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Abstract
In this paper, we extend the results of Brézis andWillem (J FunctAnal 255:2286–2298,
2008) to the equation with single or double weighted critical exponents, including
Hardy–Sobolev, Sobolev andHénon–Sobolev exponents.More precisely, we establish
the existence or nonexistence of equation with different coefficient which has an
important impact.
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1 Introduction

In this paper we consider the following equation

⎧
⎨

⎩

−�u + h

( |x |
λ

)
u

λ2
= |x |α1 |u|2∗(α1)−2u + μ|x |α2 |u|2∗(α2)−2u in B,

u ∈ H1
0,r (B),

(1.1)

where N ≥ 3, α1 > α2 > −2, 2∗(αi ) = 2(N+αi )
N−2 , i = 1, 2 μ ∈ R, B := {x ∈ R

N :
|x | < 1} is the unit ball in RN , H1

0,r (B) is the completion of C∞
0,r (B) with the norm
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‖u‖ =
(∫

B
|∇u|2dx

) 1
2

,

where C∞
0,r (B) is the set of radial functions in C∞

0 (B). Let

L p(B; |x |α) =
{

u : B → R : u is measurable,
∫

B
|x |α|u|pdx < ∞

}

be the weighted Lebesgue space with the norm

‖u‖L p(B;|x |α) :=
(∫

B
|x |α|u|pdx

) 1
p

, 1 ≤ p < ∞.

It holds that

H1
0,r (B) ↪→ L p(B; |x |α) (1.2)

with α ≥ −2 is continuous for all 1 ≤ p ≤ 2∗(α) := 2(N+α)
N−2 and it is compact for

all 1 ≤ p < 2∗(α), see [20,21]. The compact embedding of (1.2) for α > 0 was first
proved in [17]. In [23,24] we have confirmed that 2∗(α) is exactly the upper critical
exponent of the embedding (1.2) by proving that there is no embedding from H1

0,r (B)

into L p(B; |x |α) for any p > 2∗(α) and (1.2) is not compact as p = 2∗(α). It is known
that 2∗(α) isHardy (resp.,Hardy–Sobolev, Sobolev) critical exponent asα = −2(resp.,
−2 < α < 0, α = 0), see [11,23]. In [23,24], we named 2∗(α) as Hénon–Sobolev
critical exponent for α > 0 due to Hénon [14] first raised a semilinear elliptic model
involving |x |α with α > 0. Therefore there are two critical terms in (1.1).

For α1 = 0 and μ = 0, (1.1) reduces as

⎧
⎨

⎩

−�u + h

( |x |
λ

)
u

λ2
= |u|2∗(0)−2u in B,

u = 0 on ∂B.

(1.3)

For the case of h
( |x |

λ

)
1
λ2

:= a(x) ≤ 0, (1.3) has been treated extensively since the

great work [5] of Brézis and Nirenberg. In [4], Brézis raised seven open problems and
the fourth one read as

Q4. Assume a(x) ≥ 0 on B. Find conditions on a(x) (hopefully a necessary and
sufficient condition!) which guarantee that (1.3) has a solution.

In [18], Passaseo gave a partial answer to Q4. Under some conditions on a(x),
Passaseo proved the existence of positive solutions (1.3). In [6,7], Brézis and Peletier
studied (1.3) with N = 3 and

h(|x |) = K

(1 + |x |2)2 , K > 0. (1.4)
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The existence or nonexistence of solutions for some… 1429

They proved the existence and non-existence of solutions based on different region of
value λ. In [8], Brézis andWillem studiedQ4 for the case of N ≥ 3 with more general
assumptions on h. In the present paper we will extend the results of Brézis andWillem
to the equation (1.1) with one or two weighted critical exponents. For other related
works we refer to [3] with unbounded domainRN , to [1] with ball or annular domain,
to [16] with p-Laplacian and to [24] with multiple weighted critical exponents.

In Sect. 2 we consider the non-existence of solutions of (1.1) applying the ODE
theory. In Sect. 3 we are interested in the existence results of (1.1) with single weighted
critical exponent (μ = 0).

2 Nonexistence

In this section, we are interested in (1.1) with multiple Hénon–Sobolev critical expo-
nents as α1 > α2 ≥ 0. We will prove the nonexistence of solutions of (1.1) with
different value λ, the methods depend on the ODE theory.

We assume that

(h1) h ∈ L∞
loc and r2h(r) isnondecreasingon [0, 1].

It follows from (h1) that lim
r→1− r

2h(r) = h(1−) exists. The function (1.4) satisfies (h1).

Theorem 2.1 Assume that h satisfies (h1). Then (1.1) has only the trivial solution in
each of the following cases:

(i) λ ≥ 1 if μ < 0;
(ii) there exists λ∗ = λ∗(h) ∈ (0, 1) and λ > λ∗ if μ ≥ 0.

Next we consider the following equation

{−�u + h(|x |)u = |x |α1 |u|2∗(α1)−2u + μ|x |α2 |u|2∗(α2)−2u in B,

u ∈ H1
0,r (B).

(2.1)

Assume

(h2) h ∈ L∞(0, 1) and r2h(r) isnondecreasingon (0, δ) forsome δ ∈ (0, 1).

We remark that the function (1.4) also satisfies (h2).

Theorem 2.2 For μ ≥ 0 and δ ∈ (0, 1), there exists K1 = K1(δ, α1, α2, N ) > 0 such
that, if h satisfies (h2) and ‖h‖∞ ≤ K1, then (2.1) has only trivial solution.

For N = 3, a sharper conclusion will be obtained.

Theorem 2.3 Assume N = 3, μ ≥ 0 and h ∈ L∞(0, 1). There exists K1 =
K1(α1, α2, N ) > 0 such that if ‖h‖∞ ≤ K1 then (2.1) has only trivial solution.

Remark 2.4 For the case α1 = μ = 0 in Theorem 2.3, the conclusion has been proved
by Brézis and Willem in [8]. In addition, when α1 = μ = 0, N = 3, h = −λ and
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0 < λ < π2

4 , Brézis and Nirenberg first prove the solution u = 0 of (2.1) in [5]. In
[24], we extend the results of Brézis and Nirenberg to the case of α1 > 0.

Now we begin to prove Theorems 2.1–2.3. We follow some arguments in [8] with
modifications.

Under (h1), for α1 > α2 ≥ 0 and λ > 0, by Brézis-Kato theorem and Sobolev
embedding theorem we have a fact that any a solution u of (1.1) must satisfy u ∈
C1(B̄), furthermore, u ∈ L∞(B).

Set u(r) := u(|x |) with r = |x |. Then (1.1) can be reset as

{

−u′′ − N − 1

r
u′+h

( r

λ

) u

λ2
=rα1 |u|2∗(α1)−2u+μrα2 |u|2∗(α2)−2u, r∈(0, 1),

u′(0) = u(1) = 0.
(2.2)

Applying the classical Emden transformation

u(r) = e
N−2
2 tw(t), t = − ln r , (2.3)

then (2.2) can be reduced as

⎧
⎨

⎩
−w′′ + (N − 2)2

4
w + Hλ(t)w = |w|2∗(α1)−2w + μ|w|2∗(α2)−2w, t > 0,

w(0) = 0
(2.4)

with

|w(t)| ≤ e
2−N
2 t‖u‖L∞(B), |w′(t)|

≤ e
2−N
2 t
(
N − 2

2
‖u‖L∞(B) + e−t‖u′‖L∞(B)

)

, (2.5)

where

Hλ(t) = e−2t

λ2
h

(
e−t

λ

)

.

By (2.5), we see that

lim
t→∞ w(t) = 0, lim

t→∞ w′(t) = 0. (2.6)

Let
tλ = − ln λ. (2.7)

Lemma 2.5 Let h satisfy (h1) and let w : [0,∞) → R be a solution of (2.4). Then

w′(0)2 ≤ −2
∫ tλ

0
Hλ(t)w(t)w′(t)dt + h(1−)w(tλ)

2, 0 < λ < 1. (2.8)
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Proof Multiplying (2.4) by w′ and integrating on (0,∞), using (2.6), we get

1

2
(w′(0))2 +

∫ ∞

0
Hλ(t)w(t)w′(t)dt = 0. (2.9)

Now we decompose the integral interval of second term of (2.9) as

∫ ∞

0
Hλ(t)ww′dt =

∫ tλ

0
Hλ(t)ww′dt +

∫ ∞

tλ
Hλ(t)ww′dt . (2.10)

Integration by parts, we obtain

∫ ∞

tλ
Hλ(t)ww′dt = −1

2
Hλ(t

+
λ )w(tλ)

2 − 1

2

∫ ∞

tλ
w(t)2d(Hλ(t)). (2.11)

It follows from (h1) and (2.7) that Hλ(t) is non-increasing on (tλ,∞) and H(t+λ ) =
h(1−). Thus

∫ ∞

tλ
Hλww′dt ≥ −1

2
h(1−)w(tλ)

2. (2.12)

Combining with (2.9), (2.10) and (2.12), we obtain the desired conclusion that

w′(0)2 ≤ −2
∫ tλ

0
Hλ(t)w(t)w′(t)dt + h(1−)w(tλ)

2.

The proof is complete. ��
Lemma 2.6 ([8, Lemma 2.2]) Assume A ≥ 0, B > 0, L > 0 and w ∈ C1([0, L])
satisfies w(0) = 0,

w′(t)2 ≤ A2 + 2B2
∫ t

0
|ww′|ds for 0 ≤ t ≤ L.

Then

|w(t)| ≤ A

B

(
eBt − 1

)
|w′(t)| ≤ AeBt , f or 0 ≤ t ≤ L.

Lemma 2.7 Assume (h1) and μ ≥ 0. Then for 1
2 < λ < 1 and 0 ≤ t ≤ tλ, any a

solution w : [0,∞) → R of (2.4) satisfies

|w(t)| ≤ 1

c0
|w′(0)| (ec0t − 1

)
, (2.13)

|w′(t)| ≤ |w′(0)|ec0t , (2.14)
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where

c0 = sup
1≤r<2

(
(N − 2)2

4
+ r2|h(r)|

) 1
2

.

Proof By (2.4) we obtain that

w′(t)2

2
= w′(0)2

2
+
∫ t

0
w′w′′ds

= w′(0)2

2
+
∫ t

0

(
(N − 2)2

4
ww′ + h

(
e−s

λ

)
e−2sww′

λ2

)

ds

−
∫ t

0
|w|2∗(α1)−2ww′ds − μ

∫ t

0
|w|2∗(α2)−2ww′ds

≤ w′(0)2

2
+
∫ t

0

[
(N − 2)2

4
+ e−2s

λ2

∣
∣
∣
∣h

(
e−s

λ

)∣
∣
∣
∣

]

|w(s)w′(s)|ds.

For 1
2 < λ < 1 and 0 ≤ t ≤ tλ, we have

e−s

λ
∈
[
e−tλ

λ
,
e0

λ

]

⊂ [1, 2).

It follows that

w′(t)2 ≤ w′(0)2 + 2c20

∫ t

0
|ww′|dx,

where

c0 = sup
1≤r<2

(
(N − 2)2

4
+ r2|h(r)|

) 1
2

.

Applying Lemma 2.6 with A = |w′(0)| and B = c0, we obtain (2.13) and (2.14). ��
Proof of Theorem 2.1 For λ ≥ 1, μ < 0. Multiplying (1.1) by

∑N
i=1 xi

∂u
∂xi

and inte-
grating on B, we obtain

0 = N − 2

2

∫

B
|∇u|2dx − N − 2

2

∫

B

(
|x |α1 |u|2∗(α1)dx + μ|x |α2 |u|2∗(α2)

)
dx

+1

2

∫

∂B

∣
∣
∣
∣
∂u

∂n

∣
∣
∣
∣

2

dσ + N

2

∫

B
h

( |x |
λ

)
1

λ2
u2dx

+1

2

∫

B

1

λ2

[
N∑

i=1

xi
∂

∂xi
h

( |x |
λ

)]

u2dx .

(2.15)
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Since u satisfies

∫

B
|∇u|2 +

∫

B
h

( |x |
λ

)
u2

λ2
dx =

∫

B
|x |α1 |u|2∗(α1)dx + μ

∫

B
|x |α2 |u|2∗(α2)dx,

(2.16)

it follows from (2.15) and (2.16) that

−
∫

B

(

h

( |x |
λ

)

+ 1

2

N∑

i=1

xi
∂

∂xi
h

( |x |
λ

))
u2

λ2
dx = 1

2

∫

∂B

∣
∣
∣
∣
∂u

∂n

∣
∣
∣
∣

2

dσ.

Since

h

( |x |
λ

)

+ 1

2

N∑

i=1

xi
∂

∂xi
h

( |x |
λ

)

= 1

s
(s2h(s))′, s = |x |

λ
,

it follows from (h1) that u = 0.
For λ < 1 and μ ≥ 0. We may assume 1

2 < λ < 1. The inequality (2.8) from
Lemma 2.5 implies that

w′(0)2 ≤ 2
∫ tλ

0
|Hλ(t)||w(t)||w′(t)|dt + h(1−)w(tλ)

2. (2.17)

Inserting (2.13) and (2.14) from Lemma 2.7 into (2.17), we have

w′(0)2 ≤ w′(0)2K (λ), (2.18)

where

K (λ) = 2c0

∫ tλ

0

∣
∣
∣
∣
ec0t − 1

c0

∣
∣
∣
∣

∣
∣ec0t

∣
∣ dt + h(1−)

1

c20
(ec0tλ − 1)2.

It is obvious that tλ ↓ 0 and K (λ) → 0 as λ ↑ 1. It follows that there exists λ∗ ∈ ( 12 , 1)
such that K (λ) < 1 as λ∗ < λ < 1. Using this fact, the inequality (2.18) leads to
w′(0) = 0 for λ∗ < λ < 1. By the uniqueness of the Cauchy problem, we complete
the proof. ��
Proof of Theorem 2.2 We will argue in the same way as proving Theorem 2.1. Let
u ∈ H1

0,r (B) be a solution of (2.1).Using the same transformation (2.3), (2.1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

−w′′(t) + (N − 2)2

4
w(t) + h

(
e−t) e−2tw(t)

= |w(t)|2∗(α1)−2w(t) + μ|w(t)|2∗(α1)−2w(t), t > 0,
w(0) = 0,

(2.19)
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1434 C. Wang, J. Su

Then w satisfies (2.5). Set H(t) = e−2t h(e−t ) and Tδ = − ln δ. Multiplying equation
(2.19) by w′ and integrating on (0,∞), we deduce that

1

2
(w′(0))2 +

∫ ∞

0
H(t)w(t)w′(t)dt = 0. (2.20)

Rewriting

∫ ∞

0
H(t)w(t)w′(t)dt =

∫ Tδ

0
H(t)w(t)w′(t)dt +

∫ ∞

Tδ

H(t)w(t)w′(t)dt . (2.21)

Integrating by parts, we obtain

∫ ∞

Tδ

H(t)w(t)w′(t)dt = −1

2
H(T+

δ )w(Tδ)
2 − 1

2

∫ ∞

Tδ

w(t)2d(H(t)).

By (h2), we see that H(t) is non-increasing on (Tδ,∞) and H(T+
δ ) = δ2h(δ−).

Hence

∫ ∞

Tδ

Hww′dt ≥ −1

2
δ2h(δ−)w(Tδ)

2. (2.22)

It follows from (2.20), (2.21), (2.22) that

(w′(0))2 ≤ −2
∫ Tδ

0
H(t)w(t)w′(t)dt + h(δ−)δ2w(Tδ)

2. (2.23)

The estimates (2.13) and (2.14) are still valid on (0, Tδ) with

c0 :=
(

(N − 2)2

4
+ ‖h‖∞

) 1
2

. (2.24)

Combining with (2.23) and (2.13), (2.14), we deduce that

w′(0)2 ≤ w′(0)2‖h‖∞

[
2

c0

∫ Tδ

0
(ec0t − 1)ec0t dt + δ2

c20
(ec0Tδ − 1)2

]

. (2.25)

Hence there exists K1 > 0 such that w′(0) = 0 as ‖h‖∞ ≤ K1. ��
Proof of Theorem 2.3 Similar with the proofs of Theorem 2.1 and Theorem 2.2, we
have

w′(0)2 ≤ 2
∫ ∞

0
|H(t)||w(t)||w′(t)|dt .
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Notice that in (2.24) c0 = ( 1
4 + ‖h‖∞

)1/2
for N = 3 so that c0 ∈ (1/2, 1) when

‖h‖∞ is small. Therefore

|H(t)| ≤ ‖h‖∞e−2t , |w(t)| ≤ |w′(0)|
c0

ec0t , |w′(t)| ≤ |w′(0)|ec0t

and then

w′(0)2 ≤ 2

c0
|w′(0)|2‖h‖∞

∫ ∞

0
e2(c0−1)t dt .

Using the fact that c0 < 1, the conclusion of theorem is proved. ��

3 Existence for the case of � = 0

In this section we prove the existence of nontrivial solutions for the case μ = 0 in
(1.1). We reformulate (1.1) as follows by setting α := α1,

⎧
⎨

⎩

−�u + h

( |x |
λ

)
u

λ2
= |x |α|u|2∗(α)−2u in B,

u ∈ H1
0,r (B),

(3.1)

where N ≥ 3, α > −2, 2∗(α) = 2(N+α)
N−2 is the Hardy–Sobolev or Sobolev or Hénon–

Sobolev critical exponent. The potential h satisfies
(h3) h : [0,∞) → [0,∞) is such that h �= 0 on a set of positive measure and

h ∈ LN/2
loc ([0,∞), sN−1), (3.2)

lim
λ→0

λN−2
∫ 1

λ

0
h(s)sN−1ds = 0. (3.3)

We remark that h ∈ LN/2([0,∞), sN−1) satisfies (3.2), and (3.3) if lims→∞ s2h(s) =
0. Hence the function

h(s) = 1

1 + s3

satisfies (3.2) and (3.3). We will prove the following theorem.

Theorem 3.1 Assume that h satisfies (h3) and α > −2. Then there exists λ0 > 0 such
that (3.1) has a nonnegative solution for 0 < λ < λ0.

Remark 3.2 Since h ≥ 0, it is not possible to prove the existence of solutions of (3.1)
by the global minimization as in [5,24], the main difficulty is to estimate the energy
level of quotient is less than some number, which guarantee the holds of local (PS)c.
For α = 0 and h ∈ LN/2([0,∞), sN−1ds), the existence of positive solutions was
obtained by Passaseo in [18] using the constrained minimization and in [8], Brézis
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1436 C. Wang, J. Su

and Willem obtain the nontrivial solution under (h3). Theorem 3.1 extends the result
in [8] to the case α > −2.

Remark 3.3 In Theorem 3.1 a positive solution can be obtained via strong maximum
principle if (3.2) is replaced by

h ∈ L∞
loc([0,∞), sN−1).

The approach for proving Theorem 3.1 is from [8] and [16]. Define the manifolds


(B) :=
{

u ∈ H1
0,r (B) :

∫

B
|x |α|u|2∗(α)dx = 1

}

,


(RN ) :=
{

u ∈ D1,2
r (RN ) :

∫

RN
|x |α|u|2∗(α)dx = 1

}

,

and the functionals for λ > 0,

ϕλ(u) =
∫

RN
|∇u|2dx + h

( |x |
λ

)
u2

λ2
dx, u ∈ D1,2

r (RN ),

ψλ(u) =
∫

RN
aλ(|x |)|x |α|u|2∗(α)dx, aλ(|x |) = |x |

λ + |x | , u ∈ L2∗(α)(RN ; |x |α),

where

D1,2
r (RN ) =

{
u ∈ D1,2(RN ) : u is radial

}
, ‖u‖D1,2

r
:= ‖∇u‖L2(RN ),

L2∗(α)(RN ; |x |α) =
{

u : RN → R : is measurable,
∫

RN
|x |α|u|2∗(α)dx < ∞

}

.

Under (h3), the functional ϕλ is well defined but not necessarily finite on D1,2
r (RN ).

We will prove

λ = inf

{

ϕλ(u) : u ∈ 
(B), ψλ(u) ≥ 1

2

}

is a critical value of ϕ|
(B). We shall estimate the values

ϒλ = inf

{

ϕλ(u) : u ∈ 
(B), ψλ(u) = 1

2

}

,

ϒ = inf

{

ϕ1(u) : u ∈ 
(RN ), ψ1(u) = 1

2

}

.

Consider the weighted critical equation

{−�u = |x |αu2∗(α)−1, u > 0 in RN ,

u ∈ D1,2
r (RN )

(3.4)
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The existence or nonexistence of solutions for some… 1437

with α > −2. By [12,13,15], we have the following key result.

Theorem 3.4 Let α > −2. It holds that

∫

RN
|∇u|2dx ≥ Sα

(∫

RN
|x |α|u|2∗(α)dx

) 2
2∗(α)

, u ∈ D1,2
r (RN ). (3.5)

The best constant Sα can be achieved uniquely (up to dilations) by

Uα(x) = C(α, N )
(
1 + |x |2+α

) N−2
2+α

, C(α, N ) = [
(N + α)(N − 2)

] N−2
2(2+α) (3.6)

and Uα is the unique (up to dilations) solution of (3.4) and

Sα = (N + α)(N − 2)

(
ωN

2 + α


2
( N+α
2+α

)



( 2(N+α)

2+α

)

) 2+α
N+α

.

We give some remarks. For α = 0, Theorem 3.4 was proved by Aubin[2], Talenti[22]
and S0 was the best Sobolev constant on D1,2

r (RN )(see [22]). For −2 < α < 0,
Theorem 3.4 was established by Ghoussoub and Yuan [11], Lieb[15], and Sα was
named as the best Hardy–Sobolev constant on D1,2

r (RN )(see [10]). As α > 0, these
results could be found in [12,13,15] and Sα was named in [24] as the best Hénon–
Sobolev constant.

The corresponding energy functional of (3.1) is defined as

�(u) = 1

2

∫

B
|∇u|2dx+h

( |x |
λ

) |u|2
λ2

dx − 1

2∗(α)

∫

B
|x |α|u|2∗(α)dx, u ∈ H1

0,r (B).

We define

�(u) = 1

2

∫

RN
|∇u|2dx − 1

2∗(α)

∫

RN
|x |α|u|2∗(α)dx .

Lemma 3.5 If un⇀u in D1,2
r (RN ), then

|x |α|un|2∗(α)−2un − |x |α|un − u|2∗(α)−2(un − u)→|x |α|u|2∗(α)−2u in (D1,2
r (RN ))∗.

Proof The proof is similar with the argument in [9, Lemma 3.3]. Denotewn = un −u.
We have
∣
∣
∣|x |α|un|2∗(α)−2un − |x |α|wn|2∗(α)−2wn

∣
∣
∣ ≤ (2∗(α) − 1) (|un| + |u|)2∗(α)−2 |x |α|u|.

For T > 0 and ϕ ∈ C∞
0,r (R

N ), applying the Hölder inequality and (3.5),

∣
∣
∣
∣

∫

|x |>T

(
|x |α|un|2∗(α)−2un − |x |α|wn|2∗(α)−2wn

)
ϕdx

∣
∣
∣
∣
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≤ C

⎡

⎣

(∫

|x |>T
|x |α|un|2∗(α)dx

) 2∗(α)−2
2∗(α) +

(∫

|x |>T
|x |α|u|2∗(α)dx

) 2∗(α)−2
2∗(α)

⎤

⎦

×
(∫

|x |>T
|x |α|u|2∗(α)dx

) 1
2∗(α)

(∫

|x |>T
|x |α|ϕ|2∗(α)dx

) 1
2∗(α)

≤ C‖ϕ‖D1,2
r

(∫

|x |>T
|x |α|u|2∗(α)dx

) 1
2∗(α)

.

Similarly, we get that

∣
∣
∣
∣

∫

|x |>T

(
|x |α|u|2∗(α)−2u

)
ϕdx

∣
∣
∣
∣ ≤ C‖ϕ‖D1,2

r

(∫

|x |>T
|x |α|u|2∗(α)dx

) 1
2∗(α)

.

Therefore, for any ε > 0, there exists T > 0 such that, for any ϕ ∈ C∞
0,r (R

N ), it holds

∣
∣
∣
∣

∫

|x |>T

(
|x |α|un|2∗(α)−2un − |x |α|wn|2∗(α)−2wn − |x |α|u|2∗(α)−2u

)
ϕdx

∣
∣
∣
∣ ≤ ε‖ϕ‖D1,2

Applying [26, Proposition 5.4.7]. We obtain on B̄T with BT := {x ∈ R
N , |x | < T }

that
∫

|x |≤T
|x |α|wn|2∗(α)−2wnϕdx → 0,

∫

|x |≤T
|x |α|un|2∗(α)−2unϕdx →

∫

|x |≤T
|x |α|u|2∗(α)−2uϕdx .

Hence
∫

|x |≤T

(
|x |α|un|2∗(α)−2unϕdx − |x |α|wn|2∗(α)−2wn

)
ϕdx

→
∫

|x |≤T
|x |α|u|2∗(α)−2uϕdx .

The proof is complete. ��
Theorem 3.6 Let {vn} ⊂ D1,2

r (RN ) be a (PS)c sequence of �, i.e.

�(vn) → c, � ′(vn) → 0 in (D1,2
r (RN ))∗.

Then, passing subsequence if necessary, there exist a finite sequence {u0, u1, u2, . . . ,
uk} ⊂ D1,2

r (RN ) of solutions for

−�u = |x |α|u|2∗(α)−2u on R
N
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and k sequences {λin} ⊂ R+ such that λin → 0 or ∞ and

∥
∥
∥
∥
∥
vn − u0 −

k∑

i=1

(λin)
2−N
2 ui

( ·
λin

)∥∥
∥
∥
∥
D1,2
r

→ 0,

‖vn‖2D1,2
r

→
k∑

i=0

‖ui‖2
D1,2
r

,

�(vn) =
k∑

i=0

�(ui ) + o(1).

Proof It is easy to see that {vn} is bounded in D1,2
r (RN ). Passing if necessary to a

subsequence, we assume that vn⇀u0 in D1,2
r (RN ) and vn(x) → u0(x) a.e. on R

N .
By Lemma 3.5, we have that � ′(u0) = 0. Set v1n := vn − u0. Then

{
v1n
}
satisfies

i) lim
n→∞

(
‖vn‖2D1,2

r
− ‖v1n‖2D1,2

r

)
= ‖u0‖2

D1,2
r

,

ii) �(v1n) → c − �(u0),

iii) � ′(v1n) → 0 in
(
D1,2
r (RN )

)∗
.

(3.7)

If v1n → 0 in L2∗(α)(RN , |x |α), then it follows from � ′(v1n) → 0 in (D1,2
r (RN ))∗ that

v1n → 0 in D1,2
r (RN ) and the proof is complete. Assume that there exists 0 < δ <

(
Sα

2

) N+α
2+α

such that for all n large,

∫

RN
|x |α

∣
∣
∣v

1
n

∣
∣
∣
2∗(α)

dx > δ.

Defining the Levy concentration function

Qn(r) :=
∫

Br (0)
|x |α

∣
∣
∣v

1
n

∣
∣
∣
2∗(α)

dx .

It follows from Qn(0) = 0 and Qn(∞) > δ that there exists a sequence
{
λ1n
} ⊂ (0,∞)

such that

δ =
∫

B
λ1n

(0)
|x |α|v1n |2

∗(α)dx .

We denote u1n(x) := (λ1n)
N−2
2 v1n(λ

1
nx) and assume that u1n converges weakly to u1 in

D1,2
r (RN ) and converges u1 a.e. on R

N . We claim that u1 �= 0. Otherwise, suppose
that u1 = 0. We note that
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δ =
∫

B
λ1n

(0)
|x |α|v1n |2

∗(α)dx =
∫

B
|x |α|u1n|2

∗(α)dx . (3.8)

By the Riesz-Fréchet representation theorem, there exists fn ∈ D1,2
r (RN ) such that

〈
� ′(v1n), w

〉
=
∫

RN
∇ fn∇wdx, ∀ w ∈ D1,2

r (RN ).

Then gn(x) := (λ1n)
N−2
2 fn(λ1nx) satisfies

〈� ′(u1n), w〉 =
∫

RN
∇gn∇wdx, ∀ w ∈ D1,2

r (RN ), (3.9)
∫

RN
|∇gn|2dx =

∫

RN
|∇ fn|2dx = o(1). (3.10)

Taking ν ∈ C∞
0,r (R

N ) such that supp ν ∈ B and themeasure of supp ν is small enough.
By Hölder inequality and (3.5), we get

∫

supp ν

|ν|2|x |α
∣
∣
∣u1n

∣
∣
∣
2∗(α)

dx

≤ S−1
α

∫

supp ν

∣
∣
∣∇(νu1n)

∣
∣
∣
2
dx

(∫

supp ν

|x |α
∣
∣
∣u1n

∣
∣
∣
2∗(α)

dx

) 2∗(α)−2
2∗(α)

.

Hence, combining with u1n → 0 in L2(B), (3.9) and (3.10), we have

∫

supp ν

∣
∣
∣∇(νu1n)

∣
∣
∣
2
dx =

∫

supp ν

|ν|2
∣
∣
∣∇u1n

∣
∣
∣
2
dx + o(1)

=
∫

supp ν

∇u1n∇
(
|ν|2 u1n

)
dx + o(1)

=
∫

supp ν

∇gn∇
(
|ν|2u1n

)
dx

+
∫

supp ν

|x |α
∣
∣
∣u1n

∣
∣
∣
2∗(α) |ν|2dx + o(1)

≤ S−1
α δ

2+α
N+α

∫

supp ν

∣
∣
∣∇
(
νu1n

)∣
∣
∣
2
dx + o(1)

≤ 1

2

∫

supp ν

∣
∣
∣∇
(
νu1n

)∣
∣
∣
2
dx + o(1).

Thus we get ∇u1n → 0 in L2(Br ) with 0 < r < 1 and by (3.5) we obtain u1n → 0 in
L2∗(α)(Br ; |x |α). Using the radial lemma(see [19]), it is easy to see that u1n → 0 in
L2∗(α)(Br ,1; |x |α), where Br ,1 := {x ∈ R

N : 0 < r < |x | < 1}. Furthermore u1n → 0
in L2∗(α)(B, |x |α), this contradicts to (3.8). Therefore u1 �= 0.
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We claim that λ1n → 0 or ∞. Assume that λ1n → κ∞ with 0 < κ∞ < ∞. Since
u1 �= 0, then there exists a ball BR such that u1 �= 0 in BR . On one hand, by locally
compact embedding, we deduce that

∫

BR

|u1n|2dx →
∫

BR

|u1|2dx > 0. (3.11)

On the other hand, using the facts that 0 < κ∞ < ∞ and v1n⇀0 in D1,2(RN ), we
have

∫

BR

|u1n|2dx = (λ1n)
−2
∫

B
Rλ1n

|v1n |2dx → 0,

a contradiction with (3.11). Thus λ1n → 0 or∞. It follows from (3.7) that� ′(u1) = 0.
Combining with Lemma 3.5, the sequence

v2n(x) = v1n(x) − (λ1n)
2−N
2 u1

(
x

λ1n

)

satisfies

i)
∥
∥
∥v

2
n

∥
∥
∥
2

D1,2
r

= ‖vn‖2D1,2
r

− ‖u0‖2
D1,2
r

− ‖u1‖2
D1,2
r

+ o(1),

ii) �(v2n) = c − �(u0) − �(u1) + o(1),

iii) � ′(v2n) → 0 in
(
D1,2
r (RN )

)∗
.

For any a nontrivial critical point u of �, using (3.5), we have

Sα

(∫

RN
|x |α|u|2∗(α)dx

) 2
2∗(α) ≤

∫

RN
|∇u|2dx =

∫

RN
|x |α|u|2∗(α)dx .

Thus

�(u) ≥ 2 + α

2(N + α)
S

N+α
2+α

α . (3.12)

Iterating the above procedure, we can construct the sequence {ui }, {λin}, {uin}. But the
inequality (3.12) implies that only a finite number of iterations is allowed. ��
Lemma 3.7 Under the assumption (h3), for any λ > 0, we have Sα < ϒ ≤ ϒλ.

Proof It is obvious that Sα ≤ ϒ . Assume that Sα = ϒ . Then there exists a sequence
{un} ⊂ 
(RN ) satisfying

∫

RN
|∇un|2dx + h(|x |)|un|2dx → Sα as n → ∞,
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∫

RN
a1(|x |)|x |α|un|2∗(α)dx = 1

2
, (3.13)

∫

RN
|x |α|un|2∗(α)dx = 1. (3.14)

By the definition of Sα in Theorem 3.4, the nonnegativity of h implies

∫

RN
|∇un|2dx → Sα,

∫

RN
|x |α|un|2∗(α)dx = 1.

Define

S(un) :=
∫

RN
|∇un|2dx .

Applying the Ekeland principle(see [25, Theorem 8.5]), there exists Palas-Smale
sequence for S

∣
∣

(RN )

at the level Sα , i.e., there exist {βn} ⊂ R+ and ũn ⊂ D1,2
r (RN )

such that as n → ∞

‖ũn − un‖D1,2
r

→ 0, (3.15)

S(ũn) → Sα, −�ũn − βn|x |α|ũn|2∗(α)−2ũn → 0 in (D1,2
r (RN ))∗. (3.16)

It follows that

βn → Sα, (3.17)

�(vn) → 2 + α

2(N + α)
S

N+α
2+α

α , � ′(vn) → 0, (3.18)

where vn := β
1

2∗(α)−2
n ũn . From (3.18), it is easy to see that {vn} is bounded in D1,2

r (RN ),
passing to a subsequence such that vn⇀v0 in D1,2

r (RN ). It follows from Theorem 3.6
that there exist k functions v1, v2, . . . , vk ∈ D1,2

r (RN ) and k sequences {λin} ⊂ R+
satisfying

− �vi = |x |α|vi |2∗(α)−2vi in R
N (3.19)

for i = 0, 1, . . . , k, λin → 0 or ∞ and

�(vn) = 2 + α

2(N + α)

k∑

i=0

∫

RN
|x |α|vi |2∗(α)dx + o(1), (3.20)

‖vn‖2D1,2
r

→
k∑

i=0

‖vi‖2
D1,2
r

, (3.21)

∥
∥
∥
∥
∥
vn − v0 −

k∑

i=1

(
λin

) 2−N
2

vi
( ·

λin

)∥∥
∥
∥
∥
D1,2
r

→ 0. (3.22)
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Multiplying the equation (3.19) by (vi )+ and (vi )−, combining with (3.5) and the
uniqueness of solution of (3.4), for any i = 0, 1, . . . , k, one of the following cases
holds:

∫

RN
|∇vi |2dx =

∫

RN
|x |α|vi |2∗(α)dx = 0,

∫

RN
|∇vi |2dx =

∫

RN
|x |α|vi |2∗(α)dx = S

N+α
2+α

α ,

∫

RN
|∇vi |2dx =

∫

RN
|x |α|vi |2∗(α)dx ≥ 2S

N+α
2+α

α .

If v0 �= 0, then it follows from (3.18) and (3.20) that k = 0. By (3.21), we get that

vn → v0 in D1,2
r (RN ) and then un → u := S

1
2−2∗(α)
α v0 �= 0. By (3.15) and the first

limit in (3.16), we get that Sα is arrived at u. The key Theorem 3.4 implies that u is
positive. Combining with assumption h �= 0, we obtain a contradiction as

Sα <

∫

RN
|∇u|2 + h(|x |)|u|2dx = Sα.

If v0 = 0, then it follows from (3.18) and (3.20) that k = 0, 1.
(i) The case of k = 0. By (3.20), (3.21) and (3.15), we have un → 0 in D1,2

r (RN )

and this contradicts to the fact that
∫

RN
|x |α|un|2∗(α)dx = 1.

(ii) The case of k = 1. We distinguish the cases λ1n → 0 and λ1n → ∞. Define

wn(x) := (λ1n)
2−N
2 v1

(
x

λ1n

)

.

(ii-1) As λ1n → 0. It follows from (3.13), (3.15) and (3.17) that

∫

RN
a1(|x |)|x |α|vn|2∗(α)dx = S

N+α
2+α

α

(
1

2
+ o(1)

)

.

However
∫

RN
a1(|x |)|x |α|vn|2∗(α)dx =

∫

RN
a1(|x |)|x |α|wn|2∗(α)dx + o(1) (by (3.22))

=
∫

RN
a1(λ

1
n|x |)|x |α|v1(x)|2∗(α)dx + o(1)

= o(1),

where using the fact that limn→∞ a1(λ1n|x |) = 0 a.e. on R
N and Lebesgue Theorem.

Hence we get a contradiction.
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(ii-2) As λ1n → ∞. We have

S
N+α
2+α

α

(
1

2
+ o(1)

)

=
∫

RN
a1(|x |)|x |α|vn|2∗(α)dx (by (3.13), (3.15) and (3.17))

=
∫

RN
a1(|x |)|x |α|wn|2∗(α)dx + o(1) (by (3.22))

=
∫

RN
a1(|x |)|x |α

∣
∣
∣
∣(λ

1
n)

2−N
2 v1

(
x

λ1n

)∣
∣
∣
∣

2∗(α)

dx + o(1)

=
∫

RN
a1(λ

1
n|x |)|x |α|v1(x)|2∗(α)dx + o(1)

=
∫

RN
|x |α|v1(x)|2∗(α)dx + o(1) (byLebesgueTheorem)

=
∫

RN
|x |α|wn(x)|2∗(α)dx + o(1) (by (3.13), (3.15) and (3.17))

=
∫

RN
|x |α|vn(x)|2∗(α)dx + o(1)

= S
N+α
2+α

α (1 + o(1)) (by(3.14)., (3.15))

where using the fact that limn→∞ aλ(λ
1
n|x |) = 1 a.e. on R

N . This leads to a contra-
diction. Therefore Sα < ϒ .

Finally, taking u ∈ 
(B) such that ψλ(u) = 1
2 and set vλ(x) := λ

N−2
2 u(λx) if

|x | ≤ 1
λ
and vλ(x) = 0 for |x | > 1

λ
. Since

ψ1(vλ) = ψλ(u) = 1

2
, ϕ1(vλ) = ϕλ(u),

∫

RN
|x |α|vλ|2∗(α)dx =

∫

{|y|≤1}
|y|α|u|2∗(α)dy = 1,

it follows from the definitions of ϒ and ϒλ that ϒ ≤ ϒλ. ��

Theorem 3.8 Assume (h3) and λ > 0. Let {vn} ⊂ H1
0,r (B) be a (PS)c sequence of �,

i.e.

�(vn) → c, �′(vn) → 0 in (H1
0,r (B))∗.

Then, passing subsequence if necessary, there exist a solution v0 ∈ H1
0,r (B) of (3.1),

a finite sequence {u1, u2, . . . , uk} ⊂ D1,2
r (RN ) of solutions for

−�u = |x |α|u|2∗(α)−2u on R
N
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and k sequences {λin} ⊂ R+ such that λin → 0 and

∥
∥
∥
∥
∥
vn − v0 −

k∑

i=1

(λin)
2−N
2 ui

( ·
λin

)∥∥
∥
∥
∥
D1,2
r

→ 0,

‖vn‖2 → ‖v0‖ +
k∑

i=1

‖ui‖2
D1,2
r

,

�(vn) = �(v0) +
k∑

i=1

�(ui ) + o(1).

Proof The proof is similar with Theorem 3.6, but there need to make modify and we
give a sketch proof. The boundedness of {vn} in H1

0,r (B) is obvious and which implies

there exists a subsequence such that vn⇀v0 in H1
0,r (B) and vn(x) → v0(x) a.e. on B.

Combining with (h3) and Lemma 3.5, it is obvious that �′(v0) = 0 and v1n := vn −v0

satisfies

i) lim
n→∞

(
‖vn‖2 − ‖v1n‖2

)
= ‖v0‖2,

ii) �(v1n) → c − �(v0),

iii) � ′(v1n) → 0 in (H1
0,r (B))∗.

(3.23)

If v1n → 0 in L2∗(α)(B, |x |α), then the proof is complete. Otherwise we assume that

∫

B
|x |α|v1n |2

∗(α)dx > δ

for some 0 < δ <
(
Sα

2

) N+α
2+α

. Defining the Levy concentration function

Qn(r) :=
∫

Br (0)
|x |α|v1n |2

∗(α)dx .

Since Qn(0) = 0 and Qn(1) > δ, there exists a sequence {λ1n} ⊂ (0, 1) such that

δ =
∫

B
λ1n

(0)
|x |α|v1n |2

∗(α)dx .

We assume that u1n(x) := (λ1n)
N−2
2 v1n(λ

1
nx) converges weakly to u1 in D1,2

r (RN )

and a.e. on R
N . Using the Riesz-Fréchet representation theorem, Hölder inequality,

inequality (3.5) and the radial lemma(see [19]),we canprove thatu1 �= 0. Setλ1n → λ10.

If λ10 > 0, since v1n⇀0 in H1
0,r (B), we get u1n⇀0 in D1,2

r (RN ), this is impossible. If
λ1n → 0, from (3.23), then we have � ′(u1) = 0. The sequence
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v2n(x) = v1n(x) − (λ1n)
2−N
2 u1

(
x

λ1n

)

satisfies

i) ‖v2n‖2D1,2
r

= ‖vn‖2 − ‖v0‖2 − ‖u1‖2
D1,2
r

+ o(1)

ii) �(v2n) = c − φ(v0) − �(u1) + o(1),

iii) � ′(v2n) → 0 in (D1,2
r (RN ))∗.

Similar with Theorem 3.6, there exists a finite number of sequence such that the
conclusions of theorem hold. ��
Lemma 3.9 Assume (h3). Then for any λ > 0, we have Sα < λ and

lim
λ→0+ λ = Sα. (3.24)

Proof (1) We first prove Sα < λ using a similar argument as in Lemma 3.7. Assume
that Sα = λ, then there exists a sequence {un} ⊂ 
(B) satisfying

∫

B
|∇un|2 + h

( |x |
λ

)
1

λ2
|un|2dx → Sα,

∫

B
aλ(|x |)|x |α|un|2∗(α)dx ≥ 1

2
,

∫

B
|x |α|un|2∗(α)dx = 1.

Since h is nonnegative and λ > 0, we get

∫

B
|∇un|2dx → Sα,

∫

B
|x |α|un|2∗(α)dx = 1.

Let

φ(u) = 1

2

∫

B
|∇u|2dx − 1

2∗(α)

∫

B
|x |α|u|2∗(α)dx

and

S̄(un) :=
∫

B
|∇un|2dx .

Applying the Ekeland principle(see [25, Theorem 8.5]), there exists a (PS) sequence
for S̄

∣
∣

(B)

at the level Sα , i.e. there exist {βn} ⊂ R+ and ũn ⊂ H1
0,r (B) such that

‖ũn − un‖ → 0 as n → ∞,
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S̄(ũn) → Sα, −�ũn − βn|x |α|ũn|2∗(α)−2ũn → 0 in (H1
0,r (B))∗.

Set vn := β
1

2∗(α)−2
n ũn , then

βn → Sα,

φ(vn) → 2 + α

2(N + α)
S

N+α
2+α

α , φ′(vn) → 0.

It is easy to see that {vn} is bounded in H1
0,r (B), passing to a subsequence, that vn⇀v0

in H1
0,r (B). Using Theorem 3.8 with h = 0, there exist k functions v1, v2, . . . , vk ∈

D1,2
r (RN ) such that

−�vi = |x |α|vi |2∗(α)−2vi in R
N ,

for i = 0, 1, . . . , k,

φ(vn) = φ(v0) +
k∑

i=1

�(vi ) + o(1) = 2 + α

2(N + α)

k∑

i=0

∫

RN
|x |α|vi |2∗(α)dx . (3.25)

Multiplying the equation by (vi )+, (vi )− and using (3.5), for any i = 0, 1, . . . , k, one
of the following cases holds:

∫

RN
|x |α|vi |2∗(α)dx = 0,

∫

RN
|x |α|vi |2∗(α)dx = S

N+α
2+α

α ,

∫

RN
|x |α|vi |2∗(α)dx ≥ 2S

N+α
2+α

α .

Similar with the arguments of Lemma 3.7, the case of v0 �= 0 is impossible, so v0 = 0
and k = 0, 1. When k = 0, we have un → 0 in H1

0,r (B) and this is impossible since
∫

B |x |α|un|2∗(α)dx = 1. If k = 1 and λ1n → 0. Then

S
N+α
2+α

α

(
1

2
+ o(1)

)

≤
∫

B
aλ(|x |)|x |α|vn|2∗(α)dx

=
∫

B
aλ(|x |)|x |α|(λ1n)

2−N
2 v1(

x

λ1n
)|2∗(α)dx + o(1)

≤ Cλ1n + o(1) → 0,

where C > 0 is a constant. This leads to a contradiction. Therefore Sα < λ.
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(2)Now we prove the limit (3.24). Let ε > 0 and u ∈ 
(B)∩C∞
0,r (B) be such that

∫

B
|∇u|2dx < Sα + ε.

By (h3) we have

lim
λ→0+

∫

B
h

( |x |
λ

)
u2

λ2
dx = 0.

Hence we obtain

lim
λ→0+ ϕλ(u) =

∫

B
|∇u|2dx < Sα + ε.

Since limλ→0+ ψλ(u) = 1 > 1
2 there exists δ > 0 such that for 0 < λ < δ,

Sα < λ < Sα + ε.

Therefore limλ→0+ λ = Sα . ��
Proof of Theorem 3.1 By Lemma 3.7 and Lemma 3.9, there exists δ > 0 such that

Sα < λ < min
{
ϒ, 2

2+α
N+α Sα

}
≤ ϒλ, ∀ 0 < λ < δ. (3.26)

Since λ < ϒλ, by Ekeland variational principle(see [25, Theorem 8.5]), there exists
a Palais-Smale sequence for ϕλ|
(B) at the level λ. Namely, there exists a sequence
{un} ⊂ 
(B) and {θn} ⊂ R such that

ϕλ(un) → λ, −�un + h

( |x |
λ

)
un
λ2

− θn|x |α|un|2∗(α)−2un → 0 in (H1
0,r (B))∗.

It follows from un ∈ 
(B) that ϕ(un) − θn → 0 and θn → λ. Now define

vn = θ
1

2∗(α)−2
n un .

Then

�(vn) = 1

2

∫

B
|∇vn|2 + h

( |x |
λ

) |vn|2
λ2

dx − 1

2∗(α)

∫

B
|x |α|vn|2∗(α)dx

→ 2 + α

2(N + α)


N+α
2+α

λ ,

(3.27)

−�vn + h

( |x |
λ

)
vn

λ2
− |x |α|vn|2∗(α)−2vn → 0 in (H1

0,r (B))∗. (3.28)
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The relation (3.26) implies that

2 + α

2(N + α)
S

N+α
2+α

α <
2 + α

2(N + α)


N+α
2+α

λ <
2 + α

N + α
S

N+α
2+α

α . (3.29)

According to Theorem 3.8, we get the following decomposition:

�(vn) = �(v) + 2 + α

2(N + α)

k∑

i=1

∫

RN
|x |α|wi |2∗(α)dx + o(1),

‖vn‖2 → ‖v‖2 +
k∑

i=1

‖wi‖2D1,2
r

, (3.30)

where wi ∈ D1,2
r (RN ) is the solutions of

− �w = |x |α|w|2∗(α)−2w in R
N (3.31)

and v ∈ H1
0,r (B) satisfies

− �v + h

( |x |
λ

)
v

λ2
= |x |α|v|2∗(α)−2v. (3.32)

Hence

�(v) + 2 + α

2(N + α)

k∑

i=1

∫

RN
|x |α|wi |2∗(α)dx = 2 + α

2(N + α)


N+α
2+α

λ . (3.33)

Multiplying the equation (3.31) by w+
i , w

−
i and using (3.5), for any i = 0, 1, . . . , k,

one of the following cases holds:

wi = 0 ⇒
∫

RN
|x |α|wi |2∗(α)dx = 0, (3.34)

wi has a constant sign and
∫

RN
|x |α|wi |2∗(α)dx = S

N+α
2+α

α , (3.35)

wi changes a sign and
∫

RN
|x |α|wi |2∗(α)dx ≥ 2S

N+α
2+α

α . (3.36)

Similarly we have

v = 0 ⇒ �(v) = 0, (3.37)

v has a constant sign and �(v) ≥ 2 + α

2(N + α)
S

N+α
2+α

α , (3.38)

v changes a sign and �(v) ≥ 2 + α

N + α
S

N+α
2+α

α . (3.39)

123



1450 C. Wang, J. Su

It follows from (3.29) and (3.33) that the only possible case is (3.34) together (3.38).
Combining with (3.30), we know vn → v in H1

0,r (B). By (3.27) and (3.38), v is a

constant sign solution and �(v) = 2+α
2(N+α)


N+α
2+α

λ , moreover by structure of (3.32), we
can obtain the nonnegative solution v. ��
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