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Abstract
In this paper we investigate the 2d-model for a thin plate �ε := ω × εI of R3 having
two components: a circular stiff layer Fε and its complement the soft matrix Mε with
1
ε2

as a ratio between their respective elasticity coefficients. We prove that the limit
model is associated to a nonlocal system involving Kirchoff-Love displacements in
the layer and we exhibit a corrector for the displacements in the initial cylindrical
structure of R3.
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1 Introduction, notations and setting of the problem

The aim of this work is the study of the asymptotic behavior of the solutions of the
linearized system of elasticity posed in a cylindrical domain �ε := ω × εI of R3

which is the configuration domain of a composite material. The material is made up
of two components with high contrast: the first one Fε representing the stiff part of the
material has an elasticity tensor with coefficients of order 1. The second component
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1188 A. Boughammoura et al.

Mε (the soft material) surrounds the first one and the coefficients of its elasticity tensor
are of order ε2.

Under an appropriate assumption on the volumes forces, we aim to approximate the
behavior of the displacements and that of the associated tensors as the small parameter
ε tends to zero. Hence the present work may be viewed as the 3d − 2d version of the
study addressed in [14] where the 3d − 1d reduction of dimension problem was
considered as well as the homogenization of a ε-periodic fibered medium inducing
a local 3d − 1d reduction of dimension. It was proved in [14] that the homogenized
problem in a such setting is a copy of the one-dimensional problem obtained in the
3d − 1d study. Although one can also consider here the ε-periodic homogenization
problem of a medium containing 1

ε
cells which are the translates of �ε in such a way

that the homogenization process leads to a local 3d − 2d reduction of dimension, for
the sake of brevity we restrict ourselves to the 3d−2d reduction of dimension problem
arising in the single composite structure �ε. We consider the critical case where the
ratio between the elasticity coefficients of the two components is equal to 1

ε2
but other

scalings may be considered as pointed out in [14], see also [11,16].
On the other hand, we deal with general elasticity tensors including anisotropic

materials, see also [4,8,13,15]. Several studies on composite materials with hight
contrast between their components have been performed during the last years, see
for instance [3,5–7,10–13]. The founding work studying media with high contrasting
properties is the reference [2]. It is known that for this kind of materials, the limit
problem has in general a different structure than the starting problem. In particular,
nonlocal phenomena can appear at the limit. We show here that the limit problem
obtained after reduction of dimension 3d−2d is indeed a nonlocal problem. Theorem
3.2 below, which gives the limit problem, shows that the displacements in the circular
layer F are essentially of Kirchov-Love type and the associated equation may be
obtained from system (29) by choosing z̄ = 0; but to determine the limit displacements
in the structure, another equation related to the matrix M (the outside of the layer) is
necessary. That equation is obtained by choosing ū = v̄ = 0 in (29). This nonlocal
phenomenon is emphasized in Theorem 3.4 which gives the limit of the average of the
displacements ûε in the three-dimensional structure �ε. In particular convergences
(33) and (34) show clearly that the limit displacements are determined after solving
the two equations posed in F and in M respectively.

In terms of correctors, our result shows that the transversal displacements uε
α behave

as uα + εvα + zα while the horizontal displacements uε
3 behave as u3 + ε2v3 + εz3.

We now make more precise the notations we will use throughout the paper.
A vector x inR

3 is denoted by x = (x ′, x3)where x3 denotes the vertical coordinate.
Latin indices will usually range from 1 to 3 and Greek ones take values in {1, 2}; the
summation convention applies whenever indices are repeated. We write ∂i := ∂

∂xi

and ∂i j := ∂2

∂xi ∂x j
. The gradient with respect to x and x ′ are denoted by ∇ and ∇′

respectively.
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A 2Dmodel for a highly heterogeneous plate 1189

Given any φ ∈ (D′(�))3, we denote the strain of φ by Eφ := sym∇φ =
1
2

(∇φ + ∇φT
)
. We shall also use the following matrices notations

∇φ =
(

∂αφβ ∂3φβ

∂αφ3 ∂3φ3

)

,

Eφ =
(

(Eφ)αβ (Eφ)α3

(Eφ)α3 (Eφ)33

)

.

Let ω ⊂ R
2 be an open, bounded, simply connected set with Lipschitz boundary

∂ω. Let I := (− 1
2 ,

1
2 ), J := (− r

2 ,
r
2 ), 0 < r < 1

2 , � := ω × I, F := ω × J,
M := ω × (

I\J), where J denotes the closure of J. According to Remark 1.1 below,
physically we can think of � as the reference configuration of a rescaled thin plate �ε

reinforced by the layer Fε while its complement, the matrix Mε, is occupied by a soft
material. For every ε > 0 we denote the diagonal matrix whose entries are 1, 1 and
ε by Rε := diag(1, 1, ε), then the scaled gradient ∇εφ and the scaled strain Eεφ are
defined respectively by

∇εφ := (Rε)−1∇φ(Rε)−1 =
(

∂αφβ
1
ε
∂3φβ

1
ε
∂αφ3

1
ε2

∂3φ3

)

, (1)

and

Eεφ := sym∇εφ =
(

(Eφ)αβ
1
ε
(Eφ)α3

1
ε
(Eφ)α3

1
ε2

(Eφ)33

)

. (2)

We are now in position to state the problem.
Let A ∈ L∞(�) be a symmetric fourth-order tensor field. We assume that A fulfills

the following assumptions:

{
Ai jkl = A j ikl = Akli j , a.e. in �,

∃ C > 0, Ai jklξklξi j ≥ Cξi jξi j , ∀ξ ∈ R
9 s.t. ξ T = ξ.

(3)

We shall assume that the plate is clamped at the lateral boundary of � and subjected
to body forces f ∈ L2(�; R

3), we thus set

H1
L(�) := {u ∈ H1(�; R

3) : u = 0 on ∂ω × I}.

Consider the displacement field uε solution of the following system:
⎧
⎨

⎩

uε ∈ H1
L(�), ∀φ ∈ H1

L(�),∫

�

(
χF + ε2χM

)
AEε(uε).Eε(φ)dx =

∫

�

f φdx .
(4)

By virtue of the assumptions on the tensorA and the body forces F , for every ε > 0,
the problem (4) admits a unique solution by the Lax-Milgram Theorem.
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1190 A. Boughammoura et al.

Remark 1.1 As in [9], the homothety along the vertical axis defined by rε(x) :=
(x ′, εx3) transforms �, F and M respectively into �ε := ω × εI, Fε := ω × εJ
and Mε := ω × ε

(
I\J). Then, the problem (4) is the variational version in the fixed

reference configuration � of the elasticity problem (6) below posed in the variable
thin domain �ε. Indeed, for any v : � 
−→ R

3 we define v̂ : �ε 
−→ R
3 by

v̂(x ′, εx3) :=
(
(Rε)−1v ◦ (rε)−1

)
(x ′, εx3) = (

vα(x), 1
ε
v3(x)

)
. (5)

In addition

∇v̂ = Hεv ◦ (rε)−1, Ev̂ = Eεv ◦ (rε)−1.

With these new unknowns, the problem (4) may be rewritten as

⎧
⎨

⎩

ûε ∈ H1
L(�ε), ∀φ ∈ H1

L(�ε),∫

�ε

(
χFε + ε2χMε

)
A

εE(ûε).E(φ)dx =
∫

�ε

f εφdx (6)

where H1
L(�ε) := {u ∈ H1(�ε; R

3) : u = 0 on ∂ω×εI},Aε := A◦(rε)−1, f ε =
Rε f ◦ (rε)−1. Thus, the components of the loads are

f ε =
(
fα ◦ (rε)−1, ε f3 ◦ (rε)−1)

)
. (7)

We study the behavior as ε → 0 of the sequence {uε}, solution of (4), through the
forthcoming steps. That behavior will be described through Theorem 3.2 and then we
will deduce the behavior of the sequence ûε solution of (6) in Theorem 3.4.

2 A priori estimates

First, we shall recall a rescaled Korn’s inequality proved in [1]

‖Ev̂‖2L2(Fε)
≥ Cε2

(
‖v̂‖2L2(Fε)

+ ‖∇v̂‖2L2(Fε)

)
, ∀v ∈ H1

L(F), (8)

where

H1
L(F) := {u ∈ H1(F; R

3) : u = 0 on ∂ω × J}

and v̂ = (Rε)−1v ◦ (rε)−1. As a consequence, we deduce

‖Eεv‖2L2(F)
≥ Cε2

(
‖(Rε)−1v‖2L2(F)

+ ‖∇εv‖2L2(F)

)
, ∀v ∈ H1

L(F). (9)
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A 2Dmodel for a highly heterogeneous plate 1191

On the other hand, repeating the same arguments used in [14, Lemma 4.4], the fol-
lowing inequality holds true

(
‖∇εv‖2L2(F)

+ ‖Eεv‖2L2(M)

)
≥ C‖∇εv‖2L2(M)

, ∀v ∈ H1
L(�). (10)

For v ∈ H1
L(�) we set v′ := (v1, v2), ∇′v′ := (

∂βvα

)
α,β=1,2 and

Fε(v) :=
∫

�

(
χF + ε2χM

)
AEεv.Eεvdx . (11)

By using the ellipticity assumption (3) we obtain, for all v ∈ H1
L(�)

Fε(v) ≥ C
(
‖Eεv‖2L2(F)

+ ε2‖Eεv‖2L2(M)

)
≥ C‖Ev‖2L2(F)

≥ C‖v‖2H1(F)
, (12)

where the last inequality follows from the Korn’s inequality. Furthermore, by virtue
of (9) and (10) one has

Fε(v) ≥ Cε2
(
‖∇εv‖2L2(F)

+ ‖Eεv‖2L2(M)

)
≥ Cε2‖∇εv‖2L2(M)

. (13)

From (13), one has for ε small enough,

Fε(v) ≥ Cε2
(

1
ε2

‖∇′v3‖2L2(M)
+ 1

ε4
‖∂3v3‖2L2(M)

)
≥ C‖∇v3‖2L2(M)

. (14)

By means of the Poincaré’s inequality, one has

Fε(v) ≥ C‖v3‖2H1(M)
. (15)

Likewise, it holds that

Fε(v) ≥ C
(
ε2‖∇′v′‖2L2(M)

+ ‖∂3v′‖2L2(M)

)
≥ C‖∂3v′‖2L2(M)

. (16)

From the following Poincaré’s type inequality

‖v′‖2L2(M)
≤ C

(
‖v′‖2L2(F)

+ ‖∂3v′‖2L2(M)

)
,

(16) and (12), we get the following inequality

Fε(v) ≥ C‖v′‖2L2(M)
. (17)

It follows from (15) and (17) that

Fε(v) ≥ C
(
‖v3‖2H1(M)

+ ‖v′‖2
L2(ω;H1(I\J))

)
. (18)
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1192 A. Boughammoura et al.

As an immediate consequence of the previous inequalities, the following apriori esti-
mates hold true.

Theorem 2.1 Let uε be the solution of problem (4). Then

sup
ε

(‖uε‖H1(F) + ‖ε∇εuε‖L2(F) + ‖Eεuε‖L2(F)

) ≤ C, (19)

sup
ε

(
‖uε

3‖H1(M) + ‖uε
α‖L2(ω;H1(I\J)) + ‖ε∇εuε‖L2(M)

)
≤ C, (20)

in particular

sup
ε

(‖uε
3‖H1(�) + ‖uε

α‖L2(ω;H1(I)) + ‖ε∇εuε‖L2(�)

) ≤ C, α = 1, 2. (21)

Proof
Taking φ = uε in the problem (4), we derive

Fε(u
ε) ≤ ‖ f ‖L2(�)‖uε‖L2(�),

while from (12), (15) and (17) we find

Fε(u
ε) ≥ C‖uε‖L2(�).

Thus

sup
ε

Fε(u
ε) ≤ C .

Therefore, making use of (12)–(13) and then (13)–(18) we deduce (19) and (20)
respectively.

3 Convergence results

We first define the following functional spaces:

HKL(�) :=
{
u ∈ H1

L(�) : (Eu)i3 = 0, i = 1, 2, 3
}

which is the space of Kirchhoff-Love displacements on�; it can be characterized also
as

HKL(�)=
{
u ∈H1

L(�), ∃(gα, g3) ∈ H1
0 (ω)×H2

0 (ω) : uα = gα − x3∂αg3, u3 = g3
}

,
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A 2Dmodel for a highly heterogeneous plate 1193

for the sake of brevity we set U := HKL(�),

V :=
{
v ∈ L2

(
ω; H1(J)

)3 : −
∫

J
vi (x

′, t)dt = 0, a.e. x ′ ∈ ω, i = 1, 2, 3

}
,

Z :=
{
z ∈ L2

(
ω; H1

m(I)
)3 : zi = 0, a.e.inF, i = 1, 2, 3

}
,

where H1
m(I) :=

{
ψ ∈ H1(I) :

∫

I
ψ(t)dt = 0

}
.

The following lemma is concerned with some convergence results.

Lemma 3.1 There exists (u, v, z) ∈ U × V × Z , such that up to a subsequence, we
have

uε
α⇀uα + zα in L2(ω; H1(I)), uε

3⇀u3 in H1(�),

EεuεχF⇀

(
(Eu)αβ ∂3vα

∂3vα ∂3v3

)

χF in L2(�)3×3,

εEεuεχM⇀

(
0 1

2∂3zα
1
2∂3zα ∂3z3

)

χM in L2(�)3×3.

Proof
Step 1: convergence of (uε)ε.
From estimate (19) which implies that uε

α is bounded in H1(F) and from estimate
(20) which implies that uε

α is bounded in L2(ω; H1(I\J )) for α = 1, 2, we conclude
that there exist uα ∈ H1(�) such that for a subsequence

uε
α⇀uα in H1(F), (Eεuε)αβχF⇀(Eu)αβχF in L2(F). (22)

On the other hand, from (21) we get that up to a subsequence,

{
uε

α⇀ũα in L2(ω; H1(I)),
uε
3⇀u3 in H1(�).

(23)

Moreover, due to the estimate ‖ 1
ε
∂3u

ε
3‖L2(�) ≤ C which is a consequence of (21), we

have

∂3u
ε
3 → 0 in L2(�)

in such a way that

∂3u3 = 0.

Thus, there exists g3 ∈ H1
0 (ω) such that

u3(x) = g3(x
′) for a.e. x ∈ �. (24)
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1194 A. Boughammoura et al.

Comparing the first convergences in (22) and (23), we derive the equality

ũα = uα in F . (25)

On the other hand, using (19) we infer

(Euε)α3⇀(Eũ)α3 in L2(F).

Since

(Euε)i3 → 0 in L2(F),

we are led to

(ũα, u3) ∈ HKL(F).

By definition of the space HKL(F), the component u3 belongs to H2
0 (ω), so that

equality (24) implies that g3 ∈ H2
0 (ω). Hence, there exist gα ∈ H1

0 (ω) for α = 1, 2,
such that

ũα(x) = gα(x ′) − x3∂αg3(x
′), u3(x) = g3(x

′) for a. e. x ∈ F .

For a. e. x ∈ �, we set

uα(x) := gα(x ′) − x3∂αg3(x
′) ∈ H1

L(�),

zα(x) := ũα(x) − uα(x) ∈ L2(ω; H1(I)),

so that zα = 0, a. e. in F as seen from (25) and u = (uα, u3) ∈ U and

uε
α⇀uα + zα, in L2(ω; H1(I)).

Step 2: convergence of (Eεuε)ε.
To identify the limit of the sequence (Eεuε)i3χF , we introduce the following

sequences:

ûε
α :=

∫ x3

− 1
2

1
ε
∂αu

ε
3(x

′, t)dt, (26)

(27)

Obviously, on has

∂3v
ε
α = 2

ε
(Euε)α3,

∂3v
ε
3 = 1

ε2
(Euε)33.
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A 2Dmodel for a highly heterogeneous plate 1195

Since 2
ε
(Euε)α3 and 1

ε2
(Euε)33 are bounded in L2(F), due to (19), and vε := (vε

α, vε
3)

has mean-value zero with respect to x3, the sequence vε is bounded in L2(ω; H1
m(J))3,

where H1
m(J) :=

{
ψ ∈ H1(J) : −

∫

J
ψ(t)dt = 0

}
.

Therefore there exists some v ∈ L2(ω; H1
m(J))3 such that

vε⇀v in L2(ω; H1
m(J))3.

In particular, one has v ∈ V ,

(Eεuε)α3χF⇀ 1
2∂3vαχF in L2(�),

and

(Eεuε)33χF⇀∂3v3χF in L2(�).

As a consequence, one obtains the following convergence

EεuεχF⇀

(
(Eu)αβ

1
2∂3vα

1
2∂3vα ∂3v3

)

χF in L2(�)3×3,

where (u, v) ∈ U × V .
We now seek for the limit of the sequence εEεuεχM . To that aim, we consider the

following sequence

zεα := uε
α + ûε

α −
∫

I

(
uε

α + ûε
α

)
dx3,

zε3 := 1
ε
uε
3 −

∫

I

1
ε
uε
3dx3. (28)

where ûε is defined by (26). Since

∂3z
ε
α = 2(Euε)α3, (29)

∂3z
ε
3 = 1

ε
(Euε)33. (30)

Due to (21), 2(Euε)α3 and 1
ε
(Euε)33 are bounded in L2(�)with mean-value zero with

respect to x3; hence the sequence zε is bounded in L2(ω; H1
m(I))3. Therefore there

exists some ẑ ∈ L2(ω; H1
m(I))3, such that

zε⇀ẑ in L2(ω; H1
m(I))3.

We claim that ẑα = zα . Indeed,

∂3u
ε
α⇀∂3uα + ∂3zα in L2(�)
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1196 A. Boughammoura et al.

and

∂3z
ε
α⇀∂3 ẑα in L2(�).

But

∂3z
ε
α = ∂3u

ε
α + ∂αu

ε
3⇀∂3uα + ∂3zα + ∂αu3 in L2(�).

Thus

∂3 ẑα = ∂3uα + ∂3zα + ∂αu3.

Since u ∈ U , we have

∂3uα + ∂αu3 = 0,

and therefore

∂3 ẑα = ∂3zα i.e. ẑα(x) = zα(x) + c(x ′), a.e. x ∈ �.

In particular

ẑα(x) = c(x ′), a.e. x ∈ F

since

zα(x) = 0, a.e. x ∈ F .

On the other hand one has by virtue of (20),

zε → 0 in L2(F).

Hence

c(x ′) = 0, a.e. x ∈ F

and therefore

ẑα(x) = zα(x), a.e. x ∈ �.

This proves our claim.
Finally, from (29) and (30) we deduce that

ε(Eεuε)α3χM⇀ 1
2∂3zαχM , ε(Eεuε)33χM⇀(Ez)33χM in L2(�),

where z3 := ẑ3.
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A 2Dmodel for a highly heterogeneous plate 1197

Moreover, since εuε
α −→ 0 in L2(M), we get ε(Eεuε)αβχM⇀0 in L2(�). We

conclude that

εEεuεχM⇀

(
0 1

2∂3zα
1
2∂3zα ∂3z3

)

χM in L2(�)3×3.

This ends the proof of Lemma 3.1.
In the following theorem, we state our main result.

Theorem 3.2 There exists (u, v, z) ∈ U × V × Z , such that the sequence of solution
uε of the problem (4) fulfills the following strong convergences

uε
α −→ uα + zα strongly in L2(ω; H1(I)), uε

3 −→ u3 strongly in H1(�),

EεuεχF −→
(

(Eu)αβ
1
2∂3vα

1
2∂3vα ∂3v3

)

χF strongly in L2(�)3×3,

εEεuεχM −→
(

0 1
2∂3zα

1
2∂3zα ∂3z3

)

χM strongly in L2(�)3×3,

where the limit (u, v, z) is the unique solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, v, z) ∈ U × V × Z, ∀(ū, v̄, z̄) ∈ U × V × Z,
∫

�

A(x)

(
(Eu)αβ

1
2∂3vα

1
2∂3vα ∂3v3

)

.

(
(Eū)αβ

1
2∂3v̄α

1
2∂3v̄α ∂3v̄3

)

χFdx

+
∫

�

A(x)

(
0 1

2∂3zα
1
2∂3zα ∂3z3

)

.

(
0 1

2∂3 z̄α
1
2∂3 z̄α ∂3 z̄3

)

χMdx

=
∫

�

(
fα (ūα + z̄α) + f3ū3

)
dx .

(31)

Proof We first prove the convergence of the sequence of energies to the energy asso-
ciated to the limit problem, assuming that the limit problem is the system (31). To that
aimwewill use the weak convergences proved in Lemma 3.1.We follow the argument
already used in [14, Proof of Theorem 3.1].

Choosing (ū, v̄, z̄) = (u, v, z) in (31) and passing to the limit thanks to Lemma
3.1, we get

lim
ε→0

∫

�

(
χF + ε2χM

)
AEε(uε).Eε(uε)dx = lim

ε→0

∫

�

f uεdx

=
∫

�

(
fα (uα + zα) + f3u3

)
dx

=
∫

�

(AEF .EFχF + AEM .EMχM ) dx,

123



1198 A. Boughammoura et al.

where

EF :=
(

(Eu)αβ
1
2∂3vα

1
2∂3vα ∂3v3

)

, EM :=
(

0 1
2∂3zα

1
2∂3zα ∂3z3

)

.

Using the equivalence of the norms

L2(�) � E 
−→
∫

�

AE .Edx, L2(�) � E 
−→
∫

�

E .Edx

we deduce that

lim
ε→0

∥∥(χF + εχM )Eε(uε)
∥∥
L2(�)

= ‖χF EF + χMEM‖L2(�) .

Hence the strong convergence of the tensor sequences is proved. Now, by using the
last strong convergence together with the following Korn’s inequality

∥∥Eε(uε)
∥∥
L2(F)

≥ ∥∥E(uε)
∥∥
L2(F)

≥ C
∥∥uε

∥∥
L2(F)

,

we deduce that uε is a Cauchy sequence in H1(F).
On the other hand, using (9) and (10) one has

‖Eεuε‖2L2(F)
≥ Cε2

(
‖(Rε)−1uε‖2L2(F)

+ ‖∇εuε‖2L2(F)

)

and
(
‖∇εuε‖2L2(F)

+ ‖Eεuε‖2L2(M)

)
≥ C‖∇εuε‖2L2(M)

.

Hence, ε∇εuε is also a Cauchy sequence in L2(�). It remains to prove that uε
α and uε

3
are two Cauchy sequences in L2(ω; H1(I)) and H1(M) respectively. To that aim, it
suffices to use (18) to obtain

∥∥(χF + εχM )Eε(uε)
∥∥2
L2(�)

= Fε(u
ε) ≥ C

(
‖uε

3‖2H1(M)
+ ‖uε

α‖2
L2(ω;H1(I\J))

)

then we can argue as previously to complete the proof. ��
We now prove that the limit problem is nothing but the system (31).
We choose a test function φε in (4) in the following form

{
φε

α = ūα + εv̄α + z̄α
φε
3 = ū3 + ε2v̄3 + εz̄3

(32)

where (ū, v̄, z̄) ∈ U × D (
ω; H1

m(J )
)3 ×

{
D (

ω; H1
m(I )

)3 : z = 0, a.e. x ∈ F
}

.

Since, from the definition of U , one has (Eū)i3 = 0, for all i = 1, 2, 3, an elementary
calculation shows that
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⎧
⎨

⎩

(Eεφε)αβ = (Eū)αβ + ε(Ev̄)αβ + (Ez̄)αβ,

2(Eεφε)α3 = ∂3v̄α + ε∂αv̄3 + 1
ε
∂3 z̄α + ∂α z̄3,

(Eεφε)33 = (Ev̄)33 + 1
ε
(Ez̄)33.

Using the following strong convergences

EεφεχF −→
(

(Eū)αβ
1
2∂3v̄α

1
2∂3v̄α ∂3v̄3

)

χF in L2(�)3×3,

εEεφεχM −→
(

0 1
2∂3 z̄α

1
2∂3 z̄α ∂3 z̄3

)

χM in L2(�)3×3,

we can pass to the limit in (4) as ε goes to zero to get (31) thanks to the density of

D (
ω; H1

m(J )
)3

and
{
z ∈ D (

ω; H1
m(I )

)3 : zi = 0, a.e. x ∈ F, i = 1, 2, 3
}
in V and

Z respectively.

Remark 3.3 The space U × V × Z is a Hilbert space for the following norm

‖(u, v, z)‖2 :=
∑

α,β=1,2

∥∥(Eu)αβ

∥∥2
L2(�)

+
3∑

i=1

[
‖∂3vi‖2L2(�)

+ ‖∂3zi‖2L2(�)

]
.

Therefore, using the Lax-Milgram Theorem we obtain the well-posedness of the limit
problem (31) since the tensor A is coercive by virtue of (3) and f ∈ L2(�; R

3).
We now turn back to the sequence of solutions of problem (6) to derive the following

theorem from Theorem 3.2.

Theorem 3.4 Let (u, v, z) ∈ U × V × Z be the solution of the problem (31). Let

EF :=
(

(Eu)αβ
1
2∂3vα

1
2∂3vα ∂3v3

)

, EM :=
(

0 1
2∂3zα

1
2∂3zα ∂3z3

)

.

Then the sequence of solutions ûε of the problem (6) fulfills the following convergences

⎧
⎪⎪⎨

⎪⎪⎩

−
∫
εJ Eû

εdx3 −→ −
∫
J EFdx3, in L2(ω;R3×3),

−
∫
ε(I\J)Eû

εdx3 −→ −
∫
I\JEMdx3 in L2(ω;R3×3),

−
∫
εI û

ε
αdx3 −→ Uα(x ′) := −

∫
I (uα + zα) dx3, in L2(ω),

−
∫
εI εû

ε
3dx3 −→ u3(x ′) in L2(ω),

(33)

Moreover, Uα may be written as

Uα(x ′) = −
∫

I
uαdx3 + m0

α(x ′)−
∫

I\J
fα(x ′, x3)dx3 + m00

α (x ′), (34)

where m0
α and m00

α are given by

m0
α(x ′) :=

∫

I\J
z0α(x ′, x3)dx3, m00

α (x ′) :=
∫

I\J
z00α (x ′, x3)dx3,
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and z0, z00 are respectively the solutions of the following problems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z0 ∈ L∞ (
ω,Z0

)
,Z0 := {

z ∈ (H1(I\J)3 : z = 0 on ∂ J
}

∫

I\J
A(x)

(
0 1

2∂3z
0
α

1
2∂3z

0
α ∂3z

0
3

) (
0 1

2∂3 z̄α
1
2∂3 z̄α ∂3 z̄3

)

dx3 =
∫

I\J
z̄α(x3)dx3,

∀z̄ ∈ Z0, a.e. in ω,

(35)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z00 ∈ Z
∫

M
A(x)

(
0 1

2∂3z
00
α

1
2∂3z

00
α ∂3z

00
3

)(
0 1

2∂3 z̄α
1
2∂3 z̄α ∂3 z̄3

)

dx3 =
∫

M

(
fα(x) − −

∫

I\J
fα(x)dx3

)
z̄α(x)dx,

∀z̄ ∈ Z.

(36)

Proof
The convergences (33) follow from the corresponding convergences stated in The-

orem 3.2 by the change of variables (5).
Let us prove for instance the third convergence arising in (33) by the use of the first

convergence arising in Theorem 3.2. Setting y3 = εx3 for x3 ∈ I and bearing in mind
that ûε is defined according to (5) by uε

α(x ′, x3) = ûε(x ′, εx3) for (x ′, x3) ∈ ω × I
and that the length of the interval I is equal to 1, we get thanks to the Cauchy-Schwarz
inequality (with respect to x3)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫

ω

|−
∫

εI
ûε

α(x ′, y3)dy3 − −
∫

I
(uα(x ′, x3) + zα(x ′, x3)dx3|2dx ′

=
∫

ω

∣∣∣∣

∫

I

(
uε

α(x ′, x3) − (uα(x ′, x3) + zα(x ′, x3))
)
dx3

∣∣∣∣

2

dx ′

≤
∫

ω

∫

I
|uε

α(x ′, x3) − (uα(x ′, x3) + zα(x ′, x3))|2dx3dx ′ −→ 0.

(37)

To prove (34), we first notice that one can derive the following equation satisfied
by zα by choosing ū = v̄ = 0 in (31),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z ∈ Z, ∀z̄ ∈ Z,
∫

�

A(x)

(
0 1

2∂3zα
1
2∂3zα ∂3z3

)

.

(
0 1

2∂3 z̄α
1
2∂3 z̄α ∂3 z̄3

)

χMdx

=
∫

�

fα z̄αdx .

(38)

Taking advantage from the linearity of (38), one can check easily by a uniqueness
argument that zα may be identified as zα = z1α + z2α where z1α and z2α are solutions of
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(38) but with right hand sides defined respectively by

−
∫

I\J
fα(x)dx3 and

(
fα(x) − −

∫

I\J
fα(x)dx3

)
.

By linearity and using once again a uniqueness argument, we conclude that

z1α =
(

−
∫

I\J
fα(x)dx3

)
z0α and z2α = z00α

where z0 and z00 are the solutions of (35) and (36) respectively. Hence, Uα defined
in the third convergence (33) may be written as (34). This completes the proof of
Theorem 3.4.
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