

Finite groups with specific *^S***∗-embedded subgroups**

A. A. Heliel[1](http://orcid.org/0000-0002-3425-2818) · M. M. Al-Shomrani¹ · M. O. Almestady1 · A. H. Zailai1

Received: 1 March 2023 / Accepted: 25 May 2023 © Università degli Studi di Napoli "Federico II" 2023

Abstract

We examine the *p*-nilpotency and supersolvablitiy of a finite group under the assumption that certain subgroups of prime power order are *S*∗- embedded in the group itself. In particular, we extend and generalize the recent results of Li (Commun. Algebra 50(4):1585–1594, [https://doi.org/10.1080/00927872.2021.1986056,](https://doi.org/10.1080/00927872.2021.1986056) 2022) and the related results in the literature.

Keywords *p*-nilpotent · Supersolvable · *S*-semipermutable subgroup · *S*-permutably embedded subgroup · *S*∗-embedded subgroup

Mathematics Subject Classification 20D10 · 20D20

1 Introduction

All the groups are considered to be finite and *G* always stands for a finite group. G_p denotes a Sylow p -subgroup of G where p is a prime number. We use conventional notions and notation as in [\[1](#page-8-0)]. Recall that a subgroup *A* of *G* is said to be *S*-permutable in *G* if $AG_p = G_pA$ for every Sylow *p*-subgroup *G ^p* of *G* [\[8](#page-8-1)]. Zhang and Wang [\[18](#page-9-0)] called a subgroup *A* of *G S*semipermutable in *G* if *A* permutes with every Sylow *p*-subgroup G_p of *G* such that $(p, |A|) = 1$. Ballester-Bolinches and Pedraza-Aguilera [\[2](#page-8-2)] called a subgroup *A* of *G S*-permutably embedded in *G* if all Sylow *p*-subgroups of *A* are also Sylow *p*-subgroups of some *S*-permutable subgroup *F* of *G*. Obviously, the class of all *S*-permutably embedded subgroups is wider than the class of all *S*-permutable subgroups. More recently, Li [\[9\]](#page-8-3) introduced a new embedding property which covers both of *S*-permutably embedded and *S*-semipermutable concepts as follows: A subgroup *A* of *G* is said to be *S*∗-embedded in *G* if *G* has an *S*-permutable subgroup *F* such

 \boxtimes A. A. Heliel Heliel9@yahoo.com; aahsalem1@kau.edu.sa

¹ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

that *AF* is *S*-permutable in *G* and $A \cap F \leq A_*$, where A_* is a subgroup contained in *A* which is either *S*-permutably embedded or *S*-semipermutable in *G*.

By using this new concept, Li [\[9\]](#page-8-3) studied the group structure when certain subgroups are *S*∗-embedded and obtained new results generalised many classical and recent results in the literature. More precisely, he proved:

Theorem A ([8, Main Theorem]) *Assume for each non-cyclic Sylow p-subgroup G ^p of G, either of the following two conditions is held:*

- *1. All maximal subgroups of G ^p not having a supersolvable supplement in G are S*∗*-embedded in G.*
- *2. All cyclic subgroups of G ^p of prime order or of order* 4*, that are without a supersolvable supplement in G, are S*∗*-embedded in G.*

Then, G is supersolvable.

Our main object in this paper is to go further in studying the influence of *S*∗ embedded subgroups on the group structure. In fact, we prove:

Theorem B Suppose $A \trianglelefteq G$ such that G/A is p-nilpotent for some prime divisor p of $|G|$ *. If A has a Sylow p-subgroup A_p such that* $N_G(A_p)$ *is p-nilpotent and all maximal subgroups of* A_p , that are without a p-nilpotent supplement in G, are S_* -embedded *in G, then G is p-nilpotent.*

Theorem C Suppose $A \trianglelefteq G$ such that G/A is supersolvable. If all maximal subgroups *of each non-cyclic Sylow subgroup of A, that are without a supersolvable supplement in G, are S*∗*-embedded in G, then G is supersolvable.*

Theorem D Suppose $A \trianglelefteq G$ such that G/A is supersolvable. If all cyclic subgroups *of each non-cyclic Sylow subgroup of A of prime order or of order* 4*, that are without a supersolvable supplement in G, are S*∗*-embedded in G, then G is supersolvable.*

2 Preliminaries

Lemma 1 ([\[9,](#page-8-3) Theorem 3.2]) *Assume p is some prime divisor of* |*G*| *satisfying* $(|G|, p - 1) = 1$, and G_p is a Sylow p-subgroup of G. If all maximal subgroups *of G p, that are without a p-nilpotent supplement in G, are S*∗*-embedded in G, then G is p-nilpotent.*

Lemma 2 ([\[9,](#page-8-3) Lemma 2.5]) *Let A be an S*∗*-embedded p-subgroup of G.*

- *1. If* $A \leq B \leq G$, then A *is* S_{*} -embedded in B .
- 2. If $L \leq G$ and $L \leq A$, then A/L is S_* -embedded in G/L .
- 3. If $L \leq G$ and $(|L|, |A|) = 1$, then AL/L is S_* -embedded in G/L .
- 4. If $L \trianglelefteq G$ and $A \leq L$, then G has an S-permutable subgroup F contained in L *such that AF is S-permutable in G and A* \cap *F* \leq *A***.*

Lemma 3 ([\[12,](#page-8-4) Theorem A]) *Suppose that A is an S-permutable p-subgroup of G. Then* $O^p(G)$ *is contained in* $N_G(A)$ *.*

Lemma 4 ([\[17,](#page-9-1) Lemma 2.1(d)]) *Suppose that A is a p-subgroup of G and B is a normal p-subgroup of G. If A is either S-permutably embedded or S-semipermutable in G, then A* \cap *B is also S-permutable in G.*

Lemma 5 *Let A be a subgroup of G.*

- *1.* [\[3\]](#page-8-5) *If A is S-permutable in G, then A*/*AG is nilpotent.*
- *2.* [\[8\]](#page-8-1) *If A is S-permutable in G, then A is subnormal in G.*
- *3.* [\[16\]](#page-9-2) *If A is a subnormal p-subgroup of G, then A is contained in* $O_p(G)$ *.*
- *4.* [\[13\]](#page-8-6) *ASG is an S-permutable subgroup of G, where ASG is a subgroup of A generated by all S-permutable subgroups of G that contained in A.*
- *5.* [\[12\]](#page-8-4) *If A and B are S-permutable subgroups of G, then A*∩*B is also S-permutable in G.*

Lemma 6 ([\[10,](#page-8-7) [18](#page-9-0)]) *Suppose that A is either S-permutably embedded or Ssemipermutable in G. If A is a p-subgroup contained in* $O_p(G)$ *, then A is S-permutable in G.*

Lemma 7 ([\[9,](#page-8-3) Lemma 2.1(3)]) *Suppose that p is some prime divisor of* |*G*| *satisfying* $(|G|, p - 1) = 1$. If G is p-supersolvable, then G is p-nilpotent.

Lemma 8 ([\[15,](#page-8-8) Lemma 2.4]) *If A is a maximal subgroup of G and B is a normal p*-subgroup of G such that $G = AB$, then $A \cap B \trianglelefteq G$.

Lemma 9 ([\[11,](#page-8-9) Theorem 3.5]) If $A \trianglelefteq G$ such that G/A is supersolvable and all max*imal subgroups of any Sylow subgroup of A are normal in G, then G is supersolvable.*

Lemma 10 ([\[8\]](#page-8-1)) *Let A be an S-permutable subgroup of G.*

1. If $A \leq B \leq G$, then A is S-permutable in B.

2. If $L \trianglelefteq G$, then AL/L is S-permutable in G/L .

Lemma 11 ([\[5\]](#page-8-10)) *Suppose that A and B are normal supersolvable subgroups of G with* $G = AB$. If the indices $|G : A|$ and $|G : B|$ are relatively prime, then G is *supresolvable.*

Lemma 12 ([\[16\]](#page-9-2)) *If A is a subnormal subgroup of G such that the number* |*G* : *A*| *is not divisible by p, then every Sylow p-subgroup G ^p of G is contained in A.*

3 Proofs

Theorem 1 *Suppose G ^p is a Sylow p-subgroup of G for some prime divisor p of* | G |*. If* $N_G(G_p)$ *is p-nilpotent and all maximal subgroups of* G_p *, that are without a p-nilpotent supplement in G, are S*∗*-embedded in G, then G is p-nilpotent.*

Proof If $p = 2$, then, by Lemma [1,](#page-1-0) *G* is *p*-nilpotent. So, it can be assumed that $p > 2$. Suppose the result is not true providing *G* as a counterexample of minimal order. Following the method of the first part of the proof of [\[6](#page-8-11), Theorem 2.3], we conclude that all maximal subgroups of G_p are S_{*} -embedded in G . Now, we build up the proof by the following steps:

(1) $O_{p'}(G) = 1$.

Assume that $O_{p'}(G) \neq 1$. Let $X/O_{p'}(G)$ be a maximal subgroup of the Sylow *p*subgroup $G_p O_{p'}(G)/O_{p'}(G)$ of $G/O_{p'}(G)$. Then G_p has a maximal subgroup *X*₁ such that *X* = *X*₁*O_p*(*G*). Since *X*₁ is *S*_{*}-embedded in *G*, it follows that $X_1 O_{p'}(G)/O_{p'}(G)$ is S_* -embedded in $G/O_{p'}(G)$ by Lemma [2\(](#page-1-1)3). Also, we have $N_{G/O_{p'}(G)}(G_p O_{p'}(G) / O_{p'}(G)) = N_G(G_p) O_{p'}(G) / O_{p'}(G)$ is *p*-nilpotent. Our choice of *G* implies that $G/O_{p'}(G)$ is *p*-nilpotent. Consequently, *G* is *p*-nilpotent which is a contradiction.

- (2) If $G_p \leq A < G$, then *A* is *p*-nilpotent. Clearly, $N_A(G_p) \leq N_G(G_p)$ is *p*-nilpotent, and by Lemma [2\(](#page-1-1)1) all maximal subgroups of G_p are S_* -embedded in *A*. The minimal choice of *G* implies that *A* is *p*-nilpotent.
- (3) *G* is *p*-solvable.

By Thompson's result $[14, Corollary]$ $[14, Corollary]$, G_p has a non-trivial characteristic subgroup *R* such that $N_G(R)$ is not *p*-nilpotent. Let *L* be any characteristic subgroup of G_p such that $O_p(G) < L \leq G_p$. Since *L* char $G_p \leq N_G(G_p)$, we have $L \leq N_G(G_p)$. Hence $G_p \leq N_G(G_p) \leq N_G(L) < G$ which implies that $N_G(L)$ is *p*-nilpotent by step (2). If $O_p(G) = 1$, then $1 < R \leq G_p$ and hence $N_G(R)$ is *p*-nilpotent; a contradiction. Thus, we may assume that $O_p(G) \neq 1$. Clearly, $N_{G/O_p(G)}(G_p/O_p(G)) = N_G(G_p)/O_p(G)$ is *p*-nilpotent. By using Lemma [2\(](#page-1-1)2), it is easy to see that $G/O_p(G)$ satisfies the hypothesis of the theorem. Our choice of *G* implies that $G/O_p(G)$ is *p*-nilpotent, and thereby *G* is *p*-solvable.

(4) There exists a unique minimal normal subgroup *L* of *G* such that *G*/*L* is *p*nilpotent and $G = L \rtimes X$, where *X* is a maximal subgroup of *G*. Moreover, $L = C_G(L) = F(G) = O_p(G).$

Let *L* be a minimal normal subgroup of *G*. Then *L* is an elementary abelian *p*-group by steps (1) and (3). This implies $L \leq O_p(G) \leq G_p$. If $L = G_p$, then clearly, G/L is *p*-nilpotent. Thus, we may assume that $L < G_p$. In view of Lemma [2\(](#page-1-1)2), we can see that the hypothesis still holds for *G*/*L*. Our choice of *G* implies that G/L is also *p*-nilpotent. Since the class of all *p*-nilpotent groups is a saturated formation, it follows that *L* is the unique minimal normal subgroup of *G* and $L \nleq \Phi(G)$. Hence, there exists a maximal subgroup *X* of *G* such that $G = L \rtimes X$, $L = C_G(L) = F(G) = O_p(G)$.

(5) Finishing the proof.

Let X_p be a Sylow *p*-subgroup of *X* such that $G_p = L X_p$, and P_1 be a maximal subgroup of G_p containing X_p . Then $G_p = L X_p = L P_1$. We may assume that $L \neq G_p$ (Otherwise, $G = N_G(L) = N_G(G_p)$ is *p*-nilpotent; a contradiction). Since P_1 is S_* -embedded in G , then there exists an S -permutable subgroup F of *G* such that *P*₁*F* is *S*-permutable in *G* and $(P_1 \cap F) \leq (P_1)_*$. If $F = 1$, then P_1 is *S*-permutable in *G* which implies that $P_1 \leq G_p O^p(G) = G$ by using Lemma [3](#page-1-2) and since $P_1 \neq 1$, we have $L \leq P_1$ by step (4) which means $P_1 = G_p$; a contradiction. Thus, we may assume that $F \neq 1$. Assume that $F_G \neq 1$. Then *L* ≤ *F_G* ≤ *F* which implies that $P_1 \cap L$ ≤ $P_1 \cap F$ ≤ $(P_1)_* \cap L$ and so $P_1 \cap L$ = $(P_1)_*$ ∩ *L*. Lemma [4](#page-1-3) yields P_1 ∩ *L* is *S*-permutable in *G*. If P_1 ∩ *L* \neq 1, then $L \leq (P_1 \cap L)^{O^p(G)G_p} \leq (P_1)^{G_p} = P_1$ by Lemma [3;](#page-1-2) a contradiction. So, assume *P*₁ ∩ *L* = 1. This implies that $|L| = p$. Since $X \cong G/L = G/C_G(L) \leq Aut(L)$,

we have $|X|$ ($p-1$). It follows that *L* is a Sylow *p*-subgroup of *G*. Hence $L = G_p$; a contradiction. Thus, $F_G = 1$. In view of Lemma [5\(](#page-2-0)1), we have *F* is a nilpotent group. Then from step (1), F is a p -subgroup. By Lemma [5\(](#page-2-0)2) and Lemma 5(3), we have $(P_1)_*$ ≤ P_1 ≤ P_1 *F* ≤ $O_p(G)$ which implies that $(P_1)_*$ ≤ $(P_1)_{sG}$ by using Lemma [6](#page-2-1) and Lemma [5\(](#page-2-0)4). Now, we have $P_1 \cap F \leq (P_1)_* \leq (P_1)_s$ which implies $P_1 \cap F$ ≤ $(P_1)_{sG} \cap F$. Hence, $P_1 \cap F = (P_1)_{sG} \cap F$. In view of Lemma [5\(](#page-2-0)5), we have $P_1 \cap F$ is *S*-permutable in *G*. If $P_1 \cap F = 1$, then $|F| = p$. It follows that P_1F is a Sylow p-subgroup of *G*. Hence, $P_1F = G_p = O_p(G) = L$; a contradiction. Thus, it can be assumed that $P_1 \cap F \neq 1$. Then, by using Lemma [3](#page-1-2) and step (4), we have $L \leq (P_1 \cap F)^G = (P_1 \cap F)^{O^p(G)G_p} \leq (P_1)^{G_p} = P_1$.
Hence $G_p = L P_1 = P_1$: a final contradiction. Hence $G_p = LP_1 = P_1$; a final contradiction.

Proof of Theorem B. Assume the result is not true providing *G* as a counterexample of minimal order. Lemma $2(1)$ $2(1)$ with Theorem [1,](#page-2-2) imply *A* is *p*-nilpotent. Let $A_{p'}$ be the normal *p*-complement of *A*. Since $A_{p'}$ char $A \leq G$, then $A_{p'} \leq G$. Assume that $|A_{p'}| > 1$. Clearly, $A/A_{p'} \leq G/A_{p'}$ and $(G/A_{p'})/(A/A_{p'}) \cong G/A$ is *p*nilpotent. Let $X/A_{p'}$ be a maximal subgroup of the Sylow *p*-subgroup $A_pA_{p'}/A_{p'}$ of $A/A_{p'}$. Then A_p has a maximal subgroup X_1 such that $X = X_1 A_{p'}$. If X_1 possesses a *p*-nilpotent supplement *D* in *G*, then $DA_{p'}/A_{p'}$ is a *p*-nilpotent supplement of $X_1A_{p'}/A_{p'}$ in $G/A_{p'}$. If X_1 is S_* -embedded in *G*, it follows that $X_1A_{p'}/A_{p'}$ is S_* embedded in $G/A_{p'}$ by using Lemma [2\(](#page-1-1)3). Our choice of *G* implies that $G/A_{p'}$ is *p*-nilpotent. Consequently, *G* is *p*-nilpotent which is a contradiction. Thus, it can be assumed $A_{p'} = 1$. Then $A = A_p$, which implies $G = N_G(A) = N_G(A_p)$ is *p*-nilpotent: a final contradiction. *p*-nilpotent; a final contradiction.

Remark [1](#page-2-2) The condition $N_G(G_p)$ is *p*-nilpotent in Theorem 1 and Theorem B is necessary. For example, consider $G = A_5$ and $p = 3$. Then all maximal subgroups of any Sylow 3-subgroup G_3 of G are S_* -embedded in G , but G is not 3-nilpotent.

We work toward the proof of Theorem C:

Theorem 2 *Suppose that p is some prime divisor of* $|G|$ *satisfies* $(|G|, p - 1) = 1$, and $A \trianglelefteq G$ such that G/A is p-nilpotent. If A has a Sylow p-subgroup A_p such that *all maximal subgroups of* A_p , that are without a p-nilpotent supplement in G, are *S*∗*-embedded in G, then G is p-nilpotent.*

Proof Assume the result is not true providing *G* as a counterexample of minimal order. By Lemma [2\(](#page-1-1)1) and Lemma [1,](#page-1-0) we have that *A* is *p*-nilpotent. Let $A_{p'}$ be the normal *p*-complement of *A*. Since $A_{p'}$ char $A \le G$, then $A_{p'} \le G$. Assume that $|A_{p'}| > 1$. Clearly, $A/A_{p'} \leq G/A_{p'}$ and $(G/A_{p'})/(A/A_{p'}) \cong G/A$ is *p*-nilpotent. Let $X/A_{p'}$ be a maximal subgroup of the Sylow *p*-subgroup $A_p A_{p'} / A_{p'}$ of $A/A_{p'}$. Then A_p has a maximal subgroup X_1 such that $X = X_1 A_{p'}$. If X_1 possesses a *p*-nilpotent supplement *D* in *G*, then $DA_{p'}/A_{p'}$ is a *p*-nilpotent supplement of $X_1A_{p'}/A_{p'}$ in $G/A_{p'}$. If X_1 is S_* -embedded in *G*, then $X_1 A_{p'}/A_{p'}$ is S_* -embedded in $G/A_{p'}$ by Lemma [2\(](#page-1-1)3). So $G/A_{p'}$ is *p*-nilpotent due to the minimal choice of *G*. It follows, *G* is *p*-nilpotent; a contradiction. Thus, it can be assumed $A_{p'} = 1$ which yields $A = A_p$ is a *p*-group. Let L/A_p be the normal *p*-complement of G/A_p . Schur-Zassenhaus Theorem implies

that *L* has a Hall p' -subgroup $L_{p'}$ such that $L = A_p \rtimes L_{p'}$. Since *L* is *p*-nilpotent by Lemma [2\(](#page-1-1)1) and Lemma [1,](#page-1-0) it follows that $L = A_p \times L_{p'}$. Hence, we have $L_{p'}$ is the normal *p*-complement of *G*, and thereby *G* is *p*-nilpotent; a contradiction.

Lemma [7](#page-2-3) and Theorem [2](#page-4-0) lead to the following corollary:

Corollary 1 *Suppose A* \leq *G provided G/A is p-nilpotent, where p is the smallest prime divisor of* $|G|$ *. If A has a Sylow p-subgroup A_p such that all maximal subgroups of Ap that are without a p-supersolvable supplement in G are S*∗*-embedded in G, then G is p-nilpotent.*

Proof Clearly, $(|G|, p - 1) = 1$ as *p* is the smallest prime divisor of $|G|$. Lemma [7](#page-2-3) suggests all maximal subgroups of A_p that are without a *p*-nilpotent supplement in G are *S*∗-embedded in *G*. Using Theorem [2,](#page-4-0) gives *G* is *p*-nilpotent.

Now we can prove Theorem C:

Proof of Theorem C. Assume the result is not true providing *G* as a counterexample of minimal order. In view of Theorem A(1), we have A is supersolvable. Let G_p be a Sylow *p*-subgroup of *G*, where *p* is the largest prime divisor of $|G|$. We distinguish two cases.

Case 1. $G_p \leq A$.

Then $G_p \leq A$ as A is supersolvable. Since G_p char $A \leq G$, it follows that $G_p \trianglelefteq G$. Now, we show that G/G_p is supersolvable. Clearly, (A/G_p) ≤ (G/G_p) and $(G/G_p)/(A/G_p)$ ≅ (G/A) is supersolvable. Let X/G_p be a maximal subgroup of the Sylow *q*-subgroup A_qG_p/G_p of A/G_p . Then A_q has a maximal subgroup X_1 such that $X = X_1 G_p$. If X_1 has a supersolvable supplement *B* in *G*, then BG_p/G_p is a supersolvable supplement of X_1G_p/G_p in G/G_p . If X_1 is S_* -embedded in *G*, then X_1G_p/G_p is S_* -embedded in G/G_p by using Lemma [2\(](#page-1-1)3). The minimal choice of *G* yields G/G_p is supersolvable and G_p is not cyclic. Let *N* be a minimal normal subgroup of *G* contained in G_p . It is also easy to see that G/N is supersolvable. Further, since the class of all supersolvable groups is a saturated formation, it follows that *N* is the unique minimal normal subgroup of *G* contained in G_p and $N \nleq \Phi(G)$. Hence *G* possesses a maximal subgroup *X* such that $G = N X$ and $N \cap X = 1$. Since $G_p \cap X$ is normalized by *G* by using Lemma [8,](#page-2-4) it follows that $N = G_p$ which yields G_p is an elementray abelian *p*-group. Now, Let *N*¹ be a maximal subgroup of *N*. If N_1 has a supersolvable supplement *B* in *G*, then $G = N_1B = NB$ and $N = N \cap N_1B = N_1(N \cap B)$, which implies that $N \cap B \neq 1$. Since *N* ∩ *B* \le *G* and *N* is a minimal normal subgroup of *G*, we have *N* ∩ *B* = *N*. Consequently, $N \leq B$ which implies that $G = B$ is supersolvable which is a contradiction. Thus, we can assume that N_1 is S_* -embedded in G . In view of Lemma $2(4)$ $2(4)$, *G* possesses an *S*-permutable subgroup *F* contained in G_p such that *N*₁*F* is *S*-permutable in *G* and $N_1 \cap F \leq (N_1)_*$. If $F = 1$, then N_1 is *S*-permutable in *G* and $N_1 \leq G_p O^p(G) = G$ by using Lemma [3](#page-1-2) and so $|G_p| = p$; a contradiction. Thus, $F \neq 1$. Since G_p is an elemntary abelian *p*group, then $F \trianglelefteq G_p$. Applying Lemma [3](#page-1-2) again, we get $F \trianglelefteq G_p O^p(G) = G$.

This implies $F = G_p = N$. Hence $N_1 \cap F = N_1 = (N_1)_*$, is *S*-permutable in *G* by Lemma [6;](#page-2-1) again a contradiction as above.

Case 2. $G_p \nleq A$.

In this case we distinguish the following two subcases.

Subcase (i). $G_p A < G$.

Clearly, $A \leq G_p A$ and $G_p A/A \cong G_p/G_p \cap A$ is supersolvable. By Lemma [2\(](#page-1-1)1), all maximal subgroups of any non-cyclic Sylow subgroup of *A* not having a supersolvable supplement in *G* are *S*∗-embedded in $G_p A$. Therefore, $G_p A$ is supersolvable due to the minimal choice of G . Since G_pA/A is a Sylow *p*-subgroup of G/A , where *p* is the largest prime divisor of $|G|$ and G/A is supersolvable, it follows that $G_pA/A \trianglelefteq$ G/A and so $G_pA \trianglelefteq G$. Since G_p char $G_pA \trianglelefteq G$, then $G_p \trianglelefteq G$. Hence $G_p \cap A \leq G$, where $G_p \cap A$ is a Sylow *p*-subgroup of *A*. By using the same arguments as in Case 1, we have $G/G_p \cap A$ is supersolvable and $G_p \cap A$ is a minimal normal subgroup of *G*. Set $N = G_p \cap A$. By our choice of *G* together with Lemma [9,](#page-2-5) *N* has a maximal subgroup *N*₁ such that $N_1 \ntrianglelefteq G$. If N_1 possesses a supersolvable supplement *B* in *G*, we have *G* is supersolvable as in Case 1; a contradiction. Thus, we can assume that N_1 is S_* -embedded in *G*. In view of Lemma [2\(](#page-1-1)4), there exists an *S*-permutable subgroup *F* of *G* contained in *N* such that N_1F is *S*-permutable in *G* and $N_1 \cap F \leq (N_1)_*$. By the maximality of N_1 in *N*, we have either $N_1F = N_1$ or $N_1F = N$. If the former holds, then N_1 is *S*-permutable in *G*. So, $N_1 \leq NO^p(A) = A$ and hence $A \leq N_G(N_1)$ by using Lemma [10\(](#page-2-6)1) and Lemma [3.](#page-1-2) Applying Lemma [3](#page-1-2) again, we get $O^p(G) \leq N_G(N_1) < G$. Hence *G* possesses a maximal subgroup *X* such that $O^p(G) \leq N_G(N_1) \leq X < G$ with $|G : X| = p$. Since $X/O^p(G) \trianglelefteq G/O^p(G)$, then $X \trianglelefteq G$. Due to the minimal choice of *G*, we have *X* is supersolvable. Therefore, $G = G_p X$ and consequently *G* is supersolvable by using Lemma [11;](#page-2-7) a contradiction. Thus, we can assume that $N_1F = N$. If $F \subseteq G$, then $F = N$ which implies $N_1 \cap F = N_1$ (*N*1)[∗] is *S*-permutable in *G* by Lemma [6;](#page-2-1) a contradiction as above. Thus, $F \ntrianglelefteq G$. Since *N* is an elementary abelian *p*-group, then $F \trianglelefteq N$. Hence $F \leq NOP(A) = A$ by Lemma [10\(](#page-2-6)1) and Lemma [3](#page-1-2) and so $A \leq N_G(F)$. Applying Lemma [3](#page-1-2) again, there exists a maximal normal subgroup *X* of *G* such that $O^p(G) \leq N_G(F) \leq X < G$ with $|G : X| = p$. It follows that *X* is supersolvable by our choice of *G*. So, $G = G_p X$ and consequently *G* is supersolvable again by Lemma [11;](#page-2-7) a contradiction.

Subcase (ii). $G = G_p A$.

Lemma [12](#page-2-8) and Corollary [1](#page-5-0) yield *A* contains all Sylow *q*-subgroups of *G* with $q \neq p$ and *G* is a q_r -nilpotent, where q_r is the smallest prime divisor of |*G*|. This implies that *G* has a Sylow tower group of supersolvable type. Therefore, $G_p \trianglelefteq G$ as p is the largest prime divisor of $|G|$. Applying Lemma [11,](#page-2-7) G is supersolvable; a final contradiction. \Box

In order to show Theorem D, we need the following useful theorem:

Theorem 3 *Suppose A is a normal p-subgroup of G such that G*/*A is supersolvable. If all cyclic subgroups of A of order p or of order* 4 *not having a supersolvable supplement in G are S*∗*-embedded in G, then G is supersolvable.*

Proof Assume the result is not true providing G as a counterexample of minimal order. It is easy to see that all proper subgroups of *G* are supersolvable by using Lemma [2\(](#page-1-1)1). Hence *G* is a minimal non-supersolvable group. By Doerk's result [\[4](#page-8-13)] *G* has a Sylow *p*-subgroup G_p such that $G_p \subseteq G$ for a prime divisor p of $|G|$, $G_p/\Phi(G_p)$ is a minimal normal subgroup of $G/\Phi(G_p)$, and the exponent of G_p is either p or 4. Clearly, $A \leq G_p$ (Otherwise, $G \cong G/G_p \cap A \leq G/G_p \times G/A$ is supersolvable; a contradiction). We build up the proof by the following two steps.

 (1) $A = G_p$.

Since $A\Phi(G_p)/\Phi(G_p) \leq G/\Phi(G_p)$, we have either $A\Phi(G_p) = G_p$ or $A \leq$ $\Phi(G_p)$. If the latter holds, then $G/\Phi(G_p)$ is supersolvable. It follows that, from $\Phi(G_p) \leq \Phi(G), G/\Phi(G)$ is supersolvable and so *G* is also supersolvable by a well-known result of Huppert [\[7](#page-8-14), p.713]; a contradiction. Thus, $A\Phi(G_p) = G_p$ and thereby $A = G_p$ as required.

(2) Finishing the proof.

Assume that $|A/\Phi(A)| = p$. Then there exists *x* in *A* such that $A/\Phi(A) = \langle A \rangle$ $x \Phi(A)$ > which implies that *A* is cyclic and consequently *G* is supersolvable which is a contradiction. So, $|A/\Phi(A)| = p^n$, $n > 1$ and $A/\Phi(A) = \langle A|A| \Phi(A) \rangle$ $x_1 \Phi(A), x_2 \Phi(A), ..., x_n \Phi(A) >$ as $A/\Phi(A)$ is an elementary abelian *p*-group. Hence, we have $A = \langle x_1, x_2, ..., x_n \rangle$. Set $A_i = \langle x_i \rangle$ for all $i = 1, 2, ..., n$. So, we have $|A_i| = p$ or 4. Now, the hypothesis of the theorem assures that A_i either has a supersolvable supplement in *G* say *B* or A_i is S_* -embedded in *G*. If A_i is not *S*_{*}-embedded in *G*, then $G = A_i B$ and so $A = A \cap G = A \cap A_i B = A_i (A \cap B)$. Obviously, $(A \cap B)\Phi(A)/\Phi(A) \leq G/\Phi(A)$ as $A/\Phi(A)$ is abelian. In view of step (1), $A/\Phi(A)$ is a minimal normal subgroup of $G/\Phi(A)$ which implies that either $(A \cap B)\Phi(A) = A$ or $(A \cap B) \leq \Phi(A)$. If the latter holds, then $A = A_i$ is cyclic and so *G* is supersolvable; a contradiction. Hence $(A \cap B)\Phi(A) = A$ and so $A \cap B = A$ which implies that $G = B$ is supersolvable; contradicts our choice of *G*. Thus, we can assume that A_i is S_* -embedded in *G*. In view of Lemma [2\(](#page-1-1)4), then *G* possesses an *S*-permutable subgroup *F* contained in *A* such that $A_i F$ is also *S*-permutable in *G* and $A_i \cap F \leq (A_i)_*$. By Lemma [10\(](#page-2-6)2) and the fact that $A/\Phi(A)$ is abelian, it is easy to see that $F\Phi(A)/\Phi(A)$ is *S*-permutable in $G/\Phi(A)$ and $F\Phi(A)/\Phi(A) \leq A/\Phi(A)$. Applying Lemma [3,](#page-1-2) we have $F\Phi(A)/\Phi(A) \leq (A/\Phi(A))(O^p(G/\Phi(A)) = G/\Phi(A)$. Again, the minimal normality of $A/\Phi(A)$ in $G/\Phi(A)$ implies that either $F\Phi(A) = A$ or $F\Phi(A) \leq \Phi(A)$. If the latter holds, $A_i\Phi(A)/\Phi(A) = A_i F\Phi(A)/\Phi(A)$ is Spermutable in $G/\Phi(A)$ by using Lemma [10\(](#page-2-6)2). If $F\Phi(A) = A$, then we have $F = A$. Therefore, $A_i \cap F = A_i = (A_i)_*$ is *S*-permutable in *G* by Lemma [6,](#page-2-1) and so $A_i \Phi(A)/\Phi(A)$ is *S*-permutable in $G/\Phi(A)$ by Lemma [10\(](#page-2-6)2). By [\[13,](#page-8-6) Lemma 2.11], there exists a maximal subgroup $X\Phi(A)/\Phi(A)$ of $A/\Phi(A)$ such that $X\Phi(A)/\Phi(A) \leq G/\Phi(A)$; a final contradiction.

Proof of Theorem D. Assume the result is not true providing *G* as a counterexample of minimal order. If the order of *A* is of prime power, then *G* is supersolvable by Theorem [3;](#page-6-0) a contradiction. Thus, we can assume that the order of *A* is divisible by at least two distinct primes. By Lemma [2\(](#page-1-1)1) and Theorem A(2), we have *A* is supersolvable. Hence *A* possesses a normal Sylow *p*-subgroup A_p , where *p* is the largest prime divisor of |A|. Since A_p char $A \leq G$, we have $A_p \leq G$. Let U/A_p be a cyclic subgroup of the Sylow *q*-subgroup $A_q A_p / A_p$ of A / A_p such that $|U / A_p| = q$ or 4. Then A_q has a cyclic subgroup *R* such that $U = RA_p$ and $|R| = q$ or 4. If *R* has a supersolvable supplement *B* in *G*, then BA_p/A_p is a supersolvable supplement of $R A_p/A_p$ in G/A_p . If *R* is S_* -embedded in *G*, then $R A_p/A_p$ is S_* -embedded in G/A_p by using Lemma [2\(](#page-1-1)3). Our choice of *G* yields G/A_p is supersolvable. Applying Theorem [3,](#page-6-0) we get *G* is supersolvable; a contradiction.

Acknowledgements The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this project, under grant no. (KEP-PhD: 20-130-1443).

Declarations

Conflicts of interest On behave of all authors, the corresponding author states that there is no conflict of interest.

References

- 1. Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups. Expositions in Mathematics. Vol. 53, De Gruyter (2010)
- 2. Ballester-Bolinches, A., Pedraza-Aguilera, M.C.: Sufficient conditions for supersolvability of finite groups. J. Pure Appl. Algebra. **127**(2), 113–118 (1998). [https://doi.org/10.1016/S0022-](https://doi.org/10.1016/S0022-4049(96)00172-7) [4049\(96\)00172-7](https://doi.org/10.1016/S0022-4049(96)00172-7)
- 3. Deskins, W.E.: On quasinormal subgroups of finite groups. Math. Z. **82**(2), 125–132 (1963). [https://](https://doi.org/10.1007/BF01111801) doi.org/10.1007/BF01111801
- 4. Doerk, K.: Minimal nicht uberauflosbare, endliche Gruppen. Math. Z. **91**(3), 198–205 (1966). [https://](https://doi.org/10.1007/BF01312426) doi.org/10.1007/BF01312426
- 5. Friesen, D.K.: Products of normal supersolvable subgroups. Proc. Am. Math. Soc. **30**(1), 46–48 (1971). <https://doi.org/10.2307/2038217>
- 6. Guo, W., Lu, Y., Niu, W.: S-embedded subgroups of finite groups. Algebra Log. **49**(4), 293–304 (2010). <https://doi.org/10.1007/s10469-010-9097-2>
- 7. Huppert, B.: Endiche Gruppen. Springer-Verlag, Berlin (1967)
- 8. Kegel, O.H.: Sylow Gruppen und subnormalteiler endlicher Gruppen. Math. Z. **78**(1), 205–221 (1962). <https://doi.org/10.1007/BF01195169>
- 9. Li, C.: On *S*∗-embedded subgroups of finite groups. Commun. Algebra. **50**(4), 1585–1594 (2022). <https://doi.org/10.1080/00927872.2021.1986056>
- 10. Li, Y., Wang, Y., Wei, H.: On *p*-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math. Hungar. **108**(4), 283–298 (2005). <https://doi.org/10.1007/s10474-005-0225-8>
- 11. Ramadan, M.: Influence of normality on maximal subgroups of Sylow subgroups of a finite group. Acta Math. Hungar. **59**, 107–110 (1992). <https://doi.org/10.1007/BF00052096>
- 12. Schmid, P.: Subgroups permutable with all Sylow subgroups. J. Algebra. **207**(1), 285–293 (1998). <https://doi.org/10.1006/jabr.1998.7429>
- 13. Skiba, A.N.: On weakly S-permutable subgroups of finite groups. J. Algebra. **315**(1), 192–209 (2007). <https://doi.org/10.1016/j.jalgebra.2007.04.025>
- 14. Thompson, J.G.: Normal *p*-complements for finite groups. J. Algebra. **1**(1), 43–46 (1964). [https://doi.](https://doi.org/10.1016/0021-8693(64)90006-7) [org/10.1016/0021-8693\(64\)90006-7](https://doi.org/10.1016/0021-8693(64)90006-7)
- 15. Wei, H., Wang, Y.: On c*-normality and its properties. J. Group Theory. **10**, 211–223 (2007). [https://](https://doi.org/10.1515/JGT.2007.017) doi.org/10.1515/JGT.2007.017
- 16. Wielandt, H.: Subnormal subgroups and permutation groups. Ohio State University, Lectures Note (1971)
- 17. Yu, H.: On S-semipermutable or S-permutably embedded subgroups of finite groups. Acta Math. Hungar. **151**(1), 173–180 (2017). <https://doi.org/10.1007/s10474-016-0674-2>
- 18. Zhang, Q., Wang, L.: The influence of s-semipermutable subgroups on the structure of a finite group. Acta Math. Sinica (Chin. Ser.). **48**, 81–88 (2005)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.