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Abstract
A general FitzHugh–Rinzel model, able to describe several neuronal phenomena, is
considered. Linear stability and Hopf bifurcations are investigated by means of the
spectral equation for the ternary autonomous dynamical system and the analysis is
driven by both an admissible critical point and a parameter which characterizes the
system.
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1 Introduction

The physiological and chemical properties that characterize neurons make them able
to receive, process and transmit electrical signals that, associated with ionic currents,
cross the membrane of the neuron. These electrical signals are called nerve impulses,
while the difference in electrical charge that exists between the inside and outside
of the neuronal cell is called membrane potential. The variation in the membrane
potential is called action potential and it travels along the axon and is transmitted
unchanged to other neurons in the form of electrical impulses. In this way, information
is transmitted from one neuron to another, forming what is known as synapse. This
phenomenon is well known in literature and an extensive bibliography exists in regard
[1–3]. A reference point for these studies are the works of Hodgkin and Huxley [HH],
who developed the model of the propagation of an electrical signal along a squid
axon (an axon so great to be called giant). Their model consists of a system of four
differential equations describing the dynamics of themembrane potential and the three
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fundamental ionic currents: the sodium current, the potassium current and the leakage
current, which is mainly due to chlorine but also considers the effect of other minor
ionic currents. However, the non linearity and high dimensionality of the HH model
made the analysis too complicated, so that simpler models were introduced to allow
the essential aspects of the dynamics of models to be captured.

One of these models is the FitzHugh-Nagumo system (FHN) where, indicating by
U (x, t) the trasmembrane potential and by W (x, t) a variable associated with the
contributions to the membrane current from sodium, potassium and other ions, it is
given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ U

∂ t
= D

∂2U

∂ x2
− W + f (U )

∂ W

∂ t
= ε(−βW + c +U ).

(1)

Constant D > 0 is a diffusion coefficient related to the axial current in the axon.
It follows from the HH theory where, denoting by d the diameter of the axon and by ri
the resistivity, the spatial variation of the potential V gives the term (d/4ri )Vxx from
which the term DUxx is deduced [3]. Furthermore ε, c, and β are constants that
characterize the model’s kinetic.

The documentation is numerous and the analysis is extensive (see, for instance, [4,
5] and references therein).

As for function f (U ), it depends on the reaction kinetics of the model and can
assume various expressions such as a piecewise linear form, or f (U ) = U − U 3/3.
Besides, more in general, function f (U ) assumes the following form [1, 2]:

f (U ) = U ( a −U ) (U − 1 ). (2)

The cubic term is due to an instantaneous inversion of the sodium permeability and
can be thought to play the same role as the m variable in the HH model, where the
variable of activation of the channels of sodium is considered. Hence, a represents a
threshold constant and is an excitability parameter [6]. In addition, a can take both
positive and negative values (see,f.i. [7]) and cases with function a(x) are considered
in [8] for inhomogeneous means.

Besides, one aspect worth noting is the existence of an equivalence between the
FHN model and the third-order equation characterizing Josephson junctions in super-
conductivity [9–11]. It follows that the analysis of such models is reflected in both
biological and superconducting phenomena and, in addition, in dissipative problems
[12–14].

Similarly, in order to investigate other phenomena such as, for example, bursting
oscillations, the well known system of FitzHugh–Rinzel (FHR) can be considered
[15–19]. This model is derived from the FHN model and, unlike the latter, has an
additional variable that changes periodically from a rapid spike oscillation to a silent
phase during which the membrane potential changes slowly [1].

Indeed, bursting phenomena occur in various scientific fields (see, f.i. [20] and
references therein), and many devices are being built to mimic the behavior of a
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biological synapse, suggesting that electronic synapsesmay be introduced in the future
to directly connect neurons [21]. As a result, the FHR system is increasingly being
studied to provide a mathematical description of physical phenomena occurring in
organisms.

The FitzHugh–Rinzel model considered in this paper is the following one:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d U

d t
= −a U +U 2

(

a + 1 − 1

k
U

)

− W + Y + I

d W

d t
= ε(−βW + c +U )

d Y

d t
= δ(−U + h − dY )

(3)

where the physical variables (U ,W ,Y ) represent, respectively, the transmembrane
potential, the recovery variable and the slow current in the dendrite. Moreover, the
parameter ε specifies the relationship between the time constants of the activator and
inhibitor [6], and c and β can be related to the number of cell membrane channels open
to sodium and potassium ions, respectively [22]. Constant I measures the amplitude
of the external stimulus current and is modulated by the variable Y on a slower time
scale [1]. In addition, if βε and δd are positive constants, they can be regarded as the
coefficients of viscosity [23].

When k = 3 and a = −1, (3) turns into this model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d U

d t
= U −U 3/3 + I − W + Y

d W

d t
= ε(−βW + c +U )

d Y

d t
= δ(−U + h − dY ).

(4)

often studied in literature (see, f.i. [15, 18, 23] and references therein).

Aim of the paper is to analyze the linear stability of the critical points of the FHR
system, aswell as to highlight the cases ofHopf bifurcations. Considering the spectrum
equation, and its eigenvalues, stability is evaluated by the Lienard-Chipart criterion.
Furthermore, for what concerns instability, showing that the problem can be expressed
byway of a positive parameter R, the steady and/or oscillatory Hopf bifurcations cases
are determined by means of the instability coefficient power (ICP) method introduced
by Rionero (see, f.i. [23, 24] and references therein). The plan of the paper is the
following one: Sect. 2 highlights some premises by which the subsequent theorems
will be proved. In Sect. 3 the mathematical problem and linear operator L with its
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invariants is given. Finally, in Sects. 4 and 5, Hopf bifurcations driven by critical point
Ū and driven by coefficient −η = −εβ are evaluated.

2 Some premises

Due to the oscillatory activities of neurons, the onset of oscillatory bifurcations has
gained the attention of many researchers. Regarding the study of Hopf’s bifurcations,
an extensive literature exists (see, f.i. [23–26] and references therein). In order to
justify the results stated here, some introductory considerations will be required.

Indeed, in relation to linear stability, according to [26] when a phenomenon is
modelled by the system:

dU
dt

= F t ≥ 0, U(0) = U0 (5)

introducing a fixed solution Ū and the perturbation u = U− Ū, the behaviour of u is
governed by:

du
dt

= Lu + Nu, t ≥ 0, u(0) = u0 (6)

with u0 initial perturbation to Ū and (Nu)u0 = 0.
Considering the linear operator

⎧
⎨

⎩

L =‖ ai, j ‖, (i, j = 1, 2 . . . , n)

ai, j = const . ∈ R and independent from t,
(7)

the stability and instability of Ū is called linear if it is evaluated via the linear system

du
dt

= Lu, t ≥ 0, u(0) = u0 (8)

neglecting the nonlinear contribution Nu.

In this regard, some theorems can be provided.

Theorem 1 If

det (ai, j − λ δi, j ) = 0 δi, j = Kronecker numbers (9)

is the spectral equation whose eigenvalues of the n x n matrix ||ai, j || are λi (i =
1, 2, 3 . . . , n), and if and only if all the eigenvalues have negative real parts, then u=0
is linearly globally attractive and asymptotically exponentially stable. Otherwise, if
there exists at least an eigenvalue with positive real part, then u=0 is unstable. ��
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In addition, as proved in [26], for a system formed by three equations such as the
FHR model, the spectrum equation (9) of L is reduced to the following expression:

P(λ) = λ3 − I1λ
2 + I2λ − I3 (10)

where

I1 = a11 + a22 + a33; I3 = det ‖ ai, j ‖, (11)

I2 =
∣
∣
∣
∣
a11 a12
a21 a22

∣
∣
∣
∣ +

∣
∣
∣
∣
a11 a13
a31 a33

∣
∣
∣
∣ +

∣
∣
∣
∣
a22 a23
a32 a33

∣
∣
∣
∣ , (12)

represent the invariants of L whose spectrum is the set σ = {λ1, λ2, λ3} of its eigen-
values. Moreover, connected to the invariants Ii (i = 1, 2, 3), we can introduce the
quantities:

A1 = −traceof L = −(λ1 + λ2 + λ3) = −I1; (13)

A2 =
∣
∣
∣
∣
a11 a12
a21 a22

∣
∣
∣
∣ +

∣
∣
∣
∣
a11 a13
a31 a33

∣
∣
∣
∣ +

∣
∣
∣
∣
a22 a23
a32 a33

∣
∣
∣
∣ = λ1(λ2 + λ3) + λ2λ3 = I2 (14)

and
A3 = −detof L = − λ1λ2λ3 = −I3 (15)

and, according to [23], the following Lienard-Chipart criterion holds:

Theorem 2 If and only if

Ak > 0, (k = 1, 2, 3) and A0 = A1 A2 − A3 > 0, (16)

all the eigenvalues have negative real part. In particular, each of the conditions:

A1 > 0, A2 > 0, A3 > 0, (17)

is necessary for all the roots to have negative real parts. Otherwise some roots will
have positive real parts. ��

Moreover, taking into account that the instability can occur only via a zero
eigenvalue (λ = 0 ⇔ A3 = 0) or via a pure imaginary eigenvalues, λ1,2 =
±iω (i imaginaryunit, ω ∈ �+) such that P(iω, R) = 0, the onset of insta-
bility will be defined either as steady bifurcation or Hopf bifurcation depending on
wether the instability occurs through a steady or oscillatory state [26].

When the problem at issue depends on a positive parameter R, let denote by Rck
the lowest roots of value of R such that Ak(R) = 0 for k = 1, 2, 3. According to [23],
it is possible to introduce the
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“instability coefficient power"(IC P)k o f Ak : (IC P)k = 1

RCk

(18)

and the following theorem holds:

Theorem 3 Let Ak̄ be the spectrum equation coefficient with the biggest ICP and let
the critical point C̄ be linearly asymptotically stable at R = R̄ = 0. Then, at the
growing of R from R = 0, the instability occurs at R = RCk̄

and one has a steady

bifurcation if k̄ = 3, while an oscillatory bifurcation occurs at an R ∈]0, RCk̄
[ if

k < 3. ��

3 Mathematical model

Let consider the FHZ system (3) and assuming

η = βε; γ = δd (19)

it results:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d U

d t
= −aU +U 2(a + 1) − 1

k
U 3 − W + Y + I

d W

d t
= −ηW + ε c + εU

d Y

d t
= −δU + δ h − γ Y

(20)

If C = (Ū , W̄ , Ȳ ) is an admissible critical point, considering:

u = U − Ū ; w = W − W̄ ; y = Y − Ȳ (21)

as the perturbation vector, from (20) one obtains:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d u

d t
= −1

k
u3 − 3

k
u2 Ū − 3

k
u Ū 2 − au + (a + 1)(u2 + 2u Ū ) − w + y

d w

d t
= εu − η w

d y

d t
= −δu − γ y.

(22)
Linearizing about C, it results:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d u

d t
= u

[

−3

k
Ū 2 − a + 2 (a + 1) Ū

]

− w + y

d w

d t
= εu − η w

d y

d t
= −δ u − γ y.

(23)

Denoting by

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−3
1

k
Ū 2 + 2(a + 1)Ū − a −1 1

ε −η 0

−δ 0 −γ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(24)

the linear operator, according to (11)–(12), for k = 3, one has:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 = −
[

Ū 2 − 2 (a + 1) Ū + a + η + γ

]

I2 = −
(

η + γ

)[

− Ū 2 + 2(a + 1) Ū − a

]

+ ε + δ + ηγ

I3 = −
{

γ

[

η

(

Ū 2 − 2(a + 1) Ū + a

)

+ ε

]

+ δη

}

(25)

as the invariants of L. Besides, taking into account (13)–(15) one deduces:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A1 = Ū 2 − 2(a + 1) Ū + a + η + γ

A2 = −(η + γ )(− Ū 2 + 2(a + 1) Ū − a) + ε + δ + ηγ

A3 = γ [ η( Ū 2 − 2(a + 1) Ū + a) + ε] + δη,

(26)

and letting

� = Ū 2 − 2(a + 1)Ū + a, (27)
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one obtains

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = � + η + γ

A2 = (η + γ ) � + ε + δ + ηγ

A3 = γ η � + γ ε + δη

A0 = A1A2 − A3 = (� + η + γ )[(η + γ ) � + ε + δ + ηγ ] − (γ η � + γ ε + δη).

(28)

4 Hopf bifurcations driven by Ū

The FHR system depends on several parameters, and according to each coefficient,
various Hopf bifurcations conditions can be obtained.

In order to studyHopf bifurcations driven by critical point Ū , the attention is focused
on

� = Ū 2 − 2(a + 1)Ū + a

already introduced in (27), and the following theorem for linear stability can be proved:

Theorem 4 Let C̄ = (Ū , W̄ , Ȳ ) be an admissible critical point and let assume con-
stants (ε, δ, d, β), be positive. Then, whatever the value of variable a ∈ R may be,
if

⎧
⎪⎨

⎪⎩

Ū ≤ −
√
a2 + a + 1 + a + 1

or

Ū ≥
√
a2 + a + 1 + a + 1,

(29)

then the critical point C̄ is linearly, globally attractive and asymptotically exponen-
tially stable.

Proof Condition (29) ensures that � ≥ 0, and it is possible to prove that the positive-
ness of the FHR system’s constants implies that Ak, (k = 0, 1, 2, 3), determined in
(28), are all non-negative. Moreover, they are increasing functions of �.

This ensures that conditions (16) of theorem 2 state, and hence theorem holds. ��

When conditions (29) are not satisfied, i.e the critical point Ū is such that the
following inequality:

−
√
a2 + a + 1 + a + 1 < Ū <

√
a2 + a + 1 + a + 1 ∀a ∈ R (30)
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holds, then it results � < 0 and in this case it is possible to introduce a positive
parameter R as “bifurcation parameter”. Indeed if we let:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = −� = −[Ū 2 − 2(a + 1)Ū + a] > 0

c1 = η + γ

c2 = ε + δ + η γ

η + γ

c3 = γ ε + ηδ

ηγ
= d + β

βd

(31)

it results: ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A1 = −R + c1

A2 = −c1 R + c1 c2

A3 = −γ η R + c3 γ η

(32)

with:

A1 = 0 ⇔ R = c1; A2 = 0 ⇔ R = c2; A3 = 0 ⇔ R = c3. (33)

So that, denoting by Rck the lowest roots of value of R such that Ak = 0 for k = 1, 2, 3,
one has:

Rck = min
(β,d,ε,δ)∈R+ ck k = 1, 2, 3 (34)

and the following theorem holds:

Theorem 5 In the hypothesis (30), let R = −� = −[Ū 2 − 2(a + 1)Ū + a] > 0 and
let constants (ε, δ, d, β), be positive.

Then, at the growing of R from R = 0, conditions

η + γ <
ε + δ + η γ

η + γ
; η + γ <

d + β

βd
; (35)

ensure that a simple oscillatory bifurcation occurs at a R̄ ∈]0, RC1 [, with a frequency
ϕ

2π
where ϕ2 = A3(R̄)

A1(R̄)
= A2(R̄).

If, in particular

η + γ = ε + δ + η γ

η + γ
; η + γ <

d + β

βd
(36)

a simple oscillatory bifurcations occurs at a R̄ ∈]0, RC1 = RC2 [.
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Otherwise, if

η + γ = d + β

βd
<

ε + δ + η γ

η + γ
(37)

a steady+oscillatorybifurcationappearswitha frequencygivenbyϕ = (2π)(
√
A2)Rc1

.

Moreover, if

ε + δ + η γ

η + γ
< η + γ <

d + β

βd
(38)

a simple oscillatory bifurcation occurs at a R̄ ∈]0, RC2 [.
Proof When R = −� = 0, it results:

A0]�=0 = A1A2 − A3]�=0 = (η + γ )(ε + δ + ηγ ) − (γ ε + δη)

= η ε + γ δ + (η + γ )ηγ > 0

with Ak > 0 (k = 1, 2, 3). So, the critical point is linearly, asymptotically stable for
R = 0.
Besides, when inequalities (35) hold, it means that

RC1 < RC2; RC1 < RC3;

i.e. A1 is the spectrum equation coefficient with the biggest instability coefficient
power, so that at R = RC1 , it results:

A1 = 0, A3 = γ η (−c1 + c3) > 0; A0 = A1A2 − A3 < 0

and hence, in view of the continuity of A1A2 − A3, there exists a R̄ ∈]0, RC1 [ such
that

A1(R̄)A2(R̄) − A3(R̄) = 0,

being R̄ the lowest root of A1A2 = A3 in ]0, RC1 [ and it results

P(iϕ, R̄) = 0 ⇔ [λ3 + A1λ
2 + A2λ + A3]iϕ = 0 (39)

and hence

− iϕ3 − A1(R̄) ϕ2 + i A2(R̄) ϕ + A3(R̄) = 0 (40)

with
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ϕ2 = A3(R̄)

A1(R̄)
= A2(R̄). (41)

Besides, conditions (36) imply that R = RC1 = RC2 < RC3 that means A1 = A2 = 0
and

A3(RC1) = −γ η c1 + c3 γ η > 0

Consequently, the spectrum equation is reduced to:

λ3 + A3 = (λ + A1/3
3 ) (λ2 − λ A1/3

3 + A2/3
3 ) = 0 (42)

and hence

λ1 = −A1/3
3 λ2,3 = (1 ± i

√
3)A1/3

3 /2.

This means that a simple oscillatory bifurcation occurs at a R̄ ∈]0, Rc1 = Rc2 [.
Instead, when (37) holds, Rc1 = Rc3 < Rc2 ; and hence one obtains A1 = A3 = 0.
So, from the spectrum equation it results:

P(iϕ) = 0 ⇔ [λ(λ2 + A2)]iϕ = 0 ⇔ λ = 0;ϕ = (
√
A2)Rc1

= √
c1 (c2 − c1) (43)

and a steady (λ = 0) + oscillatory bifurcation of frequency ϕ/π with ϕ = (
√
A2)Rc1

occurs.
Analogous results can be obtained if we suppose Rc2 to be the biggest ICP and hence
(38) is proved, too. ��

5 Hopf bifurcations driven by−� = −" ˇ > 0

The previous bifurcation criterion required that � ≤ 0. In the present section, we
prove that, by choosing η = εβ as bifurcating parameter and letting η ≤ 0, the Hopf
bifurcation can arise with � ≥ 0.

Indeed, the following theorem states:

Theorem 6 Let consider a critical point C̄ such that:

Ū ≤ −
√
a2 + a + 1 + a + 1 or Ū ≥

√
a2 + a + 1 + a + 1 (44)

and let constants (ε, δ, d), be positive. Assuming R = −η = −ε β > 0, then, at the
growing of R from R = 0, conditions

� + γ ≤ γ� + ε + δ

� + γ
; � + γ <

γ ε

γ� + δ
(45)
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ensure that a simple oscillatory bifurcation occurs at a R̄ ∈]0, RC1 [, while if

� + γ = γ ε

γ� + δ
<

γ� + ε + δ

� + γ
(46)

a steady+oscillatory bifurcation appears.

Moreover, if

γ� + ε + δ

� + γ
< η + � <

γ ε

γ� + δ
, (47)

a simple oscillatory bifurcation occurs at a R̄ ∈]0, RC2 [.
Proof Condition (44) ensures that �, defined in (27), is positive. Moreover, since (28),
when η = 0, it results Ak > 0 (k = 1, 2, 3) and

A0]η=0 = A1A2 − A3]η=0 = (� + γ )(� γ + ε + δ) − γ ε > 0.

So, the critical point C̄ = (Ū , W̄ , Ȳ ) is linearly, asymptotically stable for R = R̄ = 0.
In addition, denoting by

c1 = � + γ ; c2 = γ� + ε + δ

� + γ
; c3 = γ ε

γ� + δ
(48)

from (28) it results

A1 = 0 ⇔ R = c1; A2 = 0 ⇔ R = c2; A3 = 0 ⇔ R = c3, (49)

and so, by retracing the analysis set forth in the previous bifurcation cases, this theorem
can also be proved. ��

6 Remarks and discussion

As it iswell known, the phenomenon related toHopf bifurcations is of great importance
and it is widely studied. In this paper, the FHR model (3) considered also depends on
the variable a generally not present in the bifurcations studies and it generalizes the
FHR system (4), which, on the contrary, is more often considered in literature.

Moreover, the results obtained [see, f.i. Theorems 4–5 and condition (30)] do not
require any assumptions for the real variable a and this implies that the analysis can
certainly be directed to a wider set of physical cases.

Furthermore, the equivalence that such a mathematical model creates between
biological problems and superconducting processes of Josephson junctions or vis-
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coelasticity, suggests that the analysis of such models is reflected in a large number of
realistic mathematical models.

In this paper the onset of Hopf bifurcations, driven by specific parameters, is con-
sidered. In particular an analysis on the onset of steady and oscillatory bifurcations
has been performed driven by both an admissible critical point Ū and a coefficient
characterized the FHR system.

Looking forward, in order to obtain a more comprehensive view of the stability and
instability of critical points, the analysis can be extended to evaluate Hopf bifurcations
driven by all other coefficients that characterize the FHR system. Moreover, it will be
possible to determine explicit critical points at particular values of the FHR system
variables and also evaluate the explicit value of the bifurcation parameters R.
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