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Abstract
Given an integral domain D with quotient field K , we consider the ring Int(D) :=
{ f ∈ K [X ]; f (D) ⊆ D} of integer-valued polynomials over D. This paper deals
with the question of when Int(D) is a weakly-Krull domain.

Keywords Integer-valued polynomials · Weakly-Krull domain

Mathematics Subject Classification 13A15 · 13F05 · 13F20

Introduction

Let D be an integral domain with quotient field K .

We recall that a Krull domain is an integral domain D such that D = ∩p∈X1(D)Dp,
where X1(D) denotes the set of all height-one prime ideals of D, Dp is a DVR for
each p ∈ X1(D) and the intersection ∩p∈X1(D)Dp is locally finite (i.e., each nonzero
element of D belongs to only finitely many ideals p ∈ X1(D)).

The notion of weakly-Krull domain was first introduced by Anderson et al. in [1,
5] as follows: an integral domain D is weakly-Krull if D = ∩p∈X1(D)Dp and this
intersection is locally finite. Obviously Krull domains are weakly-Krull.

The second author was partially supported by GNSAGA of Istituto Nazionale di Alta Matematica.

B Francesca Tartarone
tfrance@mat.uniroma3.it; francesca.tartarone@uniroma3.it

Ali Tamoussit
a.tamoussit@crmefsm.ac.ma; tamoussit2009@gmail.com

1 Department of Mathematics, The Regional Center for Education and Training Professions Souss
Massa, Inezgane, Morocco

2 Laboratory of Mathematics and Applications (LMA), Faculty of Sciences, Ibn Zohr University,
Agadir, Morocco

3 Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146 Roma, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11587-022-00710-8&domain=pdf
http://orcid.org/0000-0003-1055-0279


1938 A. Tamoussit, F. Tartarone

For the convenience of the reader we begin by recalling some definitions and
notation necessary for the comprehension of the discussion about weakly-Krull prop-
erty. Let F(D) (resp., Ff.g.(D)) be the set of all nonzero fractional ideals (resp.,
nonzero finitely generated fractional ideals) of D. For an ideal I ∈ F(D), we set
I−1 := {x ∈ K ; x I ⊆ D}. The v-operation is defined on F(D) by Iv := (I−1)−1,

the t-operation is defined by It := ∪{Jv; J ∈ Ff.g.(D) and J ⊆ I }, and the w-
operation is defined by Iw := {x ∈ K ; x J ⊆ I for some J ∈ Ff.g.(D) with
J−1 = D}. It is straightforward that I ⊆ Iw ⊆ It ⊆ Iv. An ideal I ∈ F(D) is a
v-ideal (or divisorial) (resp., t-ideal, w-ideal) if Iv = I (resp., It = I , Iw = I ). A
prime ideal that is also a t-ideal is called a t-prime ideal, and an ideal maximal among
integral t-ideals is called a t-maximal ideal (and it is a prime ideal). We let t-Max(D)

denote the set of all t-maximal ideals of D. It is well-known that for any integral
domain D, D = ∩p∈t-Max(D)Dp. We say that an integral domain D has t-dimension
one if each t-prime ideal of D is of height-one (we then write t-dim(D) = 1). Notice
that if t-dim(D) = 1 then t-Max(D) = X1(D). Lastly, an integral domain D is said to
be of t-finite character (resp., finite character) if every nonzero element of D belongs
to only finitely many t-maximal (resp., maximal) ideals of D.

Representations of domains D as locally finite intersections of a family {Dp}p∈P
(P ⊆ Spec(D)) of its localization overrings may correspond to some factorization
properties for ideals of D. For instance, Krull domains are exactly the domains for
which eachprincipal ideal is a t-product of prime ideals ([5, Theorem3.2]) andweakly-
Krull domains are exactly the domains in which each principal ideal is a t-product of
primary ideals ([5, Theorem 3.1]).

In [5, Lemma 2.1(1)] it is showed that weakly-Krull domains are exactly the one
t-dimensional domains with t-finite character.

The polynomials with coefficients in K that take values from D into D itself
form a commutative D-algebra denoted by Int(D). More precisely Int(D) := { f ∈
K [X ]; f (D) ⊆ D} is the ring of integer-valued polynomials over D.

Some Krull-like properties for Int(D) have been investigated in past literature. For
instance, if D is a Krull domain, then Int(D) is a Krull domain if and only if Int(D) is
Mori if and only if Int(D) = D[X ] ([9, Corollary 2.7]). This result has been somehow
generalized in [16] by showing that for a domain D of w-dimension one, Int(D) is
Strong Mori if and only if D is Strong Mori and Int(D) = D[X ].

It is well-known that Z is a (weakly-)Krull domain and Int(Z) is a two-dimensional
Prüfer domain (see, for instance, [7]). But Int(Z) is not weakly-Krull since it is of
t-dimension two. Thus the weakly-Krull property is not preserved, in general, upon
passage from D to Int(D). This led us to ask when Int(D) is a weakly-Krull domain.

1 Results and applications

By definition, weakly-Krull property is based on a locally finite intersection represen-
tation of D. Hence,we start analyzingmore generallywhen Int(D) has a representation
as locally finite intersection of a family of its localizations {Int(D)P;P ∈ P}, for
P ⊆ Spec(Int(D)).
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Proposition 1.1 Let D be an integral domain with quotient field K . If Int(D) is a
locally finite intersection of a family of its localizations then D so is.

Proof Assume that Int(D) = ∩P∈P Int(D)P, where P ⊆ Spec(Int(D)) is the rep-
resentation of Int(D) as given in the statement and set P ′ := {P ∩ D;P ∈ P} ⊆
Spec(D). Then D = Int(D)∩ K = ∩P∈P (Int(D)P ∩ K ) ⊇ ∩p∈P ′ Dp ⊇ D (in fact,
Int(D)P ∩ K ⊇ DP∩D). Thus D = ∩p∈P ′ Dp. Obviously this intersection is locally
finite because the intersection ∩P∈P Int(D)P is locally finite. �	

As mentioned in the introduction, weakly-Krull domains are exactly the one t-
dimensional domains with t-finite character. By [3, Corollary 3.4] an integral domain
D has t-finite character if and only if D[X ] has the t-finite character. About the (t-)
finite character for Int(D) we have the following corollary.

Corollary 1.2 Let D be an integral domain. If Int(D) has the t-finite (resp., finite)
character then D has it too.

Proof We can apply Proposition 1.1 where P is the set of t-maximal ideals of Int(D).
By [20, Corollary 2.2] we have that the set P ′ of Proposition 1.1 is exactly the set of
t-maximal ideals of D and so D has the t-finite character. If P = Max(Int(D)) (i.e.,
Int(D) has the finite character), then P ′ = Max(D), hence D has the finite character
too. �	
Remarks 1.3

(a) An alternative (direct) proof of Corollary 1.2 can be given, by contraposition, as
follows:
Suppose that D has not the t-finite character. Then there is a nonzero element of

D which is contained in infinitely many t-maximal ideals of D. By [20, Corollary
2.2], each t-maximal ideal of D is the contraction of a t-maximal ideal of Int(D).
Then Int(D) has not the t-finite character. Now, if D has not the finite character,
then there is a nonzero element x ∈ D that is contained in infinitelymanymaximal
ideas of D. Then, the same x is contained in infinitely many maximal ideals of
Int(D): for any m ∈ Max(D), choose the ideal M0 := { f ∈ Int(D); f (0) ∈ m}.
Thus Int(D) has not the finite character.

(b) t- finite character
It is well-known that D[X ] has the t-finite character if and only if D has it

([3, Corollary 3.4]). This is not true, in general, for Int(D). In fact, if D has the
t-finite character Int(D) may not have it. For instance Int(Z) does not have the
t-finite character (and Z has it). Indeed Int(Z) is Prüfer, so each ideal is a t-ideal
and the t-finite character is equivalent to the finite character on maximal ideals.
A Prüfer domain with the finite character is Krull-type and, from [18, Theorem
2.30], we would have that Int(Z) = Z[X ] which is not true. This example shows
that t-dimension one and t-finite character, properties that combined together
characterize weakly-Krull domains, maybe both verified in D but not in Int(D).

Conversely, there are also examples of nontrivial integer-valued polynomial
rings Int(D)( 
= D[X ]) that have the t-finite character. We recall that an integral
domain is Mori if it satisfies the ascending chain condition on integral divisorial
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ideals. In [9] the authors give an example of a one-dimensional Mori domain D
such that Int(D) is Mori and with Int(D) 
= D[X ]. It is known that Mori domains
have the t-finite character ([5, Lemma 2.1(1)]), hence Int(D) has it.

(c) finite character
It is known ([2, Proposition 18]) that the polynomial ring D[X ] never has the

finite character on maximal ideals, unless D is a field. We can see, however, that
Int(D) may have the finite character on maximal ideals. Indeed, consider a one-
dimensional, local, non unibranched Noetherian domain D as given in [7, § 5,
page 110]. If m is the maximal ideal of D, then the prime spectrum of Int(D) is
made of the primes abovem and the primes above (0). In this case the prime ideals
of Int(D) above m are finitely many. The set of nonzero primes above (0) has the
finite character (since they correspond to the nonzero primes of K [X ] which is
Dedekind). So, we have that Int(D) has the finite character on maximal ideals.

We now recall that a prime ideal p of an integral domain D is called int prime if
Int(D) � Dp[X ] and it is called polynomial prime if Int(D) ⊆ Dp[X ]. If p is a poly-
nomial prime we also have that Int(D)p = Dp[X ] (where Int(D)p := Int(D)D\p),
by [7]. We remark that if p has infinite residue field (for instance, if it is not maximal),
p is a polynomial prime ([7, Proposition I.3.4]).

The following two lemmas can be found in [18] but, for the sake of completeness,
we include their proofs.

Lemma 1.4 Let D be a weakly-Krull domain. Then each int prime ideal of D is of
height-one.

Proof Let m be an int prime ideal of D. By way of contradiction, assume that m is
of height at least two. Thus m /∈ X1(D). By the local finiteness of the intersection
∩p∈X1(D)Dp, it follows from [19, Lemma 1.5] that Dm = ∩p∈X1(D)(Dp)m. For each
p ∈ X1(D), we have m 
= p and Int((Dp)m) = (Dp)m[X ]. Moreover, (Dp)m =
∩q⊆p∩mDq where the primes q are polynomial primes (q � m and it is not maximal).
Thus, by [8, Corollaires (3), page 303], we have:

Int(Dm) =
⋂

p∈X1(D)

Int((Dp)m) =
⋂

p∈X1(D)

⎛

⎝
⋂

q⊆p∩m
Int(D)q

⎞

⎠ =
⋂

p∈X1(D)

⎛

⎝
⋂

q⊆p∩m
Dq[X ]

⎞

⎠

=
⋂

p∈X1(D)

(Dp)m[X ] = Dm[X ].

Therefore Int(D)m = Int(Dm) = Dm[X ], which contradicts the hypothesis that
m is an int prime. �	
Lemma 1.5 Let D be an integral domain. If t-dim(Int(D)) = 1 then D is either a field
or of t-dimension 1.

Proof Suppose that D is not a field and, by way of contradiction, that t-dim(D) > 1.
Then, there exist at least two nonzero t-primes of D, q and p, such that (0) � q �
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p. Obviously, the ideal q is not maximal and so it is a polynomial prime. Hence
qDq[X ] ∩ Int(D) is a t-prime of Int(D), because it is the contraction of the t-prime
qDq[X ] (where Int(D)q = Dq[X ]).

If p is a polynomial prime then we argue similarly as done for q and we have the
chain of t-primes in Int(D):

(0) � qDq[X ] ∩ Int(D) � pDp[X ] ∩ Int(D).

If p is an int prime, as P0 := { f ∈ Int(D); f (0) ∈ p} contains Int(D, p) :=
{ f ∈ Int(D); f (D) ⊆ p}, it follows from [10, Propositions 1.2 and 1.4] that P0 is a
t-prime ideal of Int(D). Thus, from the inclusions qDq[X ] ∩ Int(D) ⊆ Int(D, q) �

Int(D, p) � P0, we have the chain of t-primes in Int(D):

(0) � qDq[X ] ∩ Int(D) � P0.

Therefore, in each case, we have obtained chain of t-primes in Int(D) of length 2
and this contradicts the fact that t-dim(Int(D)) = 1. �	

We recall that D is a UMT-domain if every nonzero prime ideal of D[X ] which
contracts to zero in D is a t-maximal ideal. UMT domains were introduced and studied
by E.G. Houston and M. Zafrullah in [14]. Later, they have been used to characterize
when the polynomial rings D[X ] are weakly-Krull.
Lemma 1.6 ([4, Proposition 4.11]) Let D be an integral domain. Then D[X ] is weakly-
Krull if and only if D is a weakly-Krull UMT-domain.

In the following Theorem we show that Int(D) may be weakly-Krull only in the
trivial case.

Theorem 1.7 Let D be an integral domain. The ring Int(D) is weakly-Krull if and
only if Int(D) = D[X ] and D is a weakly-Krull UMT-domain.

Proof Assume that Int(D) is weakly-Krull. From Lemma 1.6, it is sufficient to show
that Int(D) = D[X ]. If Int(D) 
= D[X ], from [7, Lemma I.3.6] there exists a maximal
ideal m of D such that Int(D)m 
= Dm[X ], thus m is an int prime ideal of D, whence
it is a t-ideal ([10, Propositon 1.2]). It is well-known that weakly Krull domains have
t-dimension one, then t-dim(Int(D)) = 1, t-dim(D) = 1 (Lemma 1.5) and m is
height-one. Set M0 := { f ∈ Int(D); f (0) ∈ m}. Since M0 contains Int(D,m),
it follows from [10, Proposition 1.4] that M0 is an int prime of Int(D) and it is of
height-one (Lemma 1.4).

Now, consider the prime idealQ := { f ∈ Int(D); f (0) = 0}. It is easily seen that
(0) � Q � M0. Hence,M0 has height at least two, which is a contradiction. Thus D
has not int prime ideals, so Int(D) = D[X ].

The converse follows from Lemma 1.6. �	
We investigate when Int(D) = D[X ] in the case D is weakly-Krull.

Proposition 1.8 Let D be a weakly-Krull domain. Then Int(D) = D[X ] if and only if
Int(Dp) = Dp[X ], for each p ∈ X1(D).
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Proof We observe that since the intersection ∩p∈X1(D)Dp = D is locally finite,
Int(Dp) = Int(D)p for each p ∈ X1(D) (cf. [20, Proposition 2.3]). Then if
Int(D) = D[X ], obviously Int(D)p = Dp[X ] and the thesis follows from the equality
Int(D) = ∩p∈X1(D)Int(Dp).

On the contrary, if Int(Dp) = Dp[X ] for each p ∈ X1(D), then Int(D) =
∩p∈X1(D)Int(Dp) = ∩p∈X1(D)Dp[X ] = D[X ]. �	

Thus to have Int(D) = D[X ] for a weakly-Krull domain D, it is sufficient to know
when a one-dimensional local domain D is such that Int(D) = D[X ]. This happens,
for instance, when the residue field of D over the maximal ideal is infinite (cf. [7,
Proposition I.3.4]) or when D is a valuation domain with non-principal maximal ideal
(cf. [7, Proposition I.3.16]).

It is well-known that a Noetherian domain D is a UMT-domain if and only if it has
t-dimension one (cf. [14, Theorem 3.7]). Thus, from Theorem 1.7 and [4, Corollary
4.12] we get a similar result to [9, Corollary 2.7], which states that Int(D) is a Krull
domain if and only if D is Krull and Int(D) = D[X ].
Corollary 1.9 Let D be a Noetherian domain. Then Int(D) is weakly-Krull if and only
if D is weakly-Krull and Int(D) = D[X ].
Corollary 1.10 Let D be a Noetherian domain. Then Int(D) is weakly-Krull if and
only if D is weakly-Krull and the residue fields of D over the height-one primes are
infinite.

Proof By [7, Corollary I.3.15], if D is a one-dimensional Noetherian domain, then
Int(D) = D[X ] if and only if its residue field is infinite. The thesis follows from
Proposition 1.8 and Corollary 1.9. �	

Krull domains are exactly the domains which are locally finite intersection of local-
izations that are DVR (or, equivalently PID). Like weakly-Krull domains, a natural
generalization of Krull domains are the infra-Krull domains which are locally finite
intersections of one-dimensional Noetherian domains that are localizations. Infra-
Krull domains were introduced by M. Martin and M. Zafrullah in [15] and it is easily
seen that they are weakly-Krull. Conversely, weakly-Krull domains are not necessarily
infra-Krull: for instance, consider D = Q + XR[[X ]]. In this case D is a local, Mori
non-Noetherian domain of dimension one ([6, Corollary 3.5]). Since Mori domains
have the t-finite character and D is one-dimensional, then D is weakly-Krull. But D
is not infra-Krull because it is not Noetherian.

By definition, an integrally closed infra-Krull domain is Krull (since a one-
dimensional, local, Noetherian, integrally closed domain is DVR). Then, any non
integrally closed, one-dimensional Noetherian domain is infra-Krull and not Krull.

We recall that an integral domain D is Strong Mori if it satisfies the ascending
chain condition on integral w-ideals (see [12]). Note that the class of Strong Mori
domains includes Noetherian domains and Krull domains and it is well-known that an
infra-Krull domain is exactly a Strong Mori domain of t-dimension one.

Corollary 1.11 Let D be an integral domain. Then Int(D) is infra-Krull if and only if
D is infra-Krull and Int(D) = D[X ].
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Proof Assume that Int(D) is infra-Krull. Then, by Theorem 1.7, Int(D) = D[X ]
because any infra-Krull domain is weakly-Krull. Since infra-Krull is Strong Mori of
t-dimension one, it follows from [11, Theorem 2.2] and Lemma 1.5 that D is a Strong
Mori domain of t-dimension one, i.e., D is infra-Krull.

The converse follows from [17, Theorem 4.3]. �	
We remark that the notions “infra-Krull” and “weakly-Krull” for Int(D) coincide

when D is an infra-Krull domain.

Corollary 1.12 Let D be an infra-Krull domain. Then the following statements are
equivalent.

(i) Int(D) is an infra-Krull domain;
(ii) Int(D) is a weakly-Krull domain;
(iii) Int(D) = D[X ].
Another interesting class of weakly-Krull domains are the generalized Krull

domains, described by R. Gilmer in [13, Section 43]. These are weakly-Krull domains
such that their localizatons Dp are valuation domains for each p ∈ X1(D), or equiv-
alently, weakly-Krull PvMDs (recall that a PvMD is a domain whose localizations at
t-maximal ideals are valuation domains).

The following result that characterizes when Int(D) is generalized Krull was
obtained by the current authors in [18] in the context of Krull-type domains. Here
we get it as a corollary of Theorem 1.7.

Corollary 1.13 Let D be an integral domain. Then Int(D) is generalized Krull if and
only if D is generalized Krull and Int(D) = D[X ].
Proof Suppose that Int(D) is a generalized Krull domain. Then, by Theorem 1.7,
Int(D) = D[X ] and hence D[X ] is generalized Krull. Thus, as cited above, D[X ] is
a weakly-Krull PvMD and therefore it follows from Lemma 1.6 and [21, Corollary
4] that D is a weakly-Krull PvMD, i.e., D is generalized Krull. The converse follows
from [13, Theorem 43.11(3)]. �	

In the following Corollary we give a description of when an infra-Krull or gener-
alized Krull domain D is such that Int(D) = D[X ].
Corollary 1.14 Let D be an integral domain.

(a) If D is infra-Krull, then Int(D) = D[X ] if and only if each height-one prime ideal
of D has infinite residue field.

(b) If D is generalized-Krull, then Int(D) = D[X ] if and only if Dp has infinite residue
field or non-principal maximal ideal, for each p ∈ X1(D).
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