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Abstract

We examine the p-nilpotency and supersolvablitiy of a finite group under the assump-
tion that certain subgroups of prime power order are S,- embedded in the group
itself. In particular, we extend and generalize the recent results of Li (Commun.
Algebra 50(4):1585-1594, https://doi.org/10.1080/00927872.2021.1986056, 2022)
and the related results in the literature.
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1 Introduction

All the groups are considered to be finite and G always stands for a finite
group. G, denotes a Sylow p-subgroup of G where p is a prime number.
We use conventional notions and notation as in [1]. Recall that a subgroup
A of G is said to be S-permutable in G if AG, = G,A for every Sylow
p-subgroup G, of G [8]. Zhang and Wang [18] called a subgroup A of G S-
semipermutable in G if A permutes with every Sylow p-subgroup G, of G such
that (p, |A|) = 1. Ballester-Bolinches and Pedraza-Aguilera [2] called a subgroup
A of G S-permutably embedded in G if all Sylow p-subgroups of A are also Sylow
p-subgroups of some S-permutable subgroup F of G. Obviously, the class of all
S-permutably embedded subgroups is wider than the class of all S-permutable sub-
groups. More recently, Li [9] introduced a new embedding property which covers both
of S-permutably embedded and S-semipermutable concepts as follows: A subgroup
A of G is said to be Si-embedded in G if G has an S-permutable subgroup F such
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that AF is S-permutable in G and AN F < A,, where A, is a subgroup contained in
A which is either S-permutably embedded or S-semipermutable in G.

By using this new concept, Li [9] studied the group structure when certain subgroups
are S.-embedded and obtained new results generalised many classical and recent
results in the literature. More precisely, he proved:

Theorem A ([8, Main Theorem]) Assume for each non-cyclic Sylow p-subgroup G
of G, either of the following two conditions is held:

1. All maximal subgroups of G, not having a supersolvable supplement in G are
Sy-embedded in G.

2. All cyclic subgroups of G, of prime order or of order 4, that are without a super-
solvable supplement in G, are Sy-embedded in G.

Then, G is supersolvable.
Our main object in this paper is to go further in studying the influence of Si-
embedded subgroups on the group structure. In fact, we prove:

Theorem B Suppose A < G such that G/ A is p-nilpotent for some prime divisor p of
|G|. If A has a Sylow p-subgroup A, suchthat NG (A ) is p-nilpotent and all maximal
subgroups of A, that are without a p-nilpotent supplement in G, are Sy-embedded
in G, then G is p-nilpotent.

Theorem C Suppose A < G such that G/ A is supersolvable. If all maximal subgroups
of each non-cyclic Sylow subgroup of A, that are without a supersolvable supplement
in G, are Sy-embedded in G, then G is supersolvable.

Theorem D Suppose A < G such that G/ A is supersolvable. If all cyclic subgroups
of each non-cyclic Sylow subgroup of A of prime order or of order 4, that are without
a supersolvable supplement in G, are Sy-embedded in G, then G is supersolvable.

2 Preliminaries

Lemma1 ([9, Theorem 3.2]) Assume p is some prime divisor of |G| satisfying
(IGl,p — 1) = 1, and G, is a Sylow p-subgroup of G. If all maximal subgroups
of Gp, that are without a p-nilpotent supplement in G, are Sy-embedded in G, then
G is p-nilpotent.

Lemma 2 ([9, Lemma 2.5]) Let A be an Si-embedded p-subgroup of G.

1. If A < B < G, then A is Sx-embedded in B.

2. If L Gand L < A, then A/L is Sy-embedded in G/ L.

3. If L < Gand (|L|,|A|) = 1, then AL/L is Sy-embedded in G/ L.

4. If L < Gand A < L, then G has an S-permutable subgroup F contained in L
such that AF is S-permutable in G and AN F < A,.

Lemma 3 ([12, Theorem A]) Suppose that A is an S-permutable p-subgroup of G.
Then OP (G) is contained in Ng(A).
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Lemma4 ([17, Lemma 2.1(d)]) Suppose that A is a p-subgroup of G and B is a
normal p-subgroup of G. If A is either S-permutably embedded or S-semipermutable
in G, then AN B is also S-permutable in G.

Lemma5 Let A be a subgroup of G.

1. [3]If A is S-permutable in G, then A/Ag is nilpotent.

2. [8]11f A is S-permutable in G, then A is subnormal in G.

3. [16] If A is a subnormal p-subgroup of G, then A is contained in Op(G).

4. [13] Asg is an S-permutable subgroup of G, where Asg is a subgroup of A
generated by all S-permutable subgroups of G that contained in A.

5. [12]1If A and B are S-permutable subgroups of G, then AN B is also S-permutable
inG.

Lemma6 ([10, 18]) Suppose that A is either S-permutably embedded or S-
semipermutable in G. If A is a p-subgroup contained in O,(G), then A is
S-permutable in G.

Lemma7 ([9, Lemma 2.1(3)]) Suppose that p is some prime divisor of |G| satisfying
(|G|, p — 1) = 1. If G is p-supersolvable, then G is p-nilpotent.

Lemma 8 ([15, Lemma 2.4]) If A is a maximal subgroup of G and B is a normal
p-subgroup of G such that G = AB, then AN B < G.

Lemma9 ([11, Theorem 3.5]) If A < G such that G/ A is supersolvable and all max-
imal subgroups of any Sylow subgroup of A are normal in G, then G is supersolvable.

Lemma 10 ([8]) Let A be an S-permutable subgroup of G.

1. If A < B < G, then A is S-permutable in B.
2. If L < G, then AL/L is S-permutable in G/ L.

Lemma 11 ([S]) Suppose that A and B are normal supersolvable subgroups of G
with G = AB. If the indices |G : A| and |G : B| are relatively prime, then G is
supresolvable.

Lemma 12 ([16]) If A is a subnormal subgroup of G such that the number |G : A| is
not divisible by p, then every Sylow p-subgroup G, of G is contained in A.

3 Proofs

Theorem 1 Suppose G is a Sylow p-subgroup of G for some prime divisor p of
|G|. If Ng(Gp) is p-nilpotent and all maximal subgroups of G p, that are without a
p-nilpotent supplement in G, are Sy-embedded in G, then G is p-nilpotent.

Proof If p = 2, then, by Lemma 1, G is p-nilpotent. So, it can be assumed that p > 2.
Suppose the result is not true providing G as a counterexample of minimal order.
Following the method of the first part of the proof of [6, Theorem 2.3], we conclude
that all maximal subgroups of G, are S,-embedded in G. Now, we build up the proof
by the following steps:

@ Springer



A. A. Heliel et al.

(D) 0,(G) =1.
Assume that O, (G) # 1.Let X/0,/(G) be a maximal subgroup of the Sylow p-
subgroup G, 0, (G)/ 0, (G) of G/Oy(G). Then G, has a maximal subgroup
X1 such that X = X{0,/(G). Since X is Sy-embedded in G, it follows that
X10,(G)/0,(G)is Sx-embedded in G/ O,/ (G) by Lemma 2(3). Also, we have
NG/OP,(G)(GPOP/(G)/Opr(G)) = Ng(Gp)Op(G)/0y(G) is p-nilpotent. Our
choice of G implies that G/ O,/ (G) is p-nilpotent. Consequently, G is p-nilpotent
which is a contradiction.

(2) If G, < A < G, then A is p-nilpotent.
Clearly, Na(Gp) < Ng(G)p) is p-nilpotent, and by Lemma 2(1) all maximal
subgroups of G, are Sy-embedded in A. The minimal choice of G implies that A
is p-nilpotent.

(3) G is p-solvable.
By Thompson’s result [14, Corollary], G, has a non-trivial characteristic sub-
group R such that NG (R) is not p-nilpotent. Let L be any characteristic subgroup
of G, such that 0,(G) < L < G,. Since L char G, < Ng(Gp), we have
L 94 Ng(Gp).Hence G, < Ng(Gp) < Ng(L) < G which implies that NG (L)
is p-nilpotent by step (2). If 0,(G) = 1,then 1 < R < G, and hence Ng(R)
is p-nilpotent; a contradiction. Thus, we may assume that O,(G) # 1. Clearly,
NG/0,6)(Gp/0p(G)) = NG(Gp)/Op(G) is p-nilpotent. By using Lemma
2(2), it is easy to see that G/ O, (G) satisfies the hypothesis of the theorem. Our
choice of G implies that G/ O, (G) is p-nilpotent, and thereby G is p-solvable.

(4) There exists a unique minimal normal subgroup L of G such that G/L is p-
nilpotent and G = L x X, where X is a maximal subgroup of G. Moreover,
L =Cg(L) =F(G) = 0,(G).
Let L be a minimal normal subgroup of G. Then L is an elementary abelian
p-group by steps (1) and (3). This implies L < 0,(G) < G,. If L = G,
then clearly, G/L is p-nilpotent. Thus, we may assume that L < G . In view of
Lemma 2(2), we can see that the hypothesis still holds for G /L. Our choice of G
implies that G/L is also p-nilpotent. Since the class of all p-nilpotent groups is
a saturated formation, it follows that L is the unique minimal normal subgroup
of G and L & ®(G). Hence, there exists a maximal subgroup X of G such that
G=LxX,L=Cg(L)=F(G)=0,(G).

(5) Finishing the proof.
Let X, be a Sylow p-subgroup of X such that G, = LX, and P; be a maximal
subgroup of G, containing X ,. Then G, = LX, = L P;. We may assume that
L # G, (Otherwise, G = Ng(L) = Ng(G)) is p-nilpotent; a contradiction).
Since P; is S,-embedded in G, then there exists an S-permutable subgroup F of
G such that Py F is S-permutable in G and (P N F) < (P1). If F =1, then P;
is S-permutable in G which implies that Pi < G, 0”(G) = G by using Lemma
3 and since P; # 1, we have L < P; by step (4) which means P; = G; a
contradiction. Thus, we may assume that F' # 1. Assume that Fg # 1. Then
L < Fg < F whichimpliesthat PPNL < PINF < (P;)sNLandso PiNL =
(P1)x N L. Lemma 4 yields P; N L is S-permutable in G. If Py N L # 1, then
L < (PLNL)°"GGr < (P))Sr = P| by Lemma 3; a contradiction. So, assume
PyNL = 1. This implies that |L| = p.Since X = G/L = G/Cg(L) < Aut(L),
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wehave | X| | (p—1).Itfollows that L is a Sylow p-subgroupof G.Hence L = G ;
a contradiction. Thus, Fg = 1. In view of Lemma 5(1), we have F is a nilpotent
group. Then from step (1), F is a p-subgroup. By Lemma 5(2) and Lemma 5(3),
we have (P)s < Py < PiF < 0,(G) which implies that (P1)s < (P1)s by
using Lemma 6 and Lemma 5(4). Now, we have PN F < (P1)4 < (P1)sG Which
implies P N F < (P1);g N F.Hence, Py N F = (P1)s¢ N F. In view of Lemma
5(5), we have P; N F is S-permutable in G. If Py N F = 1, then |F| = p. It
follows that Py I is a Sylow p-subgroup of G. Hence, PiF = G, = 0,(G) = L;
a contradiction. Thus, it can be assumed that P; N F # 1. Then, by using Lemma
3 and step (4), we have L < (P, N F)¢ = (P, N F)?"@% < (P)Cr = Py.
Hence G, = L P, = P1; a final contradiction. O

Proof of Theorem B. Assume the result is not true providing G as a counterexample
of minimal order. Lemma 2(1) with Theorem 1, imply A is p-nilpotent. Let A, be
the normal p-complement of A. Since A, char A d G, then A, < G. Assume
that |A,/| > 1. Clearly, A/A, < G/A, and (G/Ap)/(AJAy) = G/A is p-
nilpotent. Let X /A, be a maximal subgroup of the Sylow p-subgroup A, A, /A, of
A/A . Then A, has a maximal subgroup X such that X = XA, If X possesses
a p-nilpotent supplement D in G, then DA, /A, is a p-nilpotent supplement of
X1Apy /Ay in G/A . If Xy is Sy-embedded in G, it follows that XA,/ /A  is Sk-
embedded in G/A, by using Lemma 2(3). Our choice of G implies that G/A is
p-nilpotent. Consequently, G is p-nilpotent which is a contradiction. Thus, it can
be assumed A, = 1. Then A = A,, which implies G = Ng(A) = Ng(Ap) is
p-nilpotent; a final contradiction. O

Remark 1 The condition Ng(G,) is p-nilpotent in Theorem 1 and Theorem B is
necessary. For example, consider G = As and p = 3. Then all maximal subgroups of
any Sylow 3-subgroup G3 of G are S,-embedded in G, but G is not 3-nilpotent.

We work toward the proof of Theorem C:

Theorem 2 Suppose that p is some prime divisor of |G| satisfies (|G|, p — 1) = 1,
and A 4 G such that G /A is p-nilpotent. If A has a Sylow p-subgroup A, such that
all maximal subgroups of A, that are without a p-nilpotent supplement in G, are
S«-embedded in G, then G is p-nilpotent.

Proof Assume the result is not true providing G as a counterexample of minimal order.
By Lemma 2(1) and Lemma 1, we have that A is p-nilpotent. Let A / be the normal
p-complement of A. Since Ap/ char A < G, then Apr < G. Assume that |Ap/| > 1.
Clearly, A/Ap/ < G/Apr and (G/Apr)/(A/Apr) = G/A is p-nilpotent. Let X/Ap/
be a maximal subgroup of the Sylow p-subgroup ApAp/ /Ap/ of A/Ap/ .Then A, hasa
maximal subgroup X suchthat X = X1 A e If X possesses a p-nilpotent supplement
D in G, then DAp//Ap/ is a p-nilpotent supplement of XlAp//Ap/ in G/Ap/. If X,
is Sy-embedded in G, then XlApr/A /18 Sy-embedded in G/Ap/ by Lemma 2(3). So
G/A p/ is p-nilpotent due to the minimal choice of G. It follows, G is p-nilpotent; a
contradiction. Thus, it can be assumed A ; = 1 which yields A = A, is a p-group.
Let L/A ), be the normal p-complement of G/A . Schur-Zassenhaus Theorem implies
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that L has a Hall p/-subgroup Lp/ suchthat L = A x Lp/. Since L is p-nilpotent by
Lemma 2(1) and Lemma 1, it follows that L = A, x L ;. Hence, we have L ; is the
normal p-complement of G, and thereby G is p-nilpotent; a contradiction. O

Lemma 7 and Theorem 2 lead to the following corollary:

Corollary 1 Suppose A < G provided G /A is p-nilpotent, where p is the smallest
prime divisor of |G|. If A has a Sylow p-subgroup A, such that all maximal subgroups
of Ap that are without a p-supersolvable supplement in G are Sy-embedded in G, then
G is p-nilpotent.

Proof Clearly, (|G|, p — 1) = 1 as p is the smallest prime divisor of |G|. Lemma 7
suggests all maximal subgroups of A, that are without a p-nilpotent supplement in G
are S,-embedded in G. Using Theorem 2, gives G is p-nilpotent. O

Now we can prove Theorem C:

Proof of Theorem C. Assume the result is not true providing G as a counterexample of
minimal order. In view of Theorem A(1), we have A is supersolvable. Let G, be a
Sylow p-subgroup of G, where p is the largest prime divisor of |G|. We distinguish
two cases.

Case 1. G, < A.
Then G, < A as A is supersolvable. Since G, char A < G, it fol-
lows that G, < G. Now, we show that G/G is supersolvable. Clearly,
(A/Gp) < (G/Gp) and (G/Gp)/(A/Gp) = (G/A) is supersolvable. Let
X /G p be amaximal subgroup of the Sylow ¢-subgroup A, G, /G, of A/G),.
Then A, has a maximal subgroup X; such that X = X;G. If X; has a
supersolvable supplement B in G, then BG /G, is a supersolvable supple-
ment of X1G,/Gp in G/Gp. If X1 is Sy-embedded in G, then X1G,/G,
is Sy-embedded in G/G by using Lemma 2(3). The minimal choice of G
yields G/G, is supersolvable and G is not cyclic. Let N be a minimal
normal subgroup of G contained in G . It is also easy to see that G/N is
supersolvable. Further, since the class of all supersolvable groups is a sat-
urated formation, it follows that N is the unique minimal normal subgroup
of G contained in G, and N &« ®(G). Hence G possesses a maximal sub-
group X such that G = NX and N N X = 1. Since G, N X is normalized
by G by using Lemma 8, it follows that N = G, which yields G is an
elementray abelian p-group. Now, Let N1 be a maximal subgroup of N. If
N1 has a supersolvable supplement B in G, then G = N1B = NB and
N = NN NiB = Ni(N N B), which implies that N N B # 1. Since
NN B < G and N is a minimal normal subgroup of G, wehave NN B = N.
Consequently, N < B which implies that G = B is supersolvable which is
a contradiction. Thus, we can assume that N is Sy-embedded in G. In view
of Lemma 2(4), G possesses an S-permutable subgroup F' contained in G,
such that N1 F' is S-permutable in G and N| N F < (N1)4. If F = 1, then Ny
is S-permutable in G and Ny < G,07(G) = G by using Lemma 3 and so
|G| = p;acontradiction. Thus, F' # 1. Since G, is an elemntary abelian p-
group, then F' <1 G ,. Applying Lemma 3 again, we get F < G, 07(G) = G.
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This implies F = G, = N. Hence N; N F = Nj = (Ny)s, is S-permutable
in G by Lemma 6; again a contradiction as above.

Case2. G, £ A.
In this case we distinguish the following two subcases.

Subcase (i).

Subcase (ii).

Gy,A <G.

Clearly, A < G,A and G,A/A = G,/G, N A is supersolvable. By
Lemma 2(1), all maximal subgroups of any non-cyclic Sylow subgroup
of A not having a supersolvable supplement in G are S,-embedded in
G, A. Therefore, G, A is supersolvable due to the minimal choice of G.
Since G,A/A is a Sylow p-subgroup of G/A, where p is the largest
prime divisor of |G| and G/ A is supersolvable, it follows that G ,A/A <
G/Aandso G,A < G.Since G char G,A < G, then G, < G. Hence
G, N A 4 G, where G, N A is a Sylow p-subgroup of A. By using
the same arguments as in Case 1, we have G/G, N A is supersolvable
and G, N A is a minimal normal subgroup of G. Set N = G, N A. By
our choice of G together with Lemma 9, N has a maximal subgroup
Nj such that Ni ¢ G.If N possesses a supersolvable supplement B in
G, we have G is supersolvable as in Case 1; a contradiction. Thus, we
can assume that N is Sx-embedded in G. In view of Lemma 2(4), there
exists an S-permutable subgroup F of G contained in N such that N1 F
is S-permutable in G and Ny N F < (Np),. By the maximality of N; in
N, we have either N F = Nj or N; F = N. If the former holds, then N
is S-permutable in G. So, Ny < NOP(A) = A and hence A < Ng(Ny)
by using Lemma 10(1) and Lemma 3. Applying Lemma 3 again, we
get OP(G) < Ng(N1) < G. Hence G possesses a maximal subgroup
X such that OP(G) < Ng(N1) < X < G with |G : X| = p. Since
X/0P(G) I G/OP(G),then X < G. Due to the minimal choice of G,
we have X is supersolvable. Therefore, G = G, X and consequently G is
supersolvable by using Lemma 11; a contradiction. Thus, we can assume
that NyF = N.If F < G, then F = N which implies Ny N F = Nj =
(N1)4 is S-permutable in G by Lemma 6; a contradiction as above. Thus,
F £ G. Since N is an elementary abelian p-group, then F < N. Hence
F < NOP(A) = AbyLemma 10(1) and Lemma 3 andso A < Ng(F).
Applying Lemma 3 again, there exists a maximal normal subgroup X
of G such that OP(G) < Ng(F) < X < Gwith |G : X| = p. It
follows that X is supersolvable by our choice of G. So, G = G, X and
consequently G is supersolvable again by Lemma 11; a contradiction.
G = G,A.

Lemma 12 and Corollary 1 yield A contains all Sylow g-subgroups
of G with ¢ # p and G is a g,-nilpotent, where g, is the smallest
prime divisor of |G|. This implies that G has a Sylow tower group of
supersolvable type. Therefore, G, < G as p is the largest prime divisor
of |G|. Applying Lemma 11, G is supersolvable; a final contradiction.Ol

In order to show Theorem D, we need the following useful theorem:
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Theorem 3 Suppose A is a normal p-subgroup of G such that G/ A is supersolvable.
If all cyclic subgroups of A of order p or of order 4 not having a supersolvable
supplement in G are Sy-embedded in G, then G is supersolvable.

Proof Assume the result is not true providing G as a counterexample of minimal order.

Itis easy to see that all proper subgroups of G are supersolvable by using Lemma 2(1).

Hence G is a minimal non-supersolvable group. By Doerk’s result [4] G has a Sylow

p-subgroup G, such that G, < G for a prime divisor p of |G|, G,/P(G)) is a

minimal normal subgroup of G/®(G), and the exponent of G is either p or 4.

Clearly, A < G, (Otherwise, G = G/G, N A < G/G, x G/A is supersolvable; a

contradiction). We build up the proof by the following two steps.

() A=G,.
Since AD(G,)/P(Gp) I G/P(G)), we have either AS(G,) = Gp or A <
®(Gp). If the latter holds, then G/®(G ) is supersolvable. It follows that, from
®(Gp) < P(G), G/P(G) is supersolvable and so G is also supersolvable by a
well-known result of Huppert [7, p.713]; a contradiction. Thus, A®(G,) = G,
and thereby A = G, as required.

(2) Finishing the proof.
Assume that |[A/P(A)| = p. Then there exists x in A such that A/DP(A) =<
x®(A) > which implies that A is cyclic and consequently G is supersolv-
able which is a contradiction. So, |[A/®(A)] = p",n > 1 and A/P(A) =<
X1 DP(A), x2P(A), ..., x, P(A) > as A/DP(A) is an elementary abelian p-group.
Hence, we have A =< xp, x2, ..., x, >.SetA; =< x; >foralli = 1,2, ...,n.So,
we have |A;| = p or 4. Now, the hypothesis of the theorem assures that A; either
has a supersolvable supplement in G say B or A; is Sy-embedded in G. If A; is not
Sy-embedded in G,then G = A;Bandso A=ANG =ANA;B=A;(ANB).
Obviously, (AN B)®(A)/P(A) I G/P(A) as A/DP(A) is abelian. In view of
step (1), A/P(A) is a minimal normal subgroup of G/®(A) which implies that
either (AN B)®(A) = A or (AN B) < ®(A). If the latter holds, then A = A;
is cyclic and so G is supersolvable; a contradiction. Hence (A N B)®(A) = A
and so A N B = A which implies that G = B is supersolvable; contradicts
our choice of G. Thus, we can assume that A; is Sy-embedded in G. In view
of Lemma 2(4), then G possesses an S-permutable subgroup F contained in
A such that A; F is also S-permutable in G and A; N F < (A;)4. By Lemma
10(2) and the fact that A/®(A) is abelian, it is easy to see that FP(A)/P(A)
is S-permutable in G/P(A) and FP(A)/P(A) I A/D(A). Applying Lemma
3, we have FO(A)/P(A) < (A/DP(A))(OP(G/P(A)) = G/D(A). Again, the
minimal normality of A/®(A) in G/P(A) implies that either F®(A) = A or
F®(A) < ®(A). If the latter holds, A;P(A)/P(A) = A;FO(A)/P(A) is S-
permutable in G/®(A) by using Lemma 10(2). If F®(A) = A, then we have
F = A. Therefore, A; N F = A; = (A;)« is S-permutable in G by Lemma
6, and so A;®(A)/P(A) is S-permutable in G/ P(A) by Lemma 10(2). By [13,
Lemma 2.11], there exists a maximal subgroup X®(A)/P(A) of A/P(A) such
that X®(A)/P(A) I G/P(A); a final contradiction. O

Proof of Theorem D. Assume the result is not true providing G as a counterexample
of minimal order. If the order of A is of prime power, then G is supersolvable by
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Theorem 3; a contradiction. Thus, we can assume that the order of A is divisible
by at least two distinct primes. By Lemma 2(1) and Theorem A(2), we have A is
supersolvable. Hence A possesses a normal Sylow p-subgroup A,, where p is the
largest prime divisor of |A|. Since A, char A < G, wehave A, I G.LetU/A, bea
cyclic subgroup of the Sylow g-subgroup A;A,/A, of A/A, suchthat [U/A,| =gq
or 4. Then A, has a cyclic subgroup R such that U = RA, and |R| = g or 4. If R
has a supersolvable supplement B in G, then BA, /A is a supersolvable supplement
of RA,/Ap,in G/A,. If R is Si-embedded in G, then RA, /A is Sy-embedded in
G /A, by using Lemma 2(3). Our choice of G yields G/A, is supersolvable. Applying
Theorem 3, we get G is supersolvable; a contradiction. O
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