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Abstract
In this paper, we study the information content and properties ofmaximum (minimum)
ranked set sampling with unequal samples (MaxRSSU (MinRSSU)) using quantile-
based Tsallis entropy and its cumulative version. We compare the uncertainty and
information content of MaxRSSU (MinRSSU) with simple random sampling (SRS)
and ranked set sampling (RSS) schemes. We obtain useful characterization results in
terms of quantile-based-cumulative Tsallis entropy under MaxRSSU and MinRSSU
schemes. We also discuss an application of quantile-based cumulative Tsallis entropy
under MaxRSSU in obtaining the optimum sample size.

Keywords Cumulative Tsallis entropy · Quantile function · Ranked set sampling ·
Reliability measures

Mathematics Subject Classification 94A17 · 62N05

1 Introduction

The concept of ranked set sampling (RSS) was first introduced by McIntyre [13] to
estimate the mean pasture yields and found that RSS is a more efficient sampling
method than simple random sampling (SRS) in terms of the population mean esti-

B David Chris Raju
davidchris077@gmail.com

S. M. Sunoj
smsunoj@gmail.com

G. Rajesh
rajeshgstat@gmail.com

1 Department of Statistics, Cochin University of Science and Technology, Cochin, Kerala 682 022,
India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11587-022-00739-9&domain=pdf
http://orcid.org/0000-0003-2748-7528


D. C. Raju et al.

mation. The RSS and some of its variants have been successfully applied in different
areas such as industrial statistics, environmental and ecological studies, bio-statistics,
statistical genetics etc. We assume that XSRS = {Xi , i = 1, . . . , n} be a SRS of size n
from a continuous distribution with probability density function (pdf) f (·) and cumu-
lative distribution function (cdf) F(·). The one-cycle ranked set sampling involves an
initial ranking of n samples of size n as follows:

1 : X(1:n)1 X(2:n)1 · · · X(n:n)1 → X(1)1 = X(1:n)1

2 : X(1:n)2 X(2:n)2 · · · X(n:n)2 → X(2)2 = X(2:n)2

...
...

...
. . .

...
...

...

n : X(1:n)n X(2:n)n · · · X(n:n)n → X(n)n = X(n:n)n

where X(i :n) j denotes the i th order statistics from the j th SRS of size n. The resulting
sample is called a RSS of size n and denoted by XRSS = {

X(i)i , i = 1, . . . , n
}
, where

X(i)i is the i th order statistic in a set of size n obtained from the i th sample having
pdf,

f(i :n)(x) = 1

B(i, n − i + 1)
f (x)[F(x)]i−1[1 − F(x)]n−i ,

with B(i, n − i + 1) is the beta function with the parameter i and n − i + 1.

Biradar et al. [2] proposed maximum ranked set sampling procedure with unequal
samples (MaxRSSU) to estimate the mean of the exponential distribution and showed
that MaxRSSU is better than that of the estimator based on SRS. In theMaxRSSU, we
draw n simple random samples, where the size of the i th sample is i for i = 1, . . . , n.
The one-cycleMaxRSSU involves an initial ranking of n samples of size n as follows:

1 : X(1:1)1 → Y1 = X(1:1)1
2 : X(1:2)2 X(2:2)2 → Y2 = X(2:2)2
...

...
...

. . .
...

...
...

n : X(1:n)n X(2:n)n · · · X(n:n)n → Yn = X(n:n)n

where X(i : j) j denotes the i th order statistic from the j th SRS of size j . The result-
ing sample is called one-cycle MaxRSSU of size n and denoted by YMRSSU =
{Yi , i = 1, 2, . . . , n} . Under the assumption of perfect judgment ranking (see Chen
et al. [3]), Yi has the same distribution as X(i)i which is the i th order statistic (the
maximum) in a set of size i obtained from the i th sample with probability density
function (pdf),

f(i)i (x) = i f (x)[F(x)]i−1 (1.1)

and distribution function,

F(i)i (x) = [F(x)]i . (1.2)

123



Cumulative Tsallis entropy under maximum (minimum)…

In MaxRSSU, we measure accurately only n maximum order statistics out of∑n
i=1 i = n(n + 1)/2 ranked units and it allows for an increase in set size with-

out introducing too many ranking errors. In a similar manner one can also define
procedure for minimum ranked set sampling with unequal samples (MinRSSU) as
useful modification of RSS procedure. The one cycle MinRSSU involves an initial
ranking of m samples of size n as follows,

1 : X(1:1)1 → Y1 = X(1:1)1
2 : X(1:2)1 X(2:2)2 → Y2 = X(1:2)2
...

...
...

. . .
...

...
...

n : X(1:n)1 X(2:n)n · · · X(n:n)n → Yn = X(1:n)n

Eskandarzadeh et al. [4] considered information measures of MaxRSSU in terms
of Shannon entropy, Rényi entropy and Kullback-Leibler information. Jozani and
Ahmadi [8] explored the notions of uncertainty and information content of RSS data
and compared themwith their counterparts in SRS data. Tahmasebi et al. [22] obtained
some results on residual entropy for ranked set samples. Raqab and Qiu [18] consid-
ered the problem of the information content of RSS data based on entropy measure
and the related monotonic properties and stochastic comparisons. More recently, Qiu
and Eftekharian [17] obtained the information content of MinRSSU and MaxRSSU
associated with extropy. However, little works have been found in literature on entropy
properties of MaxRSSU (MinRSSU) design using quantile function, which calls for
the present study.

Let X denote the lifetime of a system with pdf f (·) and cdf F(·). Shannon [20]
introduced a measure of uncertainty associated with X as

H(X) = −E (log f (X)) = −
∫ +∞

0
f (x) log( f (x))dx, (1.3)

and has been used in various branches of statistics and related fields. The measure
(1.3) is additive in nature, that is, for two independent random variables X and Y , the
two dimensional version of (1.3),

H(X ,Y ) = −E (log f (X ,Y )) = H(X) + H(Y ). (1.4)

Tsallis [25] introduced a non-additive generalization of the Shannon entropy which is
given by,

Sα(X) = 1

1 − α

[∫ +∞

0
f α(x)dx − 1

]

= 1

1 − α

[∫ 1

0
f α−1

(
F−1(u)

)
du − 1

]
, α > 0, α �= 1, (1.5)

where α is the entropic index. Clearly limα→1 Sα(X) = H(X). Unlike (1.4), Tsallis
entropy in (1.5) is non-additive, as for any two independent random variables X and
Y ,

Sα(X ,Y ) = Sα(X) + Sα(Y ) + (1 − α)Sα(X)Sα(Y ). (1.6)
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Many applications of Tsallis entropy such as fluxes of cosmic rays, turbulence, folded
proteins and many other applications are given in Tsallis and Brigatti [26]. Wilk and
Wodarczyk [28] stated that, there are situations in which uncertainties can only be
calculated by Tsallis entropy and the Shannon entropy fails to provide them. Tsallis
entropy has also been extensively used in image processing and signal processing,
(see Tong et al. [24] and Weili et al. [27]).

It is well known that a probability distribution can be specified either by distribution
function, or by quantile function defined as

Q(u) = F−1(u) = inf{t : F(t) ≥ u}, 0 < u < 1. (1.7)

Note that it is an efficient alternative to distribution function in modeling and data
analysis (see Nair et al. [15]). While dealing with real-life data, we often get proba-
bility models having no closed form distribution functions but they have closed form
quantile functions (see Freimer et al. [5] and Hankin and Lee [7]). Hence, to study the
properties of Tsallis entropy for such models via (1.5) is difficult. Thus, an alterna-
tive representation or approach to the Tsallis- α divergence is required. Accordingly,
in the present paper, we introduce quantile-based Tsallis entropy for MaxRSSU and
MinRSSU and study some of its properties.

The paper is organized as follows: In Sect. 2, we obtain the quantile-based Tsallis
entropy ofMaxRSSU andMinRSSU and their comparisonwith SRS andRSS.We also
providemonotonic properties, stochastic orders and bounds for the proposedmeasures.
In Sect. 3, we consider the cumulative Tsallis entropy associated with MaxRSSU and
MinRSSUsampling and study their various properties including some characterization
results. In Sect. 4, we discuss an application of cumulative Tsallis entropy under
MaxRSSU as well as its non-parametric empirical estimation.

2 Quantile-based Tsallis entropy based on RSS, MaxRSSU and
MinRSSU

In this section we study the quantile-based Tsallis entropy for SRS and RSS data
sets. Let XSRS = {Xi , i = 1, . . . , n} denotes a SRS of size n from a absolutely
continuous distribution with a common pdf f (·), cdf F(·) quantile function Q(·). For
strictly increasing F , we have F(Q(u)) = u, 0 < u < 1, which further implies
f (Q(u))q(u) = 1, where f (Q(u)) and q(u) = d

du Q(u) are respectively known as
the density quantile function and quantile density function. Khammar and Jahanshahi
[10] defined the quantile-based Tsallis entropy, given by,

QSα (X) = 1

α − 1

[
1 −

∫ 1

0
f α (Q(p)) dQ(p)

]

= 1

α − 1

[
1 −

∫ 1

0
q1−α (p) dp

]
.
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The corresponding quantile-based Tsallis entropy of XSRS of size n is given by,

QSα (XSRS) = 1

α − 1

[
1 −

∫ 1

0
. . .

∫ 1

0
qα−1 (p1) . . . qα−1 (pn) dp1 . . . dpn

]

= 1

1 − α

[
n∏

i=1

∫ 1

0
q1−α(p)dp − 1

]

= 1

1 − α

[(∫ 1

0
q1−α(p)dp

)n

− 1

]

= 1

1 − α

(
[(1 − α)QSα (X) + 1]n − 1

)
. (2.1)

Kumar et al. [12] introduced the Tsallis entropy in terms of quantile function for the
i th order statistics as,

QSα

(
X(i:n)

) = 1

1 − α

[∫ 1

0

[
f α
(i :n)(Q(p))

]
dQ(p) − 1

]

= 1

1 − α

[∫ 1

0

[
gα
i (p)q1−α(p)

]
dp − 1

]
, α > 0, α �= 1,

where gi (p) follows the pdf of the beta distributionwith the parameters i and (n−i+1).
Under the perfect ranking assumption, the quantile version of the Tsallis entropy of
XRSS of size n then becomes,

QSα (XRSS) = 1

1 − α

(
n∏

i=1

[∫ 1

0
f α
(i :n)(Q(p))dQ(p)

]
− 1

)

= 1

1 − α

(
n∏

i=1

[
(1 − α)QSα

(
X(i:n)

)+ 1
]− 1

)

, (2.2)

where X(i:n) is the i th order statistic of size n with pdf f(i :n)(x).
Using (1.1), the corresponding quantile-based Tsallis entropy of XMaxRSSU of size n
is obtained as

QSα (XMaxRSSU) = 1

1 − α

(
n∏

i=1

[∫ 1

0
f α
(i :i)(Q(p))dQ(p)

]
− 1

)

= 1

1 − α

(
n∏

i=1

[
(1 − α)QSα

(
X(i:i)

)+ 1
]− 1

)

= 1

1 − α

(
n∏

i=1

[∫ 1

0
iα pα(i−1)q1−α(p)dp

]
− 1

)

(2.3)
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where,

QSα

(
X(i:i)

) = 1

1 − α

∫ 1

0

[
pi−1q1−α(p)

B(i, 1)
dp

]
− 1, α > 0, α �= 1. (2.4)

The corresponding quantile-based Tsallis entropy for XMinRSSU is obtained as,

QSα (XMinRSSU) = 1

1 − α

(
n∏

i=1

[∫ 1

0
f α
(1:i)(Q(p))dQ(p)

]
− 1

)

= 1

1 − α

(
n∏

i=1

[∫ 1

0
iα(1 − p)α(i−1)q1−α(p)dp

]
− 1

)

.

Example 2.1 Suppoe that X follows Govindarajulu distribution [6] that do not have
any closed form distribution function. Then its quantile function and quantile density
function are, respectively

Q(u) = a
{
(b + 1)ub − bub+1

}
(2.5)

and

q(u) = ab(b + 1)(1 − u)ub−1 ; 0 ≤ u ≤ 1 a, b > 0. (2.6)

The corresponding quantile-based Tsallis entropy of XMaxRSSU and XMinRSSU of size
n is given by,

QSα (XMaxRSSU)

= 1

(1 − α)

[

(n!)α (ab(b + 1))n(1−α)
n∏

i=1

(B(αi + b(1 − α)), 2 − α) − 1

]

.

and

QSα (XMinRSSU)

= 1

(1 − α)

[

(n!)α (ab(b + 1))n(1−α)
n∏

i=1

[B(b + α − bα, αi + 2(1 − α))] − 1

]

.

Theorem 2.1 Let XMinRSSU and XMaxRSSU be the MinRSSU and MaxRSSU from the
population with pdf f (·)and cdf F(·). Then
1. [QSα (XMinRSSU) (1 − α) + 1] ≤ (n!)α [QSα (XSRS) (1 − α) + 1] for α >

0, α �= 1.
2. [QSα (XMaxRSSU) (1 − α) + 1] ≤ (n!)α [QSα (XSRS) (1 − α) + 1] for α >

0, α �= 1.

Proof The proof is straightforward from Theorem 2.1 of Tahmasebi et al. [23]. ��
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We now prove some properties of QSα (XMaxRSSU) and QSα (XMinRSSU) using the
following definitions of stochastic orders.

Definition 2.1 We say the random variable X is said to be smaller than Y in the:

1. Usual stochastic order ( X ≤st Y ) if P(X ≥ x) ≤ P(Y ≥ x) for all x ∈ R,
2. Hazard rate order (X ≤hr Y ), if λX (x) ≥ λY (x) for all x , where λX )(·), λY (·)

denote respectively the failure rates X and Y with λ(x) = f (x)
F̄(x)

,

3. Hazard quantile order (X ≤HQ Y ), if HX (u) ≥ HY (u); ∀u ∈ (0, 1) where
HX (u) = [(1 − u)qX (u)]−1 is the hazard quantile function,

4. Mean residual quantile function order (X ≤MQ Y ), if MX (u) ≤ MY (u); ∀u ∈
(0, 1), where MX (u) = (1 − u)−1

∫ 1
u (Q(p) − Q(u)) dp, and

5. Dispersive order (X ≤disp Y ), if f
(
F−1(u)

) ≥ g
(
G−1(u)

)
for all u ∈ (0, 1),

where F−1 and G−1 are right continuous inverses of F and G, respectively.

Definition 2.2 A non-negative random variable X is said to have increasing (decreas-
ing) failure rate [IFR (DFR)] if λ(x) is increasing (decreasing) in x .

Theorem 2.2 Let X and Y be two non-negative random variables with pdf’s f (·) and
g(·) respectively. Then
1. If X ≤disp Y , then QSα (XMinRSSU) ≥ (≤)QSα (YMinRSSU) for α > 1(0 < α <

1), α �= 1.
2. If X ≤disp Y , then QSα (XMaxRSSU) ≥ (≤)QSα (YMaxRSSU) for α > 1(0 < α <

1), α �= 1.

Proof From X ≤disp Y , we have qX (u) ≤ qY (u), ∀u. Then we have,

∫ 1

0
iα(1 − u)α(i−1)q1−α

X (u)du ≤
∫ 1

0
iα(1 − u)α(i−1)q1−α

Y (u)du,

which further yield case 1. The proof for XMaxRSSU is similar hence it is omitted. ��
Theorem 2.3 For the continuous non-negative random variables X and Y

1. if X or Y is DFR, and X ≤hr Y , or
2. if X and Y have the same lower end support and if QX (u)

QY (u)
is increasing in u ∈ (0, 1)

and X ≤st Y , or
3. if MX (u)

MY (u)
is increasing in u and X ≤MQ Y ,

then

1. If X ≤disp Y , then QSα (XMinRSSU) ≥ (≤)QSα (YMinRSSU) for α > 1(0 < α <

1), α �= 1.
2. If X ≤disp Y , then QSα (XMaxRSSU) ≥ (≤)QSα (YMaxRSSU) for α > 1(0 < α <

1), α �= 1.

Proof The condition 1, 2 and 3 implies X ≤HQ Y . Now using Lemma 3.3(a) of
Khammar and Jahanshahi [10] and Theorem 2.2, the proof is complete. ��
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Example 2.2 Let X be random variable that follows Govindarajulu distribution with
quantile function (2.5) and quantile density function (2.6). Then from (2.1), (2.2) and
(2.3), we have,

QSα (XSRS) = 1

α − 1

[
1 − {ab(b + 1)}2(1−α) I 21

]
, (2.7)

QSα (XRSS) = 1

α − 1

[
1 − {ab(b + 1)}2(1−α) I1 I2

B(1, 2)

]
, (2.8)

QSα (XMinRSSU) = 1

α − 1

[
1 − 2α {ab(b + 1)}2(1−α) I1 I3

]
, (2.9)

QSα (XMaxRSSU) = 1

α − 1

[
1 − 2α {ab(b + 1)}2(1−α) I1 I2

]
, (2.10)

where I1 = B{(b − 1)(1 − α) + 1, 2 − α}, I2 = B{(b − 1)(1 − α) + 2, 2 − α}
and I3 = B{(b − 1)(1 − α) + 1, 2}. Since, the parameters of beta function is always
greater than 0, the Tsallis index parameter α can take values between 0 < α <

2, α �= 1. The differences betweenQSα (XSRS),QSα (XRSS),QSα (XMinRSSU) and
QSα (XMaxRSSU) for n = 2 are given by,

δ1(α) = QSα (XSRS) − QSα (XRSS) =
[
(ab(b + 1))2(1−α)

]
I1

(α − 1)

[
I2

B{1, 2} − I1

]
,

δ2(α) = QSα (XSRS) − QSα (XMinRSSU) =
[
(ab(b + 1))2(1−α)

]
I1

(α − 1)

[
2α I3 − I1

]
,

δ3(α) = QSα (XSRS) − QSα (XMaxRSSU) =
[
(ab(b + 1))2(1−α)

]
I1

(α − 1)

[
2α I2 − I1

]
,

δ4(α) = QSα (XRSS) − QSα (XMinRSSU) =
[
(ab(b + 1))2(1−α)

]
I1

(α − 1)

[
2α I3 − I2

B{1, 2}
]

,

δ5(α) = QSα (XRSS) − QSα (XMaxRSSU) =
[
(ab(b + 1))2(1−α)

]
I1 I2

(α − 1)

[
2α − 1

B{1, 2}
]

,

δ6(α) = QSα (XSRS) − QSα (XMaxRSSU) =
[
(ab(b + 1))2(1−α)

]
2α I1

(α − 1)
[I3 − I2] .

From Figs. 1 and 2, it can be seen that, δ2(α), δ4(α) and δ6(α) are all greater than
0,∀ 0 < α < 2, while δ1(α), δ3(α) and δ5(α) are less than 0, ∀ 0 < α < 2.
Combining all these equations, we can conclude that, XMaxRSSU ≥ XRSS ≥ XSRS ≥
XMinRSSU irrespective of α.

In the following theorem, we obtain some sharp bounds for QSα (XMinRSSU) and
QSα (XMaxRSSU). The proof of the theorem can be obtained from Theorem 2.9 from
Tahmasebi et al. [23].
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Fig. 1 The graph of δi (α) of Govindarajulu distribution having quantile density function of the form (2.6)
with parameters a = 2 and b = 0.5 for 1 < α < 2

Fig. 2 The graph of δi (α) of Govindarajulu distribution having quantile density function of the form (2.6)
with parameters a = 2 and b = 0.5 for 0 < α < 1

Theorem 2.4 Letm1 = 1
1−α

(
∏n

i=1

[∫ 1
α(i−1)

α(i−1)+1
iα(1 − u)α(i−1)q1−α(p)dp

]
− 1

)
and

M1 = 1
1−α

(
∏n

i=1

[∫ 1
α(i−1)+1
0 iα(1 − u)α(i−1)q1−α(p)dp

]
− 1

)
. Also let,

m2 = 1
1−α

(
∏n

i=1

[∫ 1
α(i−1)

α(i−1)+1
iαuα(i−1)q1−α(p)dp

]
− 1

)
and

M2 = 1
1−α

(
∏n

i=1

[∫ 1
α(i−1)+1
0 iαuα(i−1)q1−α(p)dp

]
− 1

)
. Then,

1. For 0 < α < 1, we have m1 < QSα (XMinRSSU) < M1 and m2 <

QSα (XMaxRSSU) < M2.
2. For α > 1, we have M1 < QSα (XMinRSSU) < m1 and M2 < QSα (XMaxRSSU) <

m2.
3. If q(p) never increases, then all inequalities in parts (i) and (ii) are reversed.
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3 Quantile-based cumulative Tsallis entropy for MaxRSSU and
MinRSSU

Sankaran and Sunoj [19] introduced the quantile-based cumulative entropy and its
dynamic version, given by

ζ = ζ(X) = −
∫ 1

0
(ln p)pdQ(p) = −

∫ 1

0
(ln p)pq(p)dp (3.1)

and

ζ(u) = ζ(X; Q(u)) = ln u

u

∫ u

0
pq(p)dp − 1

u

∫ u

0
(ln p)pq(p)dp (3.2)

respectively. However, Krishnan et al. [11] proposed a quantile version of cumulative
Tsallis entropy in past lifetime and its dynamic version as,

τα(X) = 1

α − 1

(
1 −

∫ 1

0
pαq(p)dp

)
, α > 0, α �= 1 (3.3)

and

τα(u) = τα(X; Q(u)) = 1

α − 1

(
1 −

∫ 1

0

p

u

α

q(p)dp

)
, α > 0, α �= 1, 0 < u < 1.

(3.4)

Using the quantile based-Tsallis entropy of SRS given in (2.1), we have the quantile
based-cumulative Tsallis entropy of SRS for past lifetime as,

τα(XSRS) = 1

α − 1

(

1 −
[∫ 1

0
pαq(p)dp

]n)

, α > 0, α �= 1. (3.5)

Krishnan et al. [11] obtained the quantile based-cumulative Tsallis entropy for 1st

order and nth order statistics in the past lifetime as,

τα(X1;n) = 1

α − 1

(
1 −

∫ 1

0
(−1)α(1 − p)nαq(p)dp

)
(3.6)

and

τα(Xn;n) = 1

α − 1

(
1 −

∫ 1

0
(−1)α pnαq(p)dp

)
. (3.7)
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The corresponding quantile-based cumulative Tsallis entropy for MinRSSU and
MaxRSSU will be,

τα (XMinRSSU ) = 1

α − 1

[

1 −
n∏

i=1

(∫ 1

0
(−1)α(1 − p)iαq(p)dp

)]

. (3.8)

and

τα (XMaxRSSU ) = 1

α − 1

[

1 −
n∏

i=1

(∫ 1

0
(−1)α piαq(p)dp

)]

. (3.9)

Theorem 3.1 Let XMaxRSSU be the MaxRSSU from the population with pdf f (·) and
cdf F(·). Then we have, τα (XMaxRSSU ) ≥ τα(XSRS) for all nα an even integer
greater than 1. .

Proof Since 0 < p < 1, for any α, pα ≥ piα, i = 1, 2, . . . , n. Multiplying with
q(p) and integrating in the range of 0 to 1, we get

∫ 1

0
pαq(p)dp ≥

∫ 1

0
piαq(p)dp, ∀ i = 1, 2, . . . , n,

which in turn gives,

1 −
[∫ 1

0
pαq(p)dp

]n
≤ 1 −

n∏

i=1

[∫ 1

0
piαq(p)dp

]
.

Multiplying the above equation with 1
α−1 , we obtain the inequality. ��

Theorem 3.2 If X ≤disp Y or X ≤HQ Y , then ∀α > 1, we have, τα (XMinRSSU ) ≥
(≤)τα (YMinRSSU ) and τα (XMaxRSSU ) ≥ (≤)τα (YMaxRSSU ) provided nα is an
even (odd) integer.

Proof Using dispersion ordering we have f (F (−1)(u) ≥ g(G(−1)(u) implies that
qY (u) ≥ qX (u). The rest of the proof is straightforward and hence omitted. ��

Example 3.1 Suppose that X follows a power distribution with quantile function

Q(u) = γ u
1
β . Then the quantile-based cumulative Tsallis entropy, is given by

τα(X) = 1
(α−1)

[
1 − γ

βα+1

]
. Then using (3.5) the quantile-based cumulative Tsal-

lis entropy for SRS of size n = 2 will be,

τα(XSRS) = 1

(α − 1)

[
1 − γ 2

(βα + 1)2

]
. (3.10)
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For the MinRSSU data, the quantile-based cumulative Tsallis entropy for size n = 2
is given by,

τα (XMinRSSU ) = 1

(α − 1)

[

1 − γ 2B(α + 1, 1
β
)B(2α + 1, 1

β
)

β2

]

∀ α = 2, 3, 4 . . . .

(3.11)

The difference between XSRS and XMinRSSU is

τα(XSRS) − τα (XMinRSSU )

= 1

(α − 1)

[
γ 2B(α + 1, 1

β
)B(2α + 1, 1

β
)

β2 − γ 2

(βα + 1)2

]

. (3.12)

Similarly, for MaxRSSU data, the quantile-based cumulative Tsallis entropy for size
n = 2 will be obtained by using (3.9),

τα (XMaxRSSU ) = 1

(α − 1)

[
2β2α2 + 3αβ − γ 2 + 1

(βα + 1)(2βα + 1)

]
∀ α = 2, 3, 4 . . . .

(3.13)

The difference between (3.13) and (3.10), gives,

τα (XMaxRSSU ) − τα(XSRS) = γ 2αβ

(α − 1)(αβ + 1)2(2βα + 1)
. (3.14)

From the equation (3.14) we can easily conclude that, τα (XMaxRSSU ) > τα (XSRS),
since we assumed α > 1. We cannot say any relationship between τα (XMinRSSU )

and τα (XSRS) as equation (3.12) > 0 depends upon the parameters chosen.

The quantile-based cumulative Tsallis entropy of SRS, MinRSSU and MaxRSSU for
n = 2 can also be obtained by using,

τα(XSRS) = 2τα(X) + (1 − α)τ 2α(X), (3.15)

τα (XMinRSSU ) = τα(X1;2) + τα(X)

+(1 − α)τα(X)τα(X1;2) ∀ α = 2, 3, 4 . . . , (3.16)

and

τα (XMaxRSSU ) = τα(X2;2) + τα(X)

+(1 − α)τα(X)τα(X2;2) ∀ α = 2, 3, 4 . . . . (3.17)
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3.1 Past lifetime andMaxRSSU

Let tX = (t − X |X < t) be a random variable describes the past lifetime at age
t . Then the dynamic version of the cumulative Tsallis entropy for the past lifetime
using quantile function has been proposed by Krishnan et al. [11]. The correspond-
ing quantile-based dynamic cumulative past Tsallis entropy of SRS and MRSSU are
obtained respectively as,

τα

(
XSRSn; u

) = 1

(α − 1)

[

1 −
(∫ u

0 pαq(p)dp

uα

)n]

, (3.18)

and

τα

(
XMaxRSSUn ; u

) = 1

(α − 1)

[

1 −
n∏

i=1

(∫ u
0 piαq(p)dp

uiα

)]

. (3.19)

The relationship between the cumulative past Tsallis entropy with respect to SRS and
MRSSU is given by,

τα

(
XSRSn; u

) = 1

(α − 1)

[
1 − {1 − (α − 1)τα(u)}n] (3.20)

and

τα

(
XMaxRSSUn ; u

) = 1

(α − 1)

[

1 −
n∏

i=1

{1 − (iα − 1)τiα(u)}
]

. (3.21)

where τα(u) = 1
(α−1)

[
1 −

(∫ u
0 pαq(p)dp

uα

)]
is the quantile-based cumulative past Tsal-

lis entropy due to Krishnan et al. [11]. Differentiating (3.19) with respect to u, we
have,

(α − 1)
d

du
τα

(
XMaxRSSUn; u

) =
n∑

i=1

⎧
⎨

⎩

n∏

j=1; j �=i

∫ u

0

p jαq(p)dp

u jα

{
iα

u

∫ u

0

piαq(p)dp

uiα
− q(u)

}
⎫
⎬

⎭
. (3.22)

Theorem 3.3 If X(i :n) ≤disp Y(i;n) ∀ i = 1, 2, .., n, then τα

(
XMaxRSSUn; u

) ≤ (≥
) τα

(
YMaxRSSUn ; u

)
for all α > 1(0 < α < 1).

Proof Assume that, X(i :n) ≤disp Y(i;n) then τα

(
Xn;n

) ≥ τα

(
Yn;n

)
for α > 1 ( see

Theorem 3.3 in Krishnan et al. [11]). Then we have,

n∏

i=1

(α − 1)τα

(
Xi;i

) ≥
n∏

i=1

(α − 1)τα

(
Yi;i

)
.
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The remaining part is straightforward and hence omitted. For 0 < α < 1, the inequality
gets reversed. ��

Apart from comparing random variables based on τα (XMaxRSSU ), it also pro-
vide some characterizations to well known probability distributions. The following
theorems prove to this effect.

Theorem 3.4 The quantile-based dynamic cumulative Tsallis entropy of MaxRSSU in
past lifetime takes the form

τα

(
XMaxRSSUn; u

) = 1

α − 1

{

1 −
n∏

i=1

Ci Ri;i (u)

}

(3.23)

if and only if X has a power distribution with quantile function Q(u) = γ u
1
β ,

where Ri;i (u) denotes the quantile-based i th order mean inactivity time, Ri;i (u) =
1
ui
∫ u
0 piq(p)dp and Ci = iβ+1

iβα+1 .

Proof We use the induction technique for the proof of this theorem. When n = 1, we

have τα (X) = 1
α−1

{
1 − β+1

βα+1 R1;1(u)
}
. That is,

∫ u

0

pαq(p)

uα
= β + 1

βα + 1
R1;1(u). (3.24)

The proof of this theorem is available in Krishnan et al. [11]. Now for n = 2, the
equation (3.23) becomes,

τα

(
XMaxRSSUn ; u

) = 1

α − 1

{

1 −
2∏

i=1

Ci Ri;i (u)

}

.

Simplifying the above equation and using (3.24) we have,

∫ u

0

p2αq(p)

u2α
= C2 ∗ R2;2(u). (3.25)

The ’if’ part of the (3.25) can be easily obtained by simple mathematical calculation.
To prove the ’only if’ part, we first take the derivative of (3.25) with respect to u,
gives

u2αq(u) = C2 ∗ u2α−1(uR2;2(u) + 2αR
′
2;2(u)). (3.26)

Now using the result uR
′
2;2(u) = 1

	(u)
− 2 ∗ R2;2(u), substituting (uq(u))−1 = 	(u)

and simplifying we have,

R2;2(u)	(u) = K ∗. (3.27)
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Differentiating (3.27) with respect to u,

R2;2(u)	(u) = K ∗ (3.28)

where K ∗ = 1−C2
C2(α−1)∗2 . Differentiating (3.28) with respect to u we get,

R
′
2;2(u)	(u) = −R2;2(u)	

′
(u). (3.29)

Substituting the relationship uR
′
2;2(u) = 1

	(u)
− 2 ∗ R2;2(u) and (3.27) in (3.29),

R2;2(u)	
′
(u) = 2K ∗ − 1

u
. (3.30)

Differentiating uq(u)	(u) = 1, we get

	
′
(u) = −	(u)

[
1

u
+ q

′
(u)

q(u)

]

. (3.31)

Substituting this in (3.29) and simplifying we have,

K ∗
[
1

u
+ q

′
(u)

q(u)

]

= 2K ∗ − 1

u
. (3.32)

Solving (3.32) we have, q(p) = k1u2K
∗−1 which is the quantile function of power

distribution. Now for the last part of the induction method, one can undergo the same
procedure to complete the proof. ��
Corollary 3.1 The quantile-based dynamic cumulative Tsallis entropy of MaxRSSU in
past lifetime τα

(
XMaxRSSUn; u

) = C, a constant for all n, if and only if X has an
exponential distribution with the support (−∞, 0).

Similar to τα

(
XMaxRSSUn; u

)
, one can also characterize certain distributions using

τα

(
XSRSn; u

)
.

Theorem 3.5 If X is a continuous random variable such that,

τα

(
XSRSn; u

) = 1

α − 1

{
1 − [C(u)R(u)]n

}
, (3.33)

where R(.) is the reversed mean residual quantile function. Then, for every n, R(u)

takes the form,

R(u) = 1

C(u)
exp

{∫ u
0 (α(C(p) − 1)dp

p(1 − C(p))

}

.
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Proof Solving (3.33) we have the equation,

∫ u

0
pαq(p)dp = C(u)R(u)uα.

Using theorem 2.7 of Krishnan et al. [11], the proof is complete. ��
Corollary 3.2 Let X be a non-negative random variable, with quantile function Q(.),
Then for α > 1,

τα

(
XSRSn; u

) = 1

α − 1

{
1 − C (R(u))n

}
(3.34)

where C > 1
αn , if and only if X has a power distribution for every n.

Corollary 3.3 The τα

(
XSRSn; u

) = C is a constant for every n if and only if X has a
exponential distribution with negative support.

Theorem 3.6 If τα(u) is increasing(decreasing), with respect to u, then we have

1. τα

(
XSRSn; u

)
is also increasing (decreasing) with respect to u.

2. τα

(
XMRSSUn; u

)
is also increasing(decreasing) with respect for all possible α >

1.

Proof If τα(u) is increasing(decreasing), with respect to u, then we have for u2 > u1,
τα(u2) ≥ (≤)τα(u1). Now for α > 1, multiplying the above equation by −(α − 1)
and adding 1 we have,

1 − (α − 1)τα(u2) ≤ (≥)1 − (α − 1)τα(u1).

Taking the whole power with respect to n, adding 1 on both sides and multiplying by
1

α−1 we have the result. The proof for α < 1 and the second theorem is similar. Hence
omitted. ��

3.2 Residual lifetime andMinRSSU

Let t∗X = (X − t |X > t) be a random variable describing the residual lifetime at age
t∗. Then the quantile-based cumulative residual Tsallis entropy is defined as,

τ2α(u) = 1

α − 1

{
1 −

∫ 1

u

(1 − p)αqX (p)dp

(1 − u)α

}
. (3.35)

Using equation (3.35), the corresponding dynamic version of quantile based-
cumulative residual Tsallis entropy for MinRSSU becomes,

τα

(
XMinRSSUn; u

) = 1

(α − 1)

[

1 −
n∏

i=1

(∫ 1
u (1 − p)iαq(p)dp

(1 − u)iα

)]

. (3.36)
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Example 3.2 For the proportional hazards model given by hY (x) = θhX (x) θ > 0,
where hY (x) and hX (x) respectively represent the hazard functions of Y and X , the
quantile-based cumulative residual Tsallis entropy for MinRSSU will be,

τα

(
YMinRSSUn; u

) = 1

α − 1

[

1 −
n∏

i=1

(∫ 1
u (1 − p)iαqY (p)dp

(1 − u)iα

)]

= 1

α − 1

[

1 −
n∏

i=1

[1 − (α − 1) τα(Y1:i )]
]

(3.37)

Clearly ∀ i = 1, 2, 3 . . . , n,

τα(Y1:i ) = 1

α − 1

[

1 −
(∫ 1

u (1 − p)iαqY (p)dp

(1 − u)iα

)]

= 1

α − 1

[

1 −
(∫ 1

u (1 − p)iα(1 − p)
1
θ
−1qX (1 − (1 − p)

1
θ )dp

θ(1 − u)iα

)]

= 1

α − 1

⎡

⎢
⎣1 −

⎛

⎜
⎝

∫ 1

1−(1−u)
1
θ
(1 − z)iαθqX (z)dz

θ(1 − u)iα

⎞

⎟
⎠

⎤

⎥
⎦

≤ 1

α − 1

[

1 −
(∫ 1

u (1 − z)iαqX (z)dz

(1 − u)iα

)]

≤ τα(X1:i ) (3.38)

Combining equations (3.37) and (3.38), we have the inequality

τα

(
YMinRSSUn ; u

) ≤ τα

(
XMinRSSUn ; u

)
.

In the next theoremwecharacterize exponential distributionusing τα

(
XMinRSSUn; u

)
.

Theorem 3.7 X is exponentially distributed if and only if τα

(
XMinRSSUn; u

)
is a

constant.

Proof For the exponential distribution with parameter λ > 0,

τα

(
XMinRSSUn; u

) = 1

α − 1

[

1 −
n∏

i=1

(
1

iαλ

)]

, (3.39)

a constant. To prove the ’only if’ part we can write τα

(
XMinRSSUn; u

)
as,

τα

(
XMinRSSUn; u

) = 1

α − 1

[

1 −
n∏

i=1

[1 − (α − 1) τα(X1:i )]
]

, (3.40)
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using (3.37). Now τα

(
XMinRSSUn; u

)
is a constant further implies that ∀ i =

1, 2, 3, . . . , n, τα(X1:i ) is constant and hence X is exponential (see Theorem 3.2
of Sunoj et al. [21]). ��
If τα

(
XMinRSSUn; u

)
is increasing in X and φ(·) is non-negative, increasing and

convex function. Then τα

(
φ(X)MinRSSUn ; u

)
is also increasing (decreasing) if α >

1(0 < α < 1). For example if X is an exponential random variable with mean λ

and let φ(X) = X
1
γ , then φ(X) satisfies all the desirable properties such as non-

negativity, increasing and convexity (0 < γ < 1). Hence we can conclude that
τα

(
φ(X)MinRSSUn ; u

)
is also increasing when α > 1. In the next theorem we find

bounds for τα

(
XMinRSSUn; u

)
using hazard quantile function H(u).

Theorem 3.8 Let X be a non-negative continuos random variable with quantile func-
tion Q(u) and hazard quantile function H(u). If τα

(
φ(X)MinRSSUn ; u

)
is increasing

in u, then for α > 1 we have

τα

(
XMinRSSUn; u

) ≥ 1

(α − 1)

[

1 −
n∏

i=1

(
1

iαH(u)

)]

,

and for α < 1,

τα

(
XMinRSSUn; u

) ≤ 1

(α − 1)

[

1 −
n∏

i=1

(
1

iαH(u)

)]

.

Proof Using (3.37) and for α > 1 , we have,

τα

(
XMinRSSUn; u

) = 1

α − 1

[

1 −
n∏

i=1

[1 − (α − 1) τα(X1:i )]
]

≥ 1

α − 1

[

1 −
n∏

i=1

[
1 − (α − 1)

(
1

α − 1

{
1 − 1

iαH(u)

})]]

= 1

(α − 1)

[

1 −
n∏

i=1

(
1

iαH(u)

)]

. (3.41)

The proof for α < 1 is similar hence omitted. ��

4 Applications of �˛ (XMaxRSSU )

4.1 Fixing the sample size associated with MaxRSSU

Many often, it is imperative to decide the size of the sample to be selected from
a given population. From (3.9) it can be seen that τα (XMaxRSSU ) converges to a
quantity 1

(α−1) when sample size n reaches a certain value. This is because when
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n increases,
∏n

i=1

(∫ 1
0 piαq(p)dp

)
→ 0. This is the stage, at which maximum

information, τα (XMaxRSSU ) → 1
α−1 can be obtained from the sample. Hence

the convergence property of τα (XMaxRSSU ) can be taken as a methodology to fix
the sample size n. Equivalently, we choose the optimum sample size n for which
τα (XMaxRSSU ) → 1

α−1 .

However, in the case of τα (XSRS), from (3.5), it can be seen that,
[∫ 1

0 pαq(p)dp
]

is always positive. As n increases and if the value of
[∫ 1

0 pαq(p)dp
]
lies between 0

and 1, then τα (XSRS) → 1
α−1 or if the value of

[∫ 1
0 pαq(p)dp

]
is greater than 1, then

τα (XSRS) diverges to −∞. The convergence or divergence of τα (XSRS), depends
on the parameters of q(p), while for any chosen value of the parameters in q(p) of
MaxRSSU, τα (XMaxRSSU ) → 1

α−1 .
In order to elucidate the concept further, we consider the probability models, viz., the
Govindarajulu, power and skew-lambda distributions with quantile functions q(u) =
ab(b+1)(1−u)ub−1, q(u) = abu

1
b−1 and q(u) = b(aub−1+(1−u)b−1) respectively,

wherein the Govindarajulu and skew-lambda distributions do not have closed form
distribution functions. For each of the three probability models, we determine the
sample size n for which τα (XMaxRSSU ) attains its maximum value, 1

α−1 . This is
carried out for different parametric values by keeping the value of α = 2 and are given
in Table 1. It can be observed that when the value of parameter increases the optimum
sample size n also increases.

4.2 Empirical plug-in estimator for �˛ (XMaxRSSU ).

Parzen [16] defined an empirical estimator for the quantile function which is given
by,

Q̄i (u) = X{r;n}i , for
r − 1

n
< u <

r

n
, r = 1, 2, . . . , n, (4.1)

Table 1 Optimum sample size n
for which τα

(
XMRSSU

)
attains

1
α−1

Parameters (a, b) Govindarajulu Power Skew-lambda

(0.25,0.50) 3 3 9

(0.50,0.50) 3 4 9

(0.50,1.00) 4 5 7

(0.50,1.50) 4 5 6

(1.00,1.50) 5 7 7

(3.00,2.00) 7 14 13

(3.00,5.00) 11 27 22

(2.00,10.0) 12 34 23

(2.00,12.0) 15 40 26
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and a smoothed version of (4.1) with the form,

Q̂i;n(u) = n
( r
n

− u
)
X{r−1;n}i + n

(
u − r − 1

n

)
. (4.2)

Differentiating (4.2), we can easily obtain the empirical estimator for quantile density
function,

q̄i (ur ) = n
(
X{r;n}i − X{r−1;n}i

)
for

r − 1

n
< u <

r

n
. (4.3)

Substituting (4.3) in (3.9) we have the empirical estimator for τα (XMaxRSSU ), given
by

τ̄α (XMaxRSSU ) = 1

α − 1

[

1 −
n∏

i=1

(∫ 1

0
(−1)α(p)iα q̄i (p)dp

)]

. (4.4)

Changing the integral into summation and applying the transformation of ui into ( in )α ,
the empirical estimator in (4.4) modifies to

τ̄α (XMaxRSSU ) = 1

α − 1

⎡

⎣1 −
n∏

i=1

⎛

⎝
m∑

j=1

(−1)α
(

j

m

)iα

q̄i (p)dp

⎞

⎠

⎤

⎦ , (4.5)

where q̄i (p) is the quantile density estimator for each X{i :i}(i). Our initial simulations
shows some deficiencies to τ̂α (XMaxRSSU ) in terms of unbiasedness, we propose a
further modified (4.5) in line with Kazemi et al. [9], given by

τ̂α (XMaxRSSU ) = 1

α − 1

⎡

⎣1 −
n∏

i=1

⎛

⎝
m∑

j=1

(−1)α
(

j

m + n + w

)iα

q̄i (p)dp

⎞

⎠

⎤

⎦ ,

(4.6)

where n is the size of samplem is the number of cycles andw is a number that estimator
has optimally low bias and MSE. To investigate the performance of (4.6), we use
Govindarajulu model with quantile function q(u) = ab(b + 1)(1 − u)ub−1. Like in
Sect. 4.1, we consider the Tsallis index α = 2.We have also fixed the number of cycles
m as 10. Table 2 now provides the selected value of w, estimate of τ̂α (XMaxRSSU ),
the bias and MSE for different parameter combinations of Govindarajulu distribution.
It is evident that the proposed estimator is efficient with respect to bias and MSE.
Further, we extend the proposed estimation procedure for a real data set. We have
chosen the data set given in Aarset [1] which represents the failure time of 50 devices.
Nair et al. [14] fitted the Govindarajulu model with parameters a = 93.463 and
b = 2.0915. Using these parameter estimates and (4.6), Table 3 now provides the
value of w, the estimated value and bias corresponding to each sample size n, which
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Table 2 The estimated value, the
bias and MSE of τα

(
XMRSSU

)

using Govindarajulu distribution

n (a, b, w) τ̂α
(
XMRSSU

)
BIAS MSE

2 (0.25,0.5,0) 0.996415 −0.003423 0.000012

3 (0.25,0.5,0) 0.999992 0.000007 0

2 (0.5,0.5,0) 0.985658 −0.013693 0.000187

3 (0.5,0.5,0) 0.999934 0.000061 0

2 (0.5,1.0,1) 0.95281 −0.044412 0.001972

3 (0.5,1.0,0) 0.999097 −0.000853 0.00006

4 (0.5,1.0,0) 1 0.000001 0

2 (0.5,1.5,4) 0.963203 −0.030553 0.000934

3 (0.5,1.5,0) 0.995592 −0.004224 0.000018

4 (0.5,1.5,0) 0.999997 0.000001 0

2 (1,1.5,6) 0.927397 −0.047629 0.002269

3 (1,1.5,0) 0.964734 −0.033797 0.001142

4 (1,1.5,0) 0.999948 0.000006 0.000003

5 (1,1.5,0) 0.999987 0.000011 0.000012

2 (3,2,10) 0.604653 −0.009645 0.000093

3 (3,2,10) 0.903687 0.000109 0

4 (3,2,0) 0.979263 −0.00496 0.00046

5 (3,2,0) 0.994782 −0.003098 0.003397

6 (3,2,0) 0.999998 0.000144 0.000154

2 (2,12,15.8) −0.738882 −0.035095 0.001232

3 (2,12,7.8) −0.530141 0.0239223 0.000572

4 (2,12,11.5) −0.143737 0.010464 0.010465

12 (2,12,0) 0.99620 0.000032 0.00038

15 (2,12,0) 1 0 0

Table 3 The selected w, the
estimated value and bias of
τα
(
XMRSSU

)
for Aarset [1]

data sets

n w τ̂α
(
XMRSSU

)
bias

2 −4.7500 −405.0263 −0.2104

3 −5.5480 −3331.4844 1.1293

4 −7.2252 −17998.2612 −1.7833

5 −7.79064 −68698.69 3.082903

6 −8.7443 −195231.8 −21.54136

15 −18.07565 −293734.6 −33.09746

20 −23.7231 −3298.225 10.15353

25 −29.63125 −2.648147 0.028333

28 −13.2354 1 0.024646

30 −10.2376 1 0.000623
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further validates the usefulness of τ̂α (XMaxRSSU ) in the computation of uncertainty
of a random phenomenon.
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