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Abstract
This paper is concerned with the steady-state bifurcations arising from a reaction–
diffusion predator–prey systemwith nonlinear growth rate and a protection zone. Some
sufficient conditions for the existence of positive steady-state solutions are given. Our
proof is based on the local and global bifurcation theory and some a priori estimates.
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1 Introduction

In this paper, we will investigate the following predator-prey model with a protection
zone:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u + u(a − u) − b(x)uv

1 + mu
, x ∈ �, t > 0,

vt = �v + v

(
α

1 + βv
− d

)

+ c(x)uv

1 + mu
, x ∈ �\�0, t > 0,

∂νu = 0, x ∈ ∂�, t > 0, ∂νv = 0, x ∈ ∂(�\�0), t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ �, v(x, 0) = v0(x) ≥ 0, x ∈ �\�0,

(1.1)

where � is a bounded domain in the Euclidean space R
N (N ≥ 2) with smooth

boundary ∂� and�0 is a subdomain of�with smooth boundary ∂�0.� = ∑N
i=1

∂2

∂x2i
is the Laplace operator in R

N , ∂ν = ∂/∂ν and ν is the unit outer normal vector
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Fig. 1 The diagrammatic
sketches of b(x) and c(x) in
(1.1)

on ∂� or ∂(�\�0). The homogeneous Neumann boundary condition is assumed so
that no individual crosses the habitat boundary. In addition, a,m, d, α, β are positive
constants; b(x) ∈ L∞(�), b(x) ≥ 0 in�, b(x) ≡ 0 on�0 and for any compact subset
A of �\�0, there exists δA > 0 such that

δA ≤ b(x), ∀x ∈ A;

c(x) ∈ L∞(�\�0) and 0 < c(x) ≤ b(x) in �\�0.
In (1.1), the predator species v cannot enter the subregion �0 of the habitat �,

whereas the prey species u can enter and leave �0 freely. Namely, �0 is a predation-
free zone for the prey species and such a subregion�0 is called a protection zone. One
can think that there is a barrier along ∂�0 that blocks the predator but not the prey
(see [1, 2] for further details). The diagrammatic sketches of b(x) and c(x) in (1.1)
could be shown by Fig. 1.

To present themain results, we collect some basic notations andwell-known results.
Let q(x) ∈ C(�), and denote λD

1 (q, O) and λN
1 (q, O) to be the first eigenvalues

of −� + q(x) in O subject to the homogeneous Dirichlet boundary condition and
Neumann boundary condition, respectively [3–5]. It is well known that λN

1 (q, O) is
increasing in q, that is, λN

1 (q1, O) < λN
1 (q2, O) if q1, q2 ∈ C(O), q1 ≤ q2 and

q1 �≡ q2 on O . A similar assertion is also true for λD
1 (q, O). Moreover,

λN
1 (q, O) < λD

1 (q, O) for q ∈ C(O),

and

λN
1 (q,�) < λN

1 (q,�0), λD
1 (q,�) < λD

1 (q,�0) with q ∈ C(�) and �0 ⊂⊂ �.

For convenience, we denote λD
1 (O) = λD

1 (0, O) and λN
1 (O) = λN

1 (0, O).
It is well known that the effects of the protection zone on the dynamical behavior are

significantly different from non-protection zone case [6–8]. Many theoretical results
show that there exists a critical patch size�0 for the protection zone. If�0 is below this
size, each model behaves similarly to the non-protection zone case, but every model
undergoes profound changes in dynamical behavior once�0 is above the critical patch
size, and in such a case, the endangered species is always saved from extinction.

In this paper, we study the existence of positive stationary solutions of (1.1) with a

protection zone, and mainly investigate the effect of nonlinear growth rate

(
α

1 + βv

)
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on the existence of bifurcation of stationary positive solutions. The stationary problem
associated with (1.1) is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�u + u(a − u) − b(x)uv

1 + mu
= 0, x ∈ �,

�v + v

(
α

1 + βv
− d

)

+ c(x)uv

1 + mu
= 0, x ∈ �\�0,

∂νu = 0, x ∈ ∂�, ∂νv = 0, x ∈ ∂(�\�0).

(1.2)

For convenience, �\�0 will be remembered as �1 below.
The paper is organized as follows. In Sect. 2, we will derive some a priori estimates

of positive solutions to the semilinear system (1.2). In Sect. 3, we will obtain positive
solutions of the semilinear system by using the local and global bifurcation theory.
Finally, the bifurcation stability and global bifurcation are included in Sect. 4.

2 A priori estimates and asymptotic stability of semi-trivial solution

The following lemmas can be helpful to obtain the bounds of positive solutions to
(1.2).

Lemma 2.1 (Maximum principle, [9, Proposition 2.2]) Assume that g ∈ C(O × R).
(i) If w ∈ C2(O) ∩ C1(O) satisfies

�w(x) + g(x, w(x)) ≥ 0 in O , ∂νw ≤ 0 on ∂O ,

and w(x0) = maxO w, then g(x0, w(x0)) ≥ 0.
(ii) If w ∈ C2(O) ∩ C1(O) satisfies

�w(x) + g(x, w(x)) ≤ 0 in O , ∂νw ≥ 0 on ∂O ,

and w(x0) = minO w, then g(x0, w(x0)) ≤ 0.

Theorem 2.2 Suppose that (u, v) is a positive solution of (1.2). Then:

(1) If α < d, then

max{a − ‖b(x)‖∞ a(a+d−α)
d−α

, 0} ≤ u ≤ a in �, 0 < v ≤ a(a+d−α)
d−α

in �1.

(2) If α ≥ d, then

max{a − ‖b(x)‖∞ α−d
dβ

, 0} ≤ u ≤ a in �, α−d
dβ

≤ v in �1.

Furthermore, if d >
a‖c(x)‖∞
1+am , then v ≤ (α−d)(1+am)+a‖c(x)‖∞

β[d(1+am)−a‖c(x)‖∞] in �1.

Proof (1) Case α < d. By adding two equations in (1.2), we have

−�(u + v) = u(a − u) + v

(
α

1 + βv
− d

)

+ [c(x) − b(x)] uv

1 + mu

≤ au + (α − d)v = au − (d − α)v

= (a + d − α)u − (d − α)(u + v)

≤ a(a + d − α) − (d − α)(u + v)
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By Lemma 2.1, u + v ≤ a(a+d−α)
d−α

. Consequently, v ≤ a(a+d−α)
d−α

. From the equation
for u in (1.2), we get

−�u = u(a − u) − b(x)uv

1 + mu
≥ u

[

a − u − ‖b(x)‖∞
a(a + d − α)

d − α

]

,

and then the maximum principle implies that u ≥ a − ‖b(x)‖∞ a(a+d−α)
d−α

.
(2) Case α ≥ d. From the equation for v in (1.2), we obtain

−�v = v

(
α

1 + βv
− d

)

+ c(x)uv

1 + mu
≥ v

(
α

1 + βv
− d

)

,

which implies that v ≥ α−d
dβ

. Similarly,

−�u = u(a − u) − b(x)uv

1 + mu
≥ u(a − u − ‖b(x)‖∞ α−d

dβ
),

−�v = v

(
α

1 + βv
− d

)

+ c(x)uv

1 + mu
≤ v

(
α

1 + βv
− d + a‖c(x)‖∞

1 + am

)

.

Then u ≥ a − ‖b(x)‖∞ α−d
dβ

, and v ≤ (α−d)(1+am)+a‖c(x)‖∞
β[d(1+am)−a‖c(x)‖∞] if d >

a‖c(x)‖∞
1+am . �


Theorem 2.3 Suppose that (u, v) is a positive solution of (1.2). Then:

(1) If α < d, then
α(d − α)

(d − α)(1 + aβ) + a2β
≤ d ≤ α − λN

1

(

− ac(x)

1 + am
,�1

)

.

(2) If α ≥ d, then a ≥ λN
1

(
(α − d)b(x)

dβ(1 + am)
,�

)

.

Proof Suppose that (u, v) is a positive solution of (1.2).
(1) Case α < d. From the equation for v in (1.2), we obtain

−d = λN
1

(

− α

1 + βv
− c(x)u

1 + mu
,�1

)

.

By the monotonicity of eigenvalues,

−d ≤ λN
1

(

− α

1 + β
a(a+d−α)

d−α

,�1

)

≤ λN
1

(

− α(d − α)

(d − α)(1 + aβ) + a2β
,�1

)

= − α(d − α)

(d − α)(1 + aβ) + a2β
,

and

−d ≥ λN
1

(

−α − c(x)u

1 + mu
,�1

)

≥ λN
1

(

−α − ac(x)

1 + am
,�1

)

= −α + λN
1

(

− ac(x)

1 + am
,�1

)

.
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Thus, we have
α(d − α)

(d − α)(1 + aβ) + a2β
≤ d ≤ α − λN

1

(

− ac(x)

1 + am
,�1

)

.

(2) Case α > d. From the equation for v in (1.2), similar to the above, we obtain
that

a = λN
1

(

u + b(x)v

1 + mu
,�

)

≥ λN
1

(
b(x)α−d

dβ

1 + am
,�

)

= λN
1

(
(α − d)b(x)

dβ(1 + am)
,�

)

.

�

Remark 2.4 The results given in Theorem 2.3 lead us directly to the conclusions that:

(1) Assume that α < d. If d <
α(d − α)

(d − α)(1 + aβ) + a2β
or d > α −

λN
1

(

− ac(x)

1 + am
,�1

)

, then (1.2) has no positive solution.

(2) Assume that α ≥ d. If a < λN
1

(
(α − d)b(x)

dβ(1 + am)
,�

)

, then (1.2) has no positive

solution.

Now we start our analysis with a standard linearization argument. For any α > 0,
(1.2) has two semi-trivial solutions: (a, 0) and (0, α−d

dβ
) if α > d. From the strong

maximum principle, any non-negative solution (u, v) of (1.2) is either (0, 0), or semi-
trivial, or positive.

The linearized system of (1.2) about the equilibrium point (u, v) can be character-
ized by the Jacobian matrix

J (u, v) =
⎛

⎜
⎝

� + a − 2u − b(x)v

(1 + mu)2
− b(x)u

1 + mu
c(x)v

(1 + mu)2
� + α

(1 + βv)2
− d + c(x)u

1 + mu

⎞

⎟
⎠ .

At the equilibrium point (a, 0) and (0, α−d
dβ

) if α > d, the corresponding Jacobian
matrix J (u, v) are

J (a, 0) =
⎛

⎜
⎝

� − a − ab(x)

1 + am

0 � + α − d + ac(x)

1 + am

⎞

⎟
⎠ ,

and

J (0,
α − d

dβ
) =

⎛

⎝
� + a − α−d

dβ
b(x) 0

α−d
dβ

c(x) � + d(d − α)

α

⎞

⎠ .
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Theorem 2.5 We have the asymptotic stability results of (1.2):

(1) The semi-trivial solution (a, 0) is locally stablewhenα < d+λN
1

(

− ac(x)

1 + am
,�1

)

and unstable when α > d + λN
1

(

− ac(x)

1 + am
,�1

)

.

(2) Assume that α > d. The semi-trivial solution (0, α−d
dβ

) is locally stable when

a < λN
1 (α−d

dβ
b(x),�) and unstable when a > λN

1

(
α−d
dβ

b(x),�
)
.

Proof (1) The linearized eigenvalue problem of (1.2) at (a, 0) is

⎧
⎪⎨

⎪⎩

�h − ah − ab(x)

1 + am
k + μh = 0, x ∈ �, h = 0, x ∈ ∂�,

�k + [α − d + ac(x)

1 + am
]k + μk = 0, x ∈ �1, k = 0, x ∈ ∂�1,

(2.1)

where μ is eigenvalue and (h, k) is the corresponding eigenfunction.
If k = 0, then h �= 0, and μ ≥ a > 0. If k �= 0, then

μ ≥ λN
1 (d − α − ac(x)

1 + am
,�1) = d − α + λN

1

(

− ac(x)

1 + am
,�1

)

> 0

when α < d + λN
1

(

− ac(x)

1 + am
,�1

)

. This shows that (a, 0) is locally stable when

α < d + λN
1

(

− ac(x)

1 + am
,�1

)

.

When α > d + λN
1

(

− ac(x)

1 + am
,�1

)

, we assume that μ0 and k0 are the principal

eigenvalue and the corresponding positive eigenfunction of

�k +
[

α − d + ac(x)

1 + am

]

k + μk = 0, x ∈ �1, k = 0, x ∈ ∂�1.

Then μ0 = d + λN
1

(

− ac(x)

1 + am

)

− α < 0, and the following problem

�h − ah − ab(x)

1 + am
k0 + μ0h = 0, x ∈ �, h = 0, x ∈ ∂�

has a unique solution h0 because the operator−�+a−μ0 is invertible. This shows that
(μ0, h0, k0) satisfies (2.1), i.e. the eigenvalue problem (2.1) has a negative eigenvalue
μ0 and so (a, 0) is unstable.

(2) The linearized eigenvalue problem of (1.2) at (0, α−d
dβ

) is

⎧
⎨

⎩

�h + (a − α−d
dβ

b(x))h + μh = 0, x ∈ �, h = 0, x ∈ ∂�,

�k + d(d − α)

α
k + α−d

dβ
c(x)h + μk = 0, x ∈ �1, k = 0, x ∈ ∂�1,

(2.2)
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where μ is eigenvalue and (h, k) is the corresponding eigenfunction.

If h = 0, then k �= 0, and μ ≥ d(α − d)

α
> 0. If h �= 0, then

μ ≥ λN
1

(

−a + α − d

dβ
b(x),�

)

= −a + λN
1

(
α − d

dβ
b(x),�

)

> 0

when a < λN
1 (α−d

dβ
b(x),�). This shows that (0, α−d

dβ
) is locally stable when a <

λN
1 (α−d

dβ
b(x),�).

When a > λN
1 (α−d

dβ
b(x),�), we assume thatμ0 and h0 are the principal eigenvalue

and the corresponding positive eigenfunction of

�h +
(

a − α − d

dβ
b(x)

)

h + μh = 0, x ∈ �, h = 0, x ∈ ∂�.

Then μ0 = −a + λN
1 (α−d

dβ
b(x),�) < 0, and the following problem

�k + d(d − α)

α
k + α − d

dβ
c(x)h0 + μ0k = 0, x ∈ �1, k = 0, x ∈ ∂�1

has a unique solution h0 because of the operator −� + α−d
dβ

− μ0 is reversible. This
shows that (μ0, h0, k0) satisfies (2.2), i.e. the eigenvalue problem (2.2) has a negative
eigenvalue μ0 and so (0, α−d

dβ
) is unstable. �


Remark 2.6 For the two curves of solutions in the space of


u = {(α; a, 0) : α > 0} and 
v = {(α; 0, α − d

dβ
) : α > d}, (2.3)

Theorem 2.5 implies that bifurcation could occur along the semi-trivial branches (2.3),

if (1): α > d + λN
1

(

− ac(x)

1 + am
,�1

)

, or (2): α > d and a > λN
1 (α−d

dβ
b(x),�).

3 Bifurcation from semi-trivial solution

In this section, we will investigate the bifurcation solutions of (1.2) by the bifurcation
theory. We fix d and take α as the main bifurcation parameter. In order to main
bifurcation parameter of (1.2) which bifurcate from semi-trivial solution (a, 0) and
(0, α−d

dβ
) with α ≥ d. First, we set up the abstract framework for our bifurcation

analysis. For p > 1, we define

X = W 2,p(�) × W 2,p(�1)
.= X1 × X2, Y = L p(�) × L p(�1)

.= Y1 × Y2,

where W 2,p(O) = {w ∈ W 2,p(O) : ∂νw = 0 on ∂O}.
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For a given operator L , we denote the kernel and range of L withN (L) andR(L),
respectively.

Theorem 3.1 We have the results:

(1) If d > −λN
1 (− ac(x)

1+am ,�1), then

(a) α is a bifurcation point where a continuum 
1 of positive solutions to (1.2)
bifurcates from 
u at (α; a, 0) if and only if α = d + λN

1 (− ac(x)
1+am ,�1)

.= α.
(b) all positive solutions of (1.2) near (α; a, 0) ∈ R × X can be expressed as

(α(s); u(s), v(s))with s ∈ (0, δ), where (α(s); u(s), v(s)) is a smooth function
with respect to s and satisfies (α(s); u(s), v(s)) = (α; a, 0) and the bifurcation
is supercritical.

(2) If α > d and λN
1

(
(α − d)b(x)

dβ(1 + am)
,�

)

≤ a < λD
1 (�0), then

(a) there exists a unique α̂(a) such that a = λN
1 (α−d

dβ
b(x),�). Moreover, α̂(a) →

d as a → 0+ and α̂(a) → ∞ as a → λD
1 (�0)

−.
(b) α is a bifurcation point where an continuum 
2 of positive solutions to (1.2)

bifurcates from 
v at (̂α; 0, α̂−d
dβ

) if and only if α = α̂.

(c) all positive solutions of (1.2) near (̂α; 0, α̂−d
dβ

) ∈ R × X can be expressed
as (̂α(s); u(s), v(s)) with s ∈ (0, δ), where (̂α(s); u(s), v(s)) is a smooth
function with respect to s and satisfies (α(s); u(s), v(s)) = (̂α; 0, α̂−d

dβ
) and

the bifurcation is supercritical (subcritical), if m0 > 1 (< 1), where

m0 =
∫

�
m (̂α−d)

dβ
b(x)ϕ3

1dx − ∫

�
b(x)ϕ2

1ϕ2dx
∫

�
ϕ3
1dx

.

(3) If a ≥ λD
1 (�0), then for any α > d, a > λN

1 (α−d
dβ

b(x),�) and no bifurcation of
positive solutions can occur along 
v .

Proof (1) Take the variables w = a − u and define F(α;w, v) : R × X → Y by

F(α;w, v) =

⎛

⎜
⎜
⎝

�w + w2 − aw + b(x)(a − w)v

1 + m(a − w)

�v + v

(
α

1 + βv
− d

)

+ c(x)(a − w)v

1 + m(a − w)

⎞

⎟
⎟
⎠ .

By using a simple calculation, we obtain

F(w,v)(α; 0, 0)[h, k] =
⎛

⎜
⎝

�h − ah + ab(x)

1 + am
k

�k + [α − d + ac(x)

1 + am
]k

⎞

⎟
⎠

Fα(w,v)(α; 0, 0)[h, k] =
(
0
k

)

,
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and

F(w,v)(w,v)(α; 0, 0)[h, k]2 =
(

2h2 − 2b(x)
(1+am)2

hk

− 2c(x)
(1+am)2

hk − 2αβk2

)

,

Let α = d + λN
1 (− ac(x)

1 + am
,�1)

.= α. Then F(w,v)(α; 0, 0)[h, k] = 0 has a solution

with h > 0. Thus α is the only bifurcation point along 
u where positive solutions of
(1.2) bifurcates.

It is easy to verify that the kernel N (F(w,v)(α; 0, 0)) = span{(ϕ1, ϕ2)}, where
(ϕ1, ϕ2) �= (0, 0) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�ϕ1 − aϕ1 + ab(x)

1 + am
ϕ2 = 0, x ∈ �,

�ϕ2 +
[

α − d + ac(x)

1 + am

]

ϕ2 = 0, x ∈ �1,

∂νϕ1 = 0, x ∈ ∂�, ∂νϕ2 = 0, x ∈ ∂�1.

(3.1)

We can choose ϕ2 > 0 as the corresponding positive eigenfunction of λN
1 (d −

ac(x)

1 + am
,�1) with

∫

�1
ϕ2
2dx = 1, and then ϕ1 = (−� + a)−1

(
ab(x)

1 + am
ϕ2

)

> 0.

It is easy to check that the range

R(F(w,v)(α; 0, 0)) =
{

( f , g)T ∈ Y :
∫

�1

g(x)ϕ2dx = 0

}

,

and

Fα(w,v)(α; 0, 0)[ϕ1, ϕ2] = (0, ϕ2)
T /∈ R(F(w,v)(α; 0, 0))

since
∫

�1
ϕ2
2dx = 1 > 0. By applying the results of [10] or [11], the set of solutions

to (1.2) near (α; a, 0) is a smooth curve


1 = {(α(s); a − w(s), v(s)) : s ∈ [0, δ)},

with δ > 0 small, α(0) = d + λN
1 (− ac(x)

1+am ,�1), w(s) = sϕ1 + o(|s|), v(s) = sϕ2 +
o(|s|). By [12, Corollary 2.3],

α′(0) = −〈l, F(w,v)(w,v)(α; 0, 0)[ϕ1, ϕ2]2〉
2〈l, Fα(w,v)(α; 0, 0)[ϕ1, ϕ2]〉 =

∫

�1

(
c(x)ϕ1ϕ

2
2

(1 + am)2
+ αβϕ3

2

)

dx > 0,

where l is a linear functional on Y 2 defined as 〈l, [ f , g]〉 = ∫

�1
g(x)ϕ2dx . This yields

that the bifurcation 
u at (̃α; 0, 0) is supercritical.

123



W. Yang

(2) We take the variables v = α−d
dβ

+ w and define G(α; u, w) : R × X → Y by

G(α; u, w) =

⎛

⎜
⎜
⎜
⎜
⎝

�u + u(a − u) − b(x)u(α−d
dβ

+ w)

1 + mu

�w + (α−d
dβ

+ w)

(
α

1 + β(α−d
dβ

+ w)
− d

)

+ c(x)u(α−d
dβ

+ w)

1 + mu

⎞

⎟
⎟
⎟
⎟
⎠

.

By using a simple calculation, we obtain

G(u,v)(α; 0, 0)[h, k] =
⎛

⎝
�h + ah − α−d

dβ
b(x)h

�k + d(d − α)

α
k + α−d

dβ
c(x)h

⎞

⎠

Gα(u,v)(α; 0, 0)[h, k] =
(

− b(x)
dβ

h
c(x)
dβ

h + Ck

)

,

where C = d2(β−1)(β2−2β+2)(̂α−d)−dα2β3

α̂3β3 , and

G(u,v)(u,v)(α; 0, 0)[h, k]2 =
(

(−2 + 2m(α−d)
dβ

b(x))h2 − 2b(x)hk

− 2m(α−d)
dβ

c(x)h2 + 2c(x)hk − 2βd3

α3 k2

)

.

Let a = λN
1 (α−d

dβ
b(x),�). Then G(u,w)(α; 0, 0)[h, k] = 0 has a solution with h > 0.

Let λN
1 (α−d

dβ
b(x),�) be the principal eigenvalue of

− �u + α − d

dβ
b(x)u = λu, x ∈ �, ∂νu = 0, x ∈ ∂�. (3.2)

By the proof of Theorem 2.1 in [1], we obtain that for any α > d, λN
1 (α−d

dβ
b(x),�) is

strictly increasing respect to α, λN
1 (α−d

dβ
b(x),�) < λD

1 (�0), and

lim
α→∞ λN

1 (
α − d

dβ
b(x),�) = λD

1 (�0).

Now if a ≥ λD
1 (�0), then for any α ≥ d, a > λN

1 (α−d
dβ

b(x),�). Hence, by the
analyses above, no bifurcation of positive solutions can occur along 
v .

If a < λD
1 (�0), then there exits a unique α̂(a) such that a = λN

1 (α−d
dβ

b(x),�) due

to the continuity and monotonicity of λN
1 (α−d

dβ
b(x),�). We easily see that α̂(a) → d

as a decreases to 0, and α̂(a) → ∞ as a increases to λD
1 (�0).
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At (α; u, w) = (̂α; 0, 0), N (G(w,v)(̂α; 0, 0)) = span{(φ1, φ2)}. We can choose
φ1 > 0 with

∫

�
φ2
1dx = 1 and φ2 = (−� + d(α−d)

α
)−1(α−d

dβ
c(x)φ1) > 0. Then

R(G(u,w)(̂α; 0, 0)) = {( f , g)T ∈ Y :
∫

�

f (x)φ1dx = 0},

and

Gα(u,w)(̂α; 0, 0)[φ1, φ2] =
(

−b(x)

dβ
φ1,

c(x)

dβ
φ1 + Cφ2

)T

/∈ R(F(w,v)(̂α; 0, 0))

since − 1
dβ

∫

�
b(x)φ2

1dx �= 0.

By applying the results of [10] or [11], the set of solutions to (1.2) near (̂α; 0, α̂−d
dβ

)

is a smooth curve


2 = {(̂α(s); u(s),
α̂ − d

dβ
+ w(s)) : s ∈ [0, δ)},

with δ > 0 small, α̂(0) = α̂, u(s) = sφ1 + o(|s|), w(s) = sφ2 + o(|s|). By [12,
Corollary 2.3],

α̂′(0) = −〈l,G(u,w)(u,w)(α; 0, 0)[φ1, φ2]2〉
2〈l,Gα(u,w)(α; 0, 0)[φ1, φ2]〉

=
∫

�
(
m (̂α−d)

dβ
b(x) − 1)φ3

1dx − ∫

�
b(x)φ2

1φ2dx
1
dβ

∫

�
b(x)φ2

1dx
,

where l is a linear functional on Y 2 defined as 〈l, [ f , g]〉 = ∫

�
f (x)φ1dx . �


4 Bifurcation stability and global bifurcation

Theorem 4.1 Recall α, α̂, (ϕ1, ϕ2) and (φ1, φ2) in Theorem 3.1.

(1) Suppose that d > −λN
1 (− ac(x)

1+am ,�1). If

1

(1 + am)2

∫

�1

c(x)ϕ3
2dx < αβ

∫

�1

ϕ1ϕ
2
2dx,

then the local bifurcation coexistence state (u(s), v(s)) bifurcating from (α; a, 0)
is linearly stable.

(2) If α > d, then the local bifurcation coexistence state (u(s), v(s)) bifurcating from
(̂α; 0, α̂−d

dβ
) is nondegenerate and linearly stable.
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Proof For convenience, we use the notation α(s) = α, (u(s), v(s)) = (u, v) in Theo-
rem 3.1. The linearized problem of (1.2) at (u, v) can be written as

L(s)(h, k) = γ (s)(h, k) (4.1)

where

L(s) =
⎛

⎜
⎝

� + a − 2u − b(x)v

(1 + mu)2
− b(x)u

1 + mu
c(x)v

(1 + mu)2
� + α

(1 + βv)2
− d + c(x)u

1 + mu

⎞

⎟
⎠ .

It easy to see that, as s → 0,

L(s) → L0
.=

⎛

⎜
⎝

� − a − ab(x)

1 + am

0 � + α − d + ac(x)

1 + am

⎞

⎟
⎠ .

By the proof in Theorem 3.1, we know that 0 is the principal eigenvalue ofL0 with the
corresponding eigenfunction (ϕ1, ϕ2), where ϕ1 and ϕ2 are defined in Theorem 3.1.

By the perturbation theory of linear operators [13], we know that, when s is suf-
ficiently small, L(s) has a unique eigenvalue γ (s) satisfying lims→0 γ (s) = 0 and
all the other eigenvalues of L(s) have negative real parts and are apart from 0. Now
we determine the sign of Re(γ (s)) as s > 0 is sufficiently small. Let (h, k) be the
corresponding eigenfunction to γ (s) such that (h, k) → (ϕ1, ϕ2).

Multiplying the second equation of (4.1) by v and integrating over �1, we get

∫

�1

v�k + αv

(1 + βv)2
k − dvk + c(x)uv

1 + mu
k + c(x)v2

(1 + mu)2
hdx =

∫

�1

γ (s)vkdx .

(4.2)

Multiplying the second equation of (1.2) by k integrating over �1, we have

∫

�1

k�v + v

(
α

1 + βv
− d

)

k + c(x)uv

1 + mu
kdx = 0. (4.3)

The fact combined with (4.2) and (4.3) to yields

γ (s)
∫

�1

vkdx =
∫

�1

c(x)v2

(1 + mu)2
h − αβv2

(1 + βv)2
kdx . (4.4)

Note thatα(0) = d+λN
1 (− ac(x)

1+am ,�1)
.= α,w(s) = sϕ1+o(|s|), v(s) = sϕ2+o(|s|).

Dividing by s2 and letting s → 0+ in (4.4), it is deduced that

lim
s→0+

γ (s)

s
= 1

(1 + am)2

∫

�1

c(x)ϕ3
2dx − αβ

∫

�1

ϕ1ϕ
2
2dx,
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which implies that the bifurcation coexistence state (u(s), v(s)) (α; a, 0) is linearly
stable, if

1

(1 + am)2

∫

�1

c(x)ϕ3
2dx < αβ

∫

�1

ϕ1ϕ
2
2dx .

(2) Analogously, multiplying the first equation of (4.1) by u and the first equation
of (1.2) by h, integrating over �, we get

∫

�

u�h + auh − 2u2h − b(x)uv

(1 + mu)2
h − b(x)u2

1 + mu
kdx =

∫

�

γ (s)uhdx,
∫

�

h�u + u(a − u)h − b(x)uv

1 + mu
hdx = 0.

Then we have

lim
s→0+

γ (s)

s
= −

∫

�

b(x)φ2
1φ2dx −

∫

�

φ3
1dx < 0.

This implies that then the local bifurcation coexistence state (u(s), v(s)) bifurcating
from (̂α; 0, α̂−d

dβ
) is nondegenerate and linearly stable. The proof is completed. �


Next, wewill investigate the global bifurcation of (1.2).Wefix the parameters a > 0
and d >

a‖c(x)‖∞
1+am (See theorem 2.2) and take α as the main bifurcation parameter.

By the unilateral global bifurcation theorem developed by LKopez-GKomez, one can see
[11] or [14] for the details, we study the global bifurcation at (α; a, 0).

Let PO = {w ∈ W 2,p(O) : w > 0, x ∈ O}. Then P2 = P� × P�1 is the
nature positive cone in X . From the proof of Theorem 3.1, it follows that all the
conditions in [11, Theorem 6.4.3] hold. This yields that there exists a component
C+ ⊃ 
u of solution to (1.2) bifurcating at (α; a, 0) and C+ satisfies one of the
following alternatives:

(i) C+ is unbounded in R × X ;
(ii) There exists a real number α̃ �= α, such that (̃α; a, 0) ∈ C+;
(iii) C+ contains a point (α; u, v) ∈ 
v or ∈ 
0 = {(α; 0, 0) : α ∈ R}, such that

(α; u, v) ∈ C+.
By Theorems 2.2 and 2.3, the alternative (i) do not occur. By Theorem 3.1 (1)(a),

i.e., α is a bifurcation point where an continuum 
1 of positive solutions to (1.2)
bifurcates from 
u at (α; a, 0) if and only if α = α, we know that the alternative (ii)
don’t occur. So, the alternative (iii) must occur. Now, we claim that C+ ends at some
point (̂α; 0, α̂−d

dβ
) on 
v for some α̂ > d.

In fact, we assume on the contrary that C+ ends at some point (α; 0, 0). Let u(s) =
sψ1(s) + o(s) and v(s) = sψ2(s) + o(s) for 0 < s � 1, then lims→0+ u(s)/s = ψ1,
lims→0+ u(s)/s = ψ2, where ψ1 and ψ2 are the positive functions in � and �1
respectively. By dividing the first equation of (1.2) by s and letting s → 0+, we obtain
that

�ψ1 + aψ1 = 0, x ∈ �, ∂νψ1 = 0, x ∈ ∂�. (4.5)
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Thus, we get a = 0, which contradicts a > 0.
Combined the arguments above with the local bifurcation results (Theorem 3.1),

we obtain the following theorem.

Theorem 4.2 Suppose that 0 < a < λD
1 (�0) and d >

a‖c(x)‖∞
1+am be fixed. Then there

exists a continuum C+ of the positive solutions connecting (α; a, 0) to (̂α; 0, α̂−d
dβ

)

with α̂ > d and satisfying

ProjαC+ = (α, α̂),

which implies that (1.2) possesses at least a positive solution for any α ∈ (α, α̂).

Remark 4.3 Theorem 3.1) shows that (1) if d >
a‖c(x)‖∞
1+am , then there exist bifurcation

of positive solutions along 
u ; (2) if a > λD
1 (�0), then there exists no bifurcation of

positive solutions along 
v .

Remark 4.4 For fixed a > 0, the term a > λD
1 (�0) in Remark 4.3 can be interpreted

as the fact that the protection zone�0 is large. In addition, if d >
a‖c(x)‖∞
1+am , then by the

same proof process similar to theorem 4.2, there exists a continuum C+ of the positive
solutions emanating from (α; a, 0) and satisfying ProjαC+ = (α,+∞).

Remark 4.5 (Numerical example) Letting � = (0, 5π), we consider the effect of
degenerate on the positive solution to (1.1), i.e., the following two cases (See Figure
2):

(1) Functions b(x) and c(x) are independent of x : b(x) ≡ 0.05 and c(x) ≡ 0.03;
(2) Functions b(x) and c(x) are dependent of x :

b(x) =
{
0.05 π ≤ x ≤ 4π
0 otherwise

and c(x) =
{
0.03 π ≤ x ≤ 4π
0 otherwise

.

5 Discussions

In this paper we propose a reaction–diffusion predator–prey model with a protection
zone for the prey and nonlinear growth rate for the predator. It is shown that the
protection zone will affect the existence of positive steady-state solutions or steady-
state bifurcations form (1.1). By Remark 2.4 and Theorem 3.1, the existence and
non-existence results are summarized below:

(A1) Assume that α < d. If d <
α(d − α)

(d − α)(1 + aβ) + a2β
or d > α −

λN
1 (− ac(x)

1 + am
,�1), then (1.2) has no positive solution.

(A2) Assume that α > d and a ≥ min{λD
1 (�0), λ

N
1 (α−d

dβ
b(x),�)}. Then there is no

bifurcation of positive solutions to (1.2) can occur along 
v .
(A3) If d > −λN

1 (− ac(x)
1+am ,�1), then there is a continuum 
1 of positive solutions to

(1.2) bifurcates from 
u at (α; a, 0) where α = d + λN
1 (− ac(x)

1+am ,�1)
.= α.
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Fig. 2 Numerical simulation of the spatio-temporal positive solutions to (1.1) with a = 1.25,m = 1, α =
0.85, β = 1 and d = 0.5, where the first and second column represent u(x, t) and v(x, t), respectively. a–c–
e case 1, the unique positive spatially homogeneous equilibrium (1.2330, 0.7583) is locally asymptotically
stable; b–d–f case 2, there exists a spatially heterogeneous positive steady state solution

(A4) If α > d and λN
1 (

(α − d)b(x)

dβ(1 + am)
,�) ≤ a < λD

1 (�0), then there a continuum 
2

of positive solutions to (1.2) bifurcates from
v at (̂α; 0, α̂−d
dβ

), where α = α̂ and

which is a unique α̂(a) such that a = λN
1 (α−d

dβ
b(x),�). Moreover, α̂(a) → d

as a → 0+ and α̂(a) → ∞ as a → λD
1 (�0)

−.
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Note that b(x) ∈ L∞(�), b(x) ≥ 0 in �, b(x) ≡ 0 on �0 and for any compact
subset A of �\�0, there exists δA > 0 such that δA ≤ b(x),∀x ∈ A; c(x) ∈
L∞(�\�0) and 0 < c(x) ≤ b(x) in �\�0. Now, let b(x) = c(x) = 1 in �\�0 in
order to better analyze the affect of protection zone on the dynamics of (1.1).

Since −λN
1 (− ac(x)

1 + am
,�1) is increasing in �0, λD

1 (�0) and λN
1 (α−d

dβ
b(x),�) are

decreasing in �0, (A1) and (A2) imply that the smaller the size of protection zone
�0, two populations u and v are more likely to coexist. This is also in line with the
original intention of constructing ecological nature reserve in reality.

Let α = d + λN
1 (− ac(x)

1+am ,�1) in (A3). Define the unique α̂(a) in (A4) such that

a = λN
1 (α−d

dβ
b(x),�) if α > d and λN

1 (
(α − d)b(x)

dβ(1 + am)
,�) ≤ a < λD

1 (�0). (A3) and

(A4) show that there is a circular domain �0, at which there is a continuum 
1 or 
2
of positive solutions to (1.2) bifurcates from 
u or 
v .

Hence a recommendation for the people setting up the protection zone is to have a
circular region with as large as possible area as the protect [15].
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