

Finite groups with specific S_{*}-embedded subgroups

A. A. Heliel¹ · M. M. Al-Shomrani¹ · M. O. Almestady¹ · A. H. Zailai¹

Received: 1 March 2023 / Accepted: 25 May 2023 © Università degli Studi di Napoli "Federico II" 2023

Abstract

We examine the *p*-nilpotency and supersolvability of a finite group under the assumption that certain subgroups of prime power order are S_* - embedded in the group itself. In particular, we extend and generalize the recent results of Li (Commun. Algebra 50(4):1585–1594, https://doi.org/10.1080/00927872.2021.1986056, 2022) and the related results in the literature.

Keywords p-nilpotent · Supersolvable · S-semipermutable subgroup · S-permutably embedded subgroup · S_* -embedded subgroup

Mathematics Subject Classification 20D10 · 20D20

1 Introduction

All the groups are considered to be finite and *G* always stands for a finite group. G_p denotes a Sylow *p*-subgroup of *G* where *p* is a prime number. We use conventional notions and notation as in [1]. Recall that a subgroup *A* of *G* is said to be *S*-permutable in *G* if $AG_p = G_pA$ for every Sylow *p*-subgroup G_p of *G* [8]. Zhang and Wang [18] called a subgroup *A* of *G* such that (p, |A|) = 1. Ballester-Bolinches and Pedraza-Aguilera [2] called a subgroup *A* of *G S*-permutably embedded in *G* if all Sylow *p*-subgroups of *A* are also Sylow *p*-subgroups of some *S*-permutable subgroup *F* of *G*. Obviously, the class of all *S*-permutably embedded and *S*-semipermutable concepts as follows: A subgroup *A* of *G* is said to be *S*_{*}-embedded in *G* if *G* has an *S*-permutable subgroup *F* such

☑ A. A. Heliel Heliel9@yahoo.com; aahsalem1@kau.edu.sa

¹ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

that AF is S-permutable in G and $A \cap F \leq A_*$, where A_* is a subgroup contained in A which is either S-permutably embedded or S-semipermutable in G.

By using this new concept, Li [9] studied the group structure when certain subgroups are S_* -embedded and obtained new results generalised many classical and recent results in the literature. More precisely, he proved:

Theorem A ([8, Main Theorem]) Assume for each non-cyclic Sylow p-subgroup G_p of G, either of the following two conditions is held:

- 1. All maximal subgroups of G_p not having a supersolvable supplement in G are S_* -embedded in G.
- 2. All cyclic subgroups of G_p of prime order or of order 4, that are without a supersolvable supplement in G, are S_* -embedded in G.

Then, G is supersolvable.

Our main object in this paper is to go further in studying the influence of S_* -embedded subgroups on the group structure. In fact, we prove:

Theorem B Suppose $A \leq G$ such that G/A is p-nilpotent for some prime divisor p of |G|. If A has a Sylow p-subgroup A_p such that $N_G(A_p)$ is p-nilpotent and all maximal subgroups of A_p , that are without a p-nilpotent supplement in G, are S_* -embedded in G, then G is p-nilpotent.

Theorem C Suppose $A \leq G$ such that G/A is supersolvable. If all maximal subgroups of each non-cyclic Sylow subgroup of A, that are without a supersolvable supplement in G, are S_* -embedded in G, then G is supersolvable.

Theorem D Suppose $A \leq G$ such that G/A is supersolvable. If all cyclic subgroups of each non-cyclic Sylow subgroup of A of prime order or of order 4, that are without a supersolvable supplement in G, are S_* -embedded in G, then G is supersolvable.

2 Preliminaries

Lemma 1 ([9, Theorem 3.2]) Assume p is some prime divisor of |G| satisfying (|G|, p - 1) = 1, and G_p is a Sylow p-subgroup of G. If all maximal subgroups of G_p , that are without a p-nilpotent supplement in G, are S_* -embedded in G, then G is p-nilpotent.

Lemma 2 ([9, Lemma 2.5]) Let A be an S_* -embedded p-subgroup of G.

- 1. If $A \leq B \leq G$, then A is S_* -embedded in B.
- 2. If $L \leq G$ and $L \leq A$, then A/L is S_* -embedded in G/L.
- 3. If $L \leq G$ and (|L|, |A|) = 1, then AL/L is S_* -embedded in G/L.
- 4. If $L \leq G$ and $A \leq L$, then G has an S-permutable subgroup F contained in L such that AF is S-permutable in G and $A \cap F \leq A_*$.

Lemma 3 ([12, Theorem A]) Suppose that A is an S-permutable p-subgroup of G. Then $O^p(G)$ is contained in $N_G(A)$. **Lemma 4** ([17, Lemma 2.1(d)]) Suppose that A is a p-subgroup of G and B is a normal p-subgroup of G. If A is either S-permutably embedded or S-semipermutable in G, then $A \cap B$ is also S-permutable in G.

Lemma 5 Let A be a subgroup of G.

- 1. [3] If A is S-permutable in G, then A/A_G is nilpotent.
- 2. [8] If A is S-permutable in G, then A is subnormal in G.
- 3. [16] If A is a subnormal p-subgroup of G, then A is contained in $O_p(G)$.
- 4. [13] A_{SG} is an S-permutable subgroup of G, where A_{SG} is a subgroup of A generated by all S-permutable subgroups of G that contained in A.
- 5. [12] If A and B are S-permutable subgroups of G, then $A \cap B$ is also S-permutable in G.

Lemma 6 ([10, 18]) Suppose that A is either S-permutably embedded or S-semipermutable in G. If A is a p-subgroup contained in $O_p(G)$, then A is S-permutable in G.

Lemma 7 ([9, Lemma 2.1(3)]) Suppose that p is some prime divisor of |G| satisfying (|G|, p - 1) = 1. If G is p-supersolvable, then G is p-nilpotent.

Lemma 8 ([15, Lemma 2.4]) If A is a maximal subgroup of G and B is a normal p-subgroup of G such that G = AB, then $A \cap B \leq G$.

Lemma 9 ([11, Theorem 3.5]) If $A \leq G$ such that G/A is supersolvable and all maximal subgroups of any Sylow subgroup of A are normal in G, then G is supersolvable.

Lemma 10 ([8]) *Let A be an S-permutable subgroup of G.*

1. If $A \leq B \leq G$, then A is S-permutable in B.

2. If $L \leq G$, then AL/L is S-permutable in G/L.

Lemma 11 ([5]) Suppose that A and B are normal supersolvable subgroups of G with G = AB. If the indices |G : A| and |G : B| are relatively prime, then G is supresolvable.

Lemma 12 ([16]) If A is a subnormal subgroup of G such that the number |G : A| is not divisible by p, then every Sylow p-subgroup G_p of G is contained in A.

3 Proofs

Theorem 1 Suppose G_p is a Sylow p-subgroup of G for some prime divisor p of |G|. If $N_G(G_p)$ is p-nilpotent and all maximal subgroups of G_p , that are without a p-nilpotent supplement in G, are S_* -embedded in G, then G is p-nilpotent.

Proof If p = 2, then, by Lemma 1, *G* is *p*-nilpotent. So, it can be assumed that p > 2. Suppose the result is not true providing *G* as a counterexample of minimal order. Following the method of the first part of the proof of [6, Theorem 2.3], we conclude that all maximal subgroups of G_p are S_* -embedded in *G*. Now, we build up the proof by the following steps:

(1) $O_{p'}(G) = 1.$

Assume that $O_{p'}(G) \neq 1$. Let $X/O_{p'}(G)$ be a maximal subgroup of the Sylow *p*subgroup $G_p O_{p'}(G)/O_{p'}(G)$ of $G/O_{p'}(G)$. Then G_p has a maximal subgroup X_1 such that $X = X_1 O_{p'}(G)$. Since X_1 is S_* -embedded in *G*, it follows that $X_1 O_{p'}(G)/O_{p'}(G)$ is S_* -embedded in $G/O_{p'}(G)$ by Lemma 2(3). Also, we have $N_{G/O_{p'}(G)}(G_p O_{p'}(G)/O_{p'}(G)) = N_G(G_p) O_{p'}(G)/O_{p'}(G)$ is *p*-nilpotent. Our choice of *G* implies that $G/O_{p'}(G)$ is *p*-nilpotent. Consequently, *G* is *p*-nilpotent which is a contradiction.

- (2) If G_p ≤ A < G, then A is p-nilpotent. Clearly, N_A(G_p) ≤ N_G(G_p) is p-nilpotent, and by Lemma 2(1) all maximal subgroups of G_p are S_{*}-embedded in A. The minimal choice of G implies that A is p-nilpotent.
- (3) G is p-solvable.

By Thompson's result [14, Corollary], G_p has a non-trivial characteristic subgroup R such that $N_G(R)$ is not p-nilpotent. Let L be any characteristic subgroup of G_p such that $O_p(G) < L \leq G_p$. Since L char $G_p \leq N_G(G_p)$, we have $L \leq N_G(G_p)$. Hence $G_p \leq N_G(G_p) \leq N_G(L) < G$ which implies that $N_G(L)$ is p-nilpotent by step (2). If $O_p(G) = 1$, then $1 < R \leq G_p$ and hence $N_G(R)$ is p-nilpotent; a contradiction. Thus, we may assume that $O_p(G) \neq 1$. Clearly, $N_{G/O_p(G)}(G_p/O_p(G)) = N_G(G_p)/O_p(G)$ is p-nilpotent. By using Lemma 2(2), it is easy to see that $G/O_p(G)$ satisfies the hypothesis of the theorem. Our choice of G implies that $G/O_p(G)$ is p-nilpotent, and thereby G is p-solvable.

(4) There exists a unique minimal normal subgroup L of G such that G/L is pnilpotent and $G = L \rtimes X$, where X is a maximal subgroup of G. Moreover, $L = C_G(L) = F(G) = O_p(G).$

Let *L* be a minimal normal subgroup of *G*. Then *L* is an elementary abelian *p*-group by steps (1) and (3). This implies $L \leq O_p(G) \leq G_p$. If $L = G_p$, then clearly, G/L is *p*-nilpotent. Thus, we may assume that $L < G_p$. In view of Lemma 2(2), we can see that the hypothesis still holds for G/L. Our choice of *G* implies that G/L is also *p*-nilpotent. Since the class of all *p*-nilpotent groups is a saturated formation, it follows that *L* is the unique minimal normal subgroup of *G* and $L \notin \Phi(G)$. Hence, there exists a maximal subgroup *X* of *G* such that $G = L \rtimes X$, $L = C_G(L) = F(G) = O_p(G)$.

(5) Finishing the proof.

Let X_p be a Sylow *p*-subgroup of *X* such that $G_p = LX_p$, and P_1 be a maximal subgroup of G_p containing X_p . Then $G_p = LX_p = LP_1$. We may assume that $L \neq G_p$ (Otherwise, $G = N_G(L) = N_G(G_p)$ is *p*-nilpotent; a contradiction). Since P_1 is S_* -embedded in *G*, then there exists an *S*-permutable subgroup *F* of *G* such that P_1F is *S*-permutable in *G* and $(P_1 \cap F) \leq (P_1)_*$. If F = 1, then P_1 is *S*-permutable in *G* which implies that $P_1 \leq G_p O^p(G) = G$ by using Lemma 3 and since $P_1 \neq 1$, we have $L \leq P_1$ by step (4) which means $P_1 = G_p$; a contradiction. Thus, we may assume that $F \neq 1$. Assume that $F_G \neq 1$. Then $L \leq F_G \leq F$ which implies that $P_1 \cap L \leq P_1 \cap F \leq (P_1)_* \cap L$ and so $P_1 \cap L =$ $(P_1)_* \cap L$. Lemma 4 yields $P_1 \cap L$ is *S*-permutable in *G*. If $P_1 \cap L \neq 1$, then $L \leq (P_1 \cap L)^{O^p(G)G_p} \leq (P_1)^{G_p} = P_1$ by Lemma 3; a contradiction. So, assume $P_1 \cap L = 1$. This implies that |L| = p. Since $X \cong G/L = G/C_G(L) \lesssim Aut(L)$, we have |X| | (p-1). It follows that *L* is a Sylow *p*-subgroup of *G*. Hence $L = G_p$; a contradiction. Thus, $F_G = 1$. In view of Lemma 5(1), we have *F* is a nilpotent group. Then from step (1), *F* is a *p*-subgroup. By Lemma 5(2) and Lemma 5(3), we have $(P_1)_* \leq P_1 \leq P_1 F \leq O_p(G)$ which implies that $(P_1)_* \leq (P_1)_{SG}$ by using Lemma 6 and Lemma 5(4). Now, we have $P_1 \cap F \leq (P_1)_* \leq (P_1)_{SG}$ which implies $P_1 \cap F \leq (P_1)_{SG} \cap F$. Hence, $P_1 \cap F = (P_1)_{SG} \cap F$. In view of Lemma 5(5), we have $P_1 \cap F$ is *S*-permutable in *G*. If $P_1 \cap F = 1$, then |F| = p. It follows that $P_1 F$ is a Sylow *p*-subgroup of *G*. Hence, $P_1F = G_p = O_p(G) = L$; a contradiction. Thus, it can be assumed that $P_1 \cap F \neq 1$. Then, by using Lemma 3 and step (4), we have $L \leq (P_1 \cap F)^G = (P_1 \cap F)^{O^p(G)G_p} \leq (P_1)^{G_p} = P_1$. Hence $G_p = LP_1 = P_1$; a final contradiction.

Proof of Theorem B. Assume the result is not true providing G as a counterexample of minimal order. Lemma 2(1) with Theorem 1, imply A is p-nilpotent. Let $A_{p'}$ be the normal p-complement of A. Since $A_{p'}$ char $A \leq G$, then $A_{p'} \leq G$. Assume that $|A_{p'}| > 1$. Clearly, $A/A_{p'} \leq G/A_{p'}$ and $(G/A_{p'})/(A/A_{p'}) \cong G/A$ is pnilpotent. Let $X/A_{p'}$ be a maximal subgroup of the Sylow p-subgroup $A_pA_{p'}/A_{p'}$ of $A/A_{p'}$. Then A_p has a maximal subgroup X₁ such that $X = X_1A_{p'}$. If X₁ possesses a p-nilpotent supplement D in G, then $DA_{p'}/A_{p'}$ is a p-nilpotent supplement of $X_1A_{p'}/A_{p'}$ in $G/A_{p'}$. If X₁ is S_{*}-embedded in G, it follows that $X_1A_{p'}/A_{p'}$ is S_{*}embedded in $G/A_{p'}$ by using Lemma 2(3). Our choice of G implies that $G/A_{p'}$ is p-nilpotent. Consequently, G is p-nilpotent which is a contradiction. Thus, it can be assumed $A_{p'} = 1$. Then $A = A_p$, which implies $G = N_G(A) = N_G(A_p)$ is p-nilpotent; a final contradiction.

Remark 1 The condition $N_G(G_p)$ is *p*-nilpotent in Theorem 1 and Theorem B is necessary. For example, consider $G = A_5$ and p = 3. Then all maximal subgroups of any Sylow 3-subgroup G_3 of G are S_* -embedded in G, but G is not 3-nilpotent.

We work toward the proof of Theorem C:

Theorem 2 Suppose that p is some prime divisor of |G| satisfies (|G|, p - 1) = 1, and $A \leq G$ such that G/A is p-nilpotent. If A has a Sylow p-subgroup A_p such that all maximal subgroups of A_p , that are without a p-nilpotent supplement in G, are S_* -embedded in G, then G is p-nilpotent.

Proof Assume the result is not true providing *G* as a counterexample of minimal order. By Lemma 2(1) and Lemma 1, we have that *A* is *p*-nilpotent. Let $A_{p'}$ be the normal *p*-complement of *A*. Since $A_{p'}$ char $A \leq G$, then $A_{p'} \leq G$. Assume that $|A_{p'}| > 1$. Clearly, $A/A_{p'} \leq G/A_{p'}$ and $(G/A_{p'})/(A/A_{p'}) \cong G/A$ is *p*-nilpotent. Let $X/A_{p'}$ be a maximal subgroup of the Sylow *p*-subgroup $A_p A_{p'}/A_{p'}$ of $A/A_{p'}$. Then A_p has a maximal subgroup X_1 such that $X = X_1 A_{p'}$. If X_1 possesses a *p*-nilpotent supplement *D* in *G*, then $DA_{p'}/A_{p'}$ is a *p*-nilpotent supplement of $X_1 A_{p'}/A_{p'}$ in $G/A_{p'}$. If X_1 is S_* -embedded in *G*, then $X_1 A_{p'}/A_{p'}$ is S_* -embedded in $G/A_{p'}$ by Lemma 2(3). So $G/A_{p'}$ is *p*-nilpotent due to the minimal choice of *G*. It follows, *G* is *p*-nilpotent; a contradiction. Thus, it can be assumed $A_{p'} = 1$ which yields $A = A_p$ is a *p*-group. Let L/A_p be the normal *p*-complement of G/A_p . Schur-Zassenhaus Theorem implies that *L* has a Hall p'-subgroup $L_{p'}$ such that $L = A_p \rtimes L_{p'}$. Since *L* is *p*-nilpotent by Lemma 2(1) and Lemma 1, it follows that $L = A_p \rtimes L_{p'}$. Hence, we have $L_{p'}$ is the normal *p*-complement of *G*, and thereby *G* is *p*-nilpotent; a contradiction.

Lemma 7 and Theorem 2 lead to the following corollary:

Corollary 1 Suppose $A \subseteq G$ provided G/A is p-nilpotent, where p is the smallest prime divisor of |G|. If A has a Sylow p-subgroup A_p such that all maximal subgroups of A_p that are without a p-supersolvable supplement in G are S_* -embedded in G, then G is p-nilpotent.

Proof Clearly, (|G|, p - 1) = 1 as p is the smallest prime divisor of |G|. Lemma 7 suggests all maximal subgroups of A_p that are without a p-nilpotent supplement in G are S_* -embedded in G. Using Theorem 2, gives G is p-nilpotent.

Now we can prove Theorem C:

Proof of Theorem C. Assume the result is not true providing G as a counterexample of minimal order. In view of Theorem A(1), we have A is supersolvable. Let G_p be a Sylow p-subgroup of G, where p is the largest prime divisor of |G|. We distinguish two cases.

Case 1. $G_p \leq A$.

Then $G_p \trianglelefteq A$ as A is supersolvable. Since G_p char $A \oiint G$, it follows that $G_p \leq G$. Now, we show that G/G_p is supersolvable. Clearly, $(A/G_p) \leq (G/G_p)$ and $(G/G_p)/(A/G_p) \cong (G/A)$ is supersolvable. Let X/G_p be a maximal subgroup of the Sylow q-subgroup $A_q G_p/G_p$ of A/G_p . Then A_q has a maximal subgroup X_1 such that $X = X_1 G_p$. If X_1 has a supersolvable supplement B in G, then BG_p/G_p is a supersolvable supplement of X_1G_p/G_p in G/G_p . If X_1 is S_* -embedded in G, then X_1G_p/G_p is S_* -embedded in G/G_p by using Lemma 2(3). The minimal choice of G yields G/G_p is supersolvable and G_p is not cyclic. Let N be a minimal normal subgroup of G contained in G_p . It is also easy to see that G/N is supersolvable. Further, since the class of all supersolvable groups is a saturated formation, it follows that N is the unique minimal normal subgroup of G contained in G_p and $N \leq \Phi(G)$. Hence G possesses a maximal subgroup X such that G = NX and $N \cap X = 1$. Since $G_p \cap X$ is normalized by G by using Lemma 8, it follows that $N = G_p$ which yields G_p is an elementray abelian p-group. Now, Let N_1 be a maximal subgroup of N. If N_1 has a supersolvable supplement B in G, then $G = N_1 B = N B$ and $N = N \cap N_1 B = N_1 (N \cap B)$, which implies that $N \cap B \neq 1$. Since $N \cap B \leq G$ and N is a minimal normal subgroup of G, we have $N \cap B = N$. Consequently, $N \leq B$ which implies that G = B is supersolvable which is a contradiction. Thus, we can assume that N_1 is S_* -embedded in G. In view of Lemma 2(4), G possesses an S-permutable subgroup F contained in G_p such that N_1F is S-permutable in G and $N_1 \cap F \leq (N_1)_*$. If F = 1, then N_1 is S-permutable in G and $N_1 \leq G_p O^p(G) = G$ by using Lemma 3 and so $|G_p| = p$; a contradiction. Thus, $F \neq 1$. Since G_p is an elementary abelian pgroup, then $F \leq G_p$. Applying Lemma 3 again, we get $F \leq G_p O^p(G) = G$.

This implies $F = G_p = N$. Hence $N_1 \cap F = N_1 = (N_1)_*$, is S-permutable in G by Lemma 6; again a contradiction as above.

Case 2. $G_p \not\leq A$.

In this case we distinguish the following two subcases.

Subcase (i). $G_p A < G$.

Clearly, $A \leq G_p A$ and $G_p A/A \cong G_p/G_p \cap A$ is supersolvable. By Lemma 2(1), all maximal subgroups of any non-cyclic Sylow subgroup of A not having a supersolvable supplement in G are S_* -embedded in G_pA . Therefore, G_pA is supersolvable due to the minimal choice of G. Since $G_p A/A$ is a Sylow *p*-subgroup of G/A, where *p* is the largest prime divisor of |G| and G/A is supersolvable, it follows that $G_pA/A \leq$ G/A and so $G_pA \trianglelefteq G$. Since G_p char $G_pA \trianglelefteq G$, then $G_p \trianglelefteq G$. Hence $G_p \cap A \trianglelefteq G$, where $G_p \cap A$ is a Sylow *p*-subgroup of A. By using the same arguments as in Case 1, we have $G/G_p \cap A$ is supersolvable and $G_p \cap A$ is a minimal normal subgroup of G. Set $N = G_p \cap A$. By our choice of G together with Lemma 9, N has a maximal subgroup N_1 such that $N_1 \not \leq G$. If N_1 possesses a supersolvable supplement B in G, we have G is supersolvable as in Case 1; a contradiction. Thus, we can assume that N_1 is S_* -embedded in G. In view of Lemma 2(4), there exists an S-permutable subgroup F of G contained in N such that N_1F is S-permutable in G and $N_1 \cap F \leq (N_1)_*$. By the maximality of N_1 in N, we have either $N_1F = N_1$ or $N_1F = N$. If the former holds, then N_1 is S-permutable in G. So, $N_1 \triangleleft NO^p(A) = A$ and hence $A \lt N_G(N_1)$ by using Lemma 10(1) and Lemma 3. Applying Lemma 3 again, we get $O^p(G) \leq N_G(N_1) < G$. Hence G possesses a maximal subgroup X such that $O^p(G) \leq N_G(N_1) \leq X < G$ with |G:X| = p. Since $X/O^p(G) \leq G/O^p(G)$, then $X \leq G$. Due to the minimal choice of G, we have X is supersolvable. Therefore, $G = G_p X$ and consequently G is supersolvable by using Lemma 11; a contradiction. Thus, we can assume that $N_1F = N$. If $F \leq G$, then F = N which implies $N_1 \cap F = N_1 =$ $(N_1)_*$ is S-permutable in G by Lemma 6; a contradiction as above. Thus, $F \not \leq G$. Since N is an elementary abelian p-group, then $F \leq N$. Hence $F \leq NO^{p}(A) = A$ by Lemma 10(1) and Lemma 3 and so $A \leq N_{G}(F)$. Applying Lemma 3 again, there exists a maximal normal subgroup Xof G such that $O^p(G) \leq N_G(F) \leq X < G$ with |G: X| = p. It follows that X is supersolvable by our choice of G. So, $G = G_p X$ and consequently G is supersolvable again by Lemma 11; a contradiction.

Subcase (ii). $G = G_p A$.

Lemma 12 and Corollary 1 yield A contains all Sylow q-subgroups of G with $q \neq p$ and G is a q_r -nilpotent, where q_r is the smallest prime divisor of |G|. This implies that G has a Sylow tower group of supersolvable type. Therefore, $G_p \leq G$ as p is the largest prime divisor of |G|. Applying Lemma 11, G is supersolvable; a final contradiction.

In order to show Theorem D, we need the following useful theorem:

Theorem 3 Suppose A is a normal p-subgroup of G such that G/A is supersolvable. If all cyclic subgroups of A of order p or of order 4 not having a supersolvable supplement in G are S_* -embedded in G, then G is supersolvable.

Proof Assume the result is not true providing *G* as a counterexample of minimal order. It is easy to see that all proper subgroups of *G* are supersolvable by using Lemma 2(1). Hence *G* is a minimal non-supersolvable group. By Doerk's result [4] *G* has a Sylow *p*-subgroup G_p such that $G_p \leq G$ for a prime divisor *p* of |G|, $G_p/\Phi(G_p)$ is a minimal normal subgroup of $G/\Phi(G_p)$, and the exponent of G_p is either *p* or 4. Clearly, $A \leq G_p$ (Otherwise, $G \cong G/G_p \cap A \lesssim G/G_p \times G/A$ is supersolvable; a contradiction). We build up the proof by the following two steps.

(1) $A = G_p$.

Since $A\Phi(G_p)/\Phi(G_p) \leq G/\Phi(G_p)$, we have either $A\Phi(G_p) = G_p$ or $A \leq \Phi(G_p)$. If the latter holds, then $G/\Phi(G_p)$ is supersolvable. It follows that, from $\Phi(G_p) \leq \Phi(G)$, $G/\Phi(G)$ is supersolvable and so G is also supersolvable by a well-known result of Huppert [7, p.713]; a contradiction. Thus, $A\Phi(G_p) = G_p$ and thereby $A = G_p$ as required.

(2) Finishing the proof.

Assume that $|A/\Phi(A)| = p$. Then there exists x in A such that $A/\Phi(A) = <$ $x\Phi(A)$ > which implies that A is cyclic and consequently G is supersolvable which is a contradiction. So, $|A/\Phi(A)| = p^n$, n > 1 and $A/\Phi(A) = <$ $x_1\Phi(A), x_2\Phi(A), ..., x_n\Phi(A) > \text{as } A/\Phi(A) \text{ is an elementary abelian } p$ -group. Hence, we have $A = \langle x_1, x_2, ..., x_n \rangle$. Set $A_i = \langle x_i \rangle$ for all i = 1, 2, ..., n. So, we have $|A_i| = p$ or 4. Now, the hypothesis of the theorem assures that A_i either has a supersolvable supplement in G say B or A_i is S_* -embedded in G. If A_i is not S_* -embedded in G, then $G = A_i B$ and so $A = A \cap G = A \cap A_i B = A_i (A \cap B)$. Obviously, $(A \cap B)\Phi(A)/\Phi(A) \leq G/\Phi(A)$ as $A/\Phi(A)$ is abelian. In view of step (1), $A/\Phi(A)$ is a minimal normal subgroup of $G/\Phi(A)$ which implies that either $(A \cap B)\Phi(A) = A$ or $(A \cap B) \leq \Phi(A)$. If the latter holds, then $A = A_i$ is cyclic and so G is supersolvable; a contradiction. Hence $(A \cap B)\Phi(A) = A$ and so $A \cap B = A$ which implies that G = B is supersolvable; contradicts our choice of G. Thus, we can assume that A_i is S_* -embedded in G. In view of Lemma 2(4), then G possesses an S-permutable subgroup F contained in A such that $A_i F$ is also S-permutable in G and $A_i \cap F \leq (A_i)_*$. By Lemma 10(2) and the fact that $A/\Phi(A)$ is abelian, it is easy to see that $F\Phi(A)/\Phi(A)$ is S-permutable in $G/\Phi(A)$ and $F\Phi(A)/\Phi(A) \leq A/\Phi(A)$. Applying Lemma 3, we have $F\Phi(A)/\Phi(A) \leq (A/\Phi(A))(O^p(G/\Phi(A))) = G/\Phi(A)$. Again, the minimal normality of $A/\Phi(A)$ in $G/\Phi(A)$ implies that either $F\Phi(A) = A$ or $F\Phi(A) \leq \Phi(A)$. If the latter holds, $A_i \Phi(A) / \Phi(A) = A_i F \Phi(A) / \Phi(A)$ is Spermutable in $G/\Phi(A)$ by using Lemma 10(2). If $F\Phi(A) = A$, then we have F = A. Therefore, $A_i \cap F = A_i = (A_i)_*$ is S-permutable in G by Lemma 6, and so $A_i \Phi(A) / \Phi(A)$ is S-permutable in $G / \Phi(A)$ by Lemma 10(2). By [13, Lemma 2.11], there exists a maximal subgroup $X\Phi(A)/\Phi(A)$ of $A/\Phi(A)$ such that $X\Phi(A)/\Phi(A) \leq G/\Phi(A)$; a final contradiction.

Proof of Theorem D. Assume the result is not true providing G as a counterexample of minimal order. If the order of A is of prime power, then G is supersolvable by

Theorem 3; a contradiction. Thus, we can assume that the order of A is divisible by at least two distinct primes. By Lemma 2(1) and Theorem A(2), we have A is supersolvable. Hence A possesses a normal Sylow p-subgroup A_p , where p is the largest prime divisor of |A|. Since A_p char $A \leq G$, we have $A_p \leq G$. Let U/A_p be a cyclic subgroup of the Sylow q-subgroup A_qA_p/A_p of A/A_p such that $|U/A_p| = q$ or 4. Then A_q has a cyclic subgroup R such that $U = RA_p$ and |R| = q or 4. If Rhas a supersolvable supplement B in G, then BA_p/A_p is a supersolvable supplement of RA_p/A_p in G/A_p . If R is S_* -embedded in G, then RA_p/A_p is S_* -embedded in G/A_p by using Lemma 2(3). Our choice of G yields G/A_p is supersolvable. Applying Theorem 3, we get G is supersolvable; a contradiction.

Acknowledgements The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this project, under grant no. (KEP-PhD: 20-130-1443).

Declarations

Conflicts of interest On behave of all authors, the corresponding author states that there is no conflict of interest.

References

- Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups. Expositions in Mathematics. Vol. 53, De Gruyter (2010)
- Ballester-Bolinches, A., Pedraza-Aguilera, M.C.: Sufficient conditions for supersolvability of finite groups. J. Pure Appl. Algebra. 127(2), 113–118 (1998). https://doi.org/10.1016/S0022-4049(96)00172-7
- Deskins, W.E.: On quasinormal subgroups of finite groups. Math. Z. 82(2), 125–132 (1963). https:// doi.org/10.1007/BF01111801
- Doerk, K.: Minimal nicht uberauflosbare, endliche Gruppen. Math. Z. 91(3), 198–205 (1966). https:// doi.org/10.1007/BF01312426
- Friesen, D.K.: Products of normal supersolvable subgroups. Proc. Am. Math. Soc. 30(1), 46–48 (1971). https://doi.org/10.2307/2038217
- 6. Guo, W., Lu, Y., Niu, W.: S-embedded subgroups of finite groups. Algebra Log. **49**(4), 293–304 (2010). https://doi.org/10.1007/s10469-010-9097-2
- 7. Huppert, B.: Endiche Gruppen. Springer-Verlag, Berlin (1967)
- Kegel, O.H.: Sylow Gruppen und subnormalteiler endlicher Gruppen. Math. Z. 78(1), 205–221 (1962). https://doi.org/10.1007/BF01195169
- Li, C.: On S_{*}-embedded subgroups of finite groups. Commun. Algebra. 50(4), 1585–1594 (2022). https://doi.org/10.1080/00927872.2021.1986056
- Li, Y., Wang, Y., Wei, H.: On *p*-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math. Hungar. **108**(4), 283–298 (2005). https://doi.org/10.1007/s10474-005-0225-8
- Ramadan, M.: Influence of normality on maximal subgroups of Sylow subgroups of a finite group. Acta Math. Hungar. 59, 107–110 (1992). https://doi.org/10.1007/BF00052096
- Schmid, P.: Subgroups permutable with all Sylow subgroups. J. Algebra. 207(1), 285–293 (1998). https://doi.org/10.1006/jabr.1998.7429
- Skiba, A.N.: On weakly S-permutable subgroups of finite groups. J. Algebra. 315(1), 192–209 (2007). https://doi.org/10.1016/j.jalgebra.2007.04.025
- Thompson, J.G.: Normal *p*-complements for finite groups. J. Algebra. 1(1), 43–46 (1964). https://doi. org/10.1016/0021-8693(64)90006-7
- Wei, H., Wang, Y.: On c*-normality and its properties. J. Group Theory. 10, 211–223 (2007). https:// doi.org/10.1515/JGT.2007.017

- 16. Wielandt, H.: Subnormal subgroups and permutation groups. Ohio State University, Lectures Note (1971)
- 17. Yu, H.: On S-semipermutable or S-permutably embedded subgroups of finite groups. Acta Math. Hungar. **151**(1), 173–180 (2017). https://doi.org/10.1007/s10474-016-0674-2
- Zhang, Q., Wang, L.: The influence of s-semipermutable subgroups on the structure of a finite group. Acta Math. Sinica (Chin. Ser.). 48, 81–88 (2005)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.