvable by
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Theorem 3; a contradiction. Thus, we can assume that the order of A is divisible
by at least two distinct primes. By Lemma 2(1) and Theorem A(2), we have A is
supersolvable. Hence A possesses a normal Sylow p-subgroup Ap, where p is the
largest prime divisor of |A|. Since Ap char A � G, we have Ap � G. LetU/Ap be a
cyclic subgroup of the Sylow q-subgroup Aq Ap/Ap of A/Ap such that |U/Ap| = q
or 4. Then Aq has a cyclic subgroup R such that U = RAp and |R| = q or 4. If R
has a supersolvable supplement B in G, then BAp/Ap is a supersolvable supplement
of RAp/Ap in G/Ap. If R is S∗-embedded in G, then RAp/Ap is S∗-embedded in
G/Ap by using Lemma 2(3). Our choice ofG yieldsG/Ap is supersolvable. Applying
Theorem 3, we get G is supersolvable; a contradiction. �	
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