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Abstract
In this study, the effect of throughflow and variable gravity field on the stability of
double diffusive convection in a fluid layer for the system when heating and salting
both are done from below, are investigated. The linear and energy techniques are
regulated to check the stability characteristics of the system. The numerical results
of linear and non-linear techniques are compared to check the subcritical region.
The Chebyshev pseudo-spectral technique is applied to find the influences of distinct
physical parameters on the stability of the system.

Keywords Double diffusive convection · Throughflow · Variable gravity · Linear
instability analysis · Nonlinear energy stability analysis

Mathematics Subject Classification 76E06 · 76E30 · 76R10
1 Introduction

The study of heat and mass transfer problem where two buoyancy driven components
(heat and salt) diffuses with different rate is termed as double diffusive convection
and the study of this type of problem has captivated much concentration of many
researchers due to its comprehensive real life applications, see, e.g. Turner[1], Kauf-
man [2], Oldenburg and Pruess [3], Bear and Gillman [4], Gilman [5]. Detailed linear
analysis for the double diffusive convection problem in a porous medium has been
worked out by Nield [6] and in fluid layer by Baines and Gill [7]. Shir and Joseph [8]
studied the double diffusive convection problem and found that, for the problem when
heating is done from below however, salting is done from above then corresponding
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linearized system is symmetric, and thus, linear and nonlinear bounds coincide. This
result was first founded by Shir and Joseph [8]. Furthermore, if both heating and salting
of fluid layer is done from below then energy stability theory becomes more intricate
to attain accurate results see [9, 10]. Joseph [11] established a new twist into energy
stability theory. He found the idea of generalized energy theory to produce sharp non-
linear stability threshold. Mulone [12] achieved a sharp unconditional results for the
double diffusive convection in a fluid layer when both heating and salting are done
from below. Mulone and Rionero [13], Lombardo et al. [14] derived further sharp
nonlinear stability boundaries using modified generalized energies, for a fluid layer,
when heating and salting to the system are done from below. Mahajan and Tripathi
[15, 16] respectively analyzed the impact of changeable viscosity and non-uniform
temperature gradients on the stability of the systemwhere both heat andmass diffusion
take place.

The hypothesis of constant gravity in the pure study is not verified for wide ranging
convection appearance arising in the airspace, or the mantle of the earth as the earth’s
gravity field varies with the distance. In order to study the wide-ranging convection
flows, it is necessary to consider the gravity field as a function of distance from the
centre of earth, as identified by the Pradhan and Samal [17]. Alex et al.[18, 19] studied
the impact of internal heating and changeable gravity field on the convective instabil-
ity in a porous medium in the presence of inclined temperature gradient. The effect
of variable gravity on the convective instability was analysed by Straughan [20] by
applying linear and nonlinear analysis. The results of linear and nonlinear stability
analysis are attained and compared for linearly decreasing type gravity variation func-
tion. The different types of gravity fileds are chosen to obtain its effect on the onset
of Rayleigh Bénard convection problem see, Straughan [21]. Rienero and Straughan
[22] also analysed the problemwhere gravity changes with height in a porousmedium.
Harfash [23] investigated the impact of gravity field and magnetic field on the convec-
tive instability in a porous medium. Later, Mahajan and Sharma [24] made an effort to
check the stability by applying linear analysis technique on the convective instability
of Magnetic Nano-Fluid layer. An investigation is made using simultaneous impact
of variable gravity field and through flow on the stability of the system in a porous
medium by Yadav [25, 26]. Recently, a very interesting problem of analyzing the
gravity field impact on the stability of double diffusive system in a fluid layer where
convective instability occurs due to non-uniformity in temperature and concentration
gradients, is explored by Mahajan and Tripathi [27]. For more related knowledge, the
researcher may call attention to the Refs. [28–30].

Moreover, the theory of through flow is important to manage the convective opera-
tions in geophysics, industries, and in engineering sciences etc. The impact of through
flow on the Rayleigh–Bénard convection in a fluid layer was analysed by Nield [31].
The impact of through flow on the convection induced by penetration is studied by
Harfash [32]. Shivkumara et al. [33] made an effort to investigated the impact of
throughflow with internal heat source on convective operations in a fluid layer. Taking
into consideration the work of Shivkumara [33], the combined impact of through flow
and constant heat source on the double diffusive convection in anisotropic porous layer
are investigated by Capone et al.[34]. In all of the studies mentioned above, the effect
of throughflowwith variable gravity field on convection problem (where both heat and
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mass diffuse) in a fluid layer has not been studied yet. The study of using combined
effect of throughflow with variable gravity is very important in controlling the con-
vection mechanism because the direction of throughflow can be taken in the direction
of gravity field (throughflow inclined gravity) or in the opposite direction of gravity
field (throughflow disinclined gravity). Throughflow inclined and disinclined gravity
effects on the convection mechanism plays an important contribution in engineering
sciences, geophysics and in hydrothermal vent systems. In the present work, the linear
and energy technique are applied for double diffusive convection problem in a fluid
layer with the impact of throughflow and gravity field that is non-constant. The linear
analysis is applied with the help of normal mode technique while energy method is
adopted to conduct the nonlinear analysis. The eigenvalue problems obtained from
linear and nonlinear analysis, is solved numerically using Chebyshev pseudospectral
method [35] in MATLAB. In the next section, we present a mathematical model to
be studied. In Sect. 3, we introduce linear stability analysis for our system. Since
the present system is not symmetric so nonlinear stability analysis gives important
result thus, in Sect. 4, nonlinear stability analysis is applied using energy method. In
Sect. 5, we present the results obtained using linear and nonlinear stability analysis
and compare the corresponding results and conclusions are presented in Sect. 6.

2 Mathematical formulation of the problem

Let’s consider an incompressible fluid layer, heated and salted from below, enclosed
between two parallel planes z � 0 and z � d under the influence of variable gravity
field g(z). Let differences of the temperature and concentration are �T � T1 − T2
and �C � C1 − C2 respectively where T1, C1 are the temperature and concentration
of lower plates respectively and T2, C2 are temperature and concentration of upper
plates respectively. The fluid motion can be presented by Navier–Stokes equation.

∂q
∂t

+ q · ∇q � − 1

ρ0
∇ p + ν∇2q − [1 − αT (T − T0) + αC (C − C0)]g(z)k, (1)

The remaining governing equations are the condition of incompressibility, energy
equation, and concentration equation, namely

∇ · q � 0, (2)

∂T

∂t
+ q · ∇T � kT∇2T , (3)

∂C

∂t
+ q · ∇C � kC∇2C , (4)
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with boundary conditions

q � (0, 0, w0), z � 0, d

T � T1, C � C1 z � 0

T � T2, C � C2 z � d

⎫
⎪⎬

⎪⎭
(5)

Where q� (u, v, w) is the fluid velocity, denoting pressure, temperature, and con-
centration fields by p, T , C respectively and αT , αC , ν, kT , kC by coefficient of
thermal expansion, coefficient of solute expansion, dynamic viscosity, thermal dif-
fusivity, solutal diffusivity respectively, k � (0, 0, 1) is the unit vector, change in
g(z) � (1 + εh(z))g denotes change in gravity field.

Let’s consider the steady state solution of (1–5) with a through flow in vertical
direction of the form q � (0, 0, w0), wherew0 is the constant velocity. Now, applying
the boundary conditions, we obtain the following basic state equations

Tb(z) � T1 + (T2 − T1)

(
1 − exp

(
w0
kT

)
z
)

1 − exp
(

w0
kT

)
d

,

Cb(z) � C1 + (C2 − C1)

(
1 − exp

(
w0
kC

)
z
)

1 − exp
(

w0
kC

)
d

,

To assess the stability of the basic state solution, we employed perturbations as of
the form

q � qb(z) + q′, p � pb(z) + p′ , ρ � ρb(z) + ρ′, T � Tb(z) + θ , C � Cb(z) + φ

and non-dimensionalize with following scalings

z � dz∗ , q � kT
d

q∗, t � d2

kT
t∗ , p � ρ0νkT

d2
p∗, θ �

√
�T νkT
αT gd3

θ∗, C �
√

�Cνk2T
αCgd3kC

φ∗,

Le � kT
kC

, Pr � ν

kT
, Ra � R2 � gαT �Td3

νkT
, Rc � Rs2 � gαC �Cd3

νkC
, Q � w0d

kT

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6)

We obtain the following non-dimensional equations (after ignoring prime and aster-
isks)

1

Pr

(
∂q
∂t

+ Q
∂q
∂z

+ q.∇q
)

� −∇ p + ∇2 q+ s(z)(Rθ − Rsφ)k, (7)

∇ · q � 0, (8)

∂θ

∂t
+ Q

∂θ

∂z
+q.∇θ � ∇2θ + R fT (z)w, (9)
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Le

(
∂φ

∂t
+ Q

∂φ

∂z
+q.∇φ

)

� ∇2φ + Rs fC (z)w, (10)

with the perturbed boundary conditions

q � (0, 0, 0) z � 0, 1

θ � φ � 0, z � 0, 1

}

(11)

where Pr is Prandtl number, Le is Lewis number, Q is the Peclet number, Ra is the
Rayleigh number for heat, Rc is the solute Rayleigh number, fT (z) � − d

�T
dTb
dz ,

fC (z) � − d
�C

dCb
dz are the non-dimensional temperature and concentration gradients

respectively and s(z) � 1 + εh(z).

3 Linear stability analysis

To proceed with the linear analysis, the nonlinear terms in Eqs. (7–10) are ignored and
assuming the amplitude of the perturbations are infinitely small we take the normal
mode solution in the form

(w, θ , φ) � [W (z), 
(z), �(z)] exp
[
i
(
ax x + ay y

)
+ σ t

]
(12)

where ax and ay are horizontal wave numbers and σ is growth rate. Now the pressure
term from Eq. (7), is removed by applying k · ∇ × ∇× Eq. (7) thus, obtain

(13)

−1

Pr
σ

(
D2 − a2

)
W � −

(
D2 − a2

)2
W +

Q

Pr
D

(
D2 − a2

)
W

+ a2s (z) R
 − a2s (z) Rs�,

σ 
 � R fT (z)W − QD
 +
(
D2 − a2

)

, (14)

Le(σ �) � Rs fC (z)W − LeQD� +
(
D2 − a2

)
� (15)

with boundary conditions

W � DW � 
 � � � 0 at z � 0, 1 (16)

Now, to solve the eigenvalue problem (13–16), we applied the Chebyshev pseudo-
spectral method [35]. We first converted the domain of present problem [0, 1] into
[−1, 1] to match the present domain with that of Chebyshev pseudo-spectral method,
applying the transformation z → 2z1 − 1.Thus, we obtain a system of linearized
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equations

(17)

−1

Pr
σ

(
4D2 − a2

)
W � −

(
4D2 − a2

)2
W +

Q

Pr
D

(
8D2 − 2a2

)
W

+ a2s (z1) R
 − a2s (z1) Rs�

σ 
 � R fT (z1)W − 2QD
 +
(
4D2 − a2

)

, (18)

Le(σ �) � Rs fC (z1)W − 2LeQD� +
(
4D2 − a2

)
� (19)

The boundary conditions are

W � DW � 
 � � � 0 at z � −1, 1 (20)

Now, to solve the above eigenvalue problem Eqs. (17–19), we discretize the set of
Eqs. (17–19) into matrix form as

σ BX � AX , (21)

where, X � [W 
�]T , B �
⎡

⎣

−1
Pr

(
4D2 − a2 I

)
O O

O I O
O O LeI

⎤

⎦,

A �

⎡

⎢
⎢
⎢
⎣

−
(
4D2 − a2 I

)2
+ Q

Pr D
(
8D2 − 2a2 I

)
a2s(z1)RI −a2s(z1)Rs I

R fT (z1)I
(
4D2 − a2 I

)
− 2QD O

fC (z1)Rs I O
(
4D2 − a2 I

)
− 2LeQD

⎤

⎥
⎥
⎥
⎦
.

denoting ‘O’ and ‘I’ by the zero and identity matrices respectively. Using the bound-
ary conditions (20) the equation (21) is now solved by applying QZ-algorithm in
MATLAB. Now, the critical Rayleigh number RaL for linear theory is calculated as,

RaL � min
a >0

R2(a) (22)

The matrix A of Eq. (21) above, in the absence of throughflow and gravity variation
can be easily compared with Eq. (6.15) of Sect. 6.2 in Rionero [36]. So the results
and conditions for the principle of exchange of stability given in Rionero [36] for the
problem heated and salted from below also holds here when throughflow and gravity
fields are absent. In the current problem, the inclusion of throughflow and gravity
variation makes it difficult to find condition for principle of exchange of stability,
however, it has been seen in the literature [see, Hill et al. [37]] that the σ remains
real with the inclusion of throughflow; so one can argue that with the inclusion of
throughflow the condition for principle of exchange of stability will not change and
so the stationary convection will occur for Le < 1 and convection will be oscillatory
for 1 ≤ Le.
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Moreover, in order to obtain the critical Rayleigh number explicitly, we take the
trial function satisfying the rigid-rigid boundary condition (16) in the form, as below

W � A1z
2(1 − z)2, 
 � A2z(1 − z), � � A3z(1 − z) (23)

Substituting Eq. (23) into the Eqs. (13–15) and integrating over [0,1] results in a
homogeneous system, which is solved to find the Rayleigh number given by

Ra �
(

σa2
30 Pr +

a4
30 + 24

)(
2 + a2+σ

6

)

a2F1F2
+
RcF3
F2

(
2 + a2+σ

6

)

(
2 + a2+Leσ

6

) (24)

where F1 � ∫ 1
0 s(z)

(
z − z2

)
dz, F2 � ∫ 1

0 fT (z)z2(1 − z)2dz, F3 �
∫ 1
0 fC (z)z2(1 − z)2dz.

3.1 Marginal stationary state

We put the value of σ � σr + iσi equal to zero, to obtain the Rayleigh number for
stationary mode as

Ra � R2 �
(
a4
30 + 24

)(
2 + a2

6

)

a2F1F2
+
RcF3
F2

(25)

In the limiting case, when Rc � 0, Q � 0, ε � 0 above reduces to

Ra � R2 �
180

(
a4
30 + 24

)(
2 + a2

6

)

a2
(26)

Now, by calculating the critical wave numbers using dR2

da2
� 0, the critical Rayleigh

number comes out to be RaL � 1707.76 which is the result of standard Bénard
problem.

3.2 Marginal oscillatory state

In order to obtain the Rayleigh number for oscillatory mode, we apply the process as
applied by Mahajan and Tripathi [38] to write

Raosc �
(
2 + a2

6

)(
a4
30 + 24

)
− σ 2

i a
2

180 Pr

a2F1F2
+

RcF3
F2

(
2 + a2

6

)2
+

Leσ 2
i

36
(
2 + a2

6

)2
+

Le2σ 2
i

36

(27)
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where oscillatory frequency is given by

σ 2
i � 36

Le2

⎡

⎣

a2RcF3F1
6

(
2 + a2

6

)
(Le − 1)

a2
30 Pr

(
2 + a2

6

)
+ 1

6

(
a4
30 + 24

) −
(

2 +
a2

6

)2
⎤

⎦ (28)

4 Nonlinear stability analysis

To solve the present problem using nonlinear stability analysis, we applied energy
method [21]. Generally, the linear stability analysis gives little information about
the nature of the nonlinear system since any potential growth in nonlinear terms are
not taken into consideration. To analyze the nature of the nonlinear system, finite
perturbations are considered and quadratic terms are not ignored. Now, to initiate the
nonlinear stability analysis, Eq. (7) is multiplied by q, Eq. (9) is multiplied by θ and
Eq. (10) is multiplied by φ, and on integrating the resultant over the periodic cell V
to obtain

1

2 Pr

d

dt
‖q‖2 � −‖∇q‖2 + R〈s(z)θw〉 − Rs〈s(z)φw〉 (29)

1

2

d

dt
‖θ‖2 � −‖∇θ‖2 + R〈 fT (z)θw〉, (30)

Le

2

d

dt
‖φ‖2 � −‖∇φ‖2 + Rs〈 fC (z)wφ〉, (31)

where the symbols ‖·‖ is norm and 〈·〉 is inner product on L2(V ). Now, adding Eq.
(29–31), with the help of coupling parameters (λ1 > 0, λ2 > 0), a functional in terms
of energy E(t) is constructed as

E(t) � 1

2 Pr
‖ q ‖2 +

λ 1

2
‖ θ ‖2 +

λ 2Le

2
‖ φ ‖2, (32)

The progress of E(t) when time grows is given as

dE(t)

dt
� 1

2 Pr

d

dt
‖ q ‖2 +

λ 1

2

d

dt
‖ θ ‖2 +

λ 2Le

2

d

dt
‖φ ‖2 (33)

Substituting Eqs. (29–31) into Eq. (33), to write

d(E)

dt
� I1 − D1, (34)

now we have

I1 � R〈s(z)θw〉 − Rs〈s(z)φ w〉 + λ1R〈 fT (z)wθ〉 + λ2Rs〈 fC (z)wφ〉
D1 � ‖∇q‖2 + λ1‖∇θ ‖2 + λ2‖∇φ ‖2,
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we define now RE in such a way

1

RE
� max

�

I1
D1

, (35)

where � � {
q, θ , φ|q, θ , φ ∈ L2(V )

}
and q, θ , φ satisfy the boundary conditions

(Eq. 11). Now, the Eqs. (34) and (35), may be written as

dE(t)

dt
≤ −D1

(

1 − 1

RE

)

, (36)

If RE > 1, then we may write b1 �
(
1 − 1

RE

)
> 0, and further using Poincare

inequality in Eq.(36), we may write the following energy inequality

E(t) ≤ E(0) exp
(
−2π2k′b1t

)
(37)

where k′ � min
{
1, Pr, 1

Le

}
. Now, Eq. (37) shows exponential decay of energy

function with time for all values of E(0). Now, using calculus of variation we will

solve the Euler–Lagrange equation (35) using the transformation θ � θ̂√
λ1

, φ � φ̂√
λ2
,

to obtain the following system of equations

2 Pr∇2q + Rk
(
Pr s(z) + λ1 fT (z)√

λ1

)

θ − Rsk
(
Pr s(z) − λ2Le−1 fC (z)√

λ2

)

φ � −∇ p

(38)

2∇2θ + R

(
s(z)Pr +λ1 fT (z)√

λ1

)

w � 0, (39)

2∇2φ − LeRs

(
s(z)Pr−λ2Le−1 fC (z)√

λ2

)

w � 0, (40)

denoting p as Lagrange’smultiplier and applying the curl curl onEq. (38) and adopting
the vertical component of resulting equation, to acquire

2 Pr∇4w + ∇2
1 R

(
Pr s(z) + λ1 fT (z)√

λ1

)

θ − ∇2
1 Rs

(
Pr s(z) − λ2Le−1 fC (z)√

λ2

)

φ � 0,

(41)
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Supposing a solution showing a plane tilling in the form (w, θ , φ) �
(W , 
, �)ψ(x , y) that satisfy

(∇2
1 + a2

)
ψ � 0, where ψ denote plane tilling func-

tion. Thus, Eqs. (39–41) can be written as

(42)

2 Pr
(
D2 − a2

)2
W − a2R

(
s (z) Pr +λ1 fT (z)√

λ1

)




+ a2Rs

(
Pr s (z) − λ2Le−1 fC (z)√

λ2

)

� � 0,

2
(
D2 − a2

)

 + R

(
s(z)Pr +λ1 fT (z)√

λ1

)

W � 0, (43)

2
(
D2 − a2

)
� − LeRs

(
s(z)Pr−λ2Le−1 fC (z)√

λ2

)

W � 0, (44)

with Eq. (16) represent an eigenvalue problem. To solve the above eigenvalue prob-
lemEqs. (42–44) with boundary conditions (16), Chebyshev pseudospectral method is
applied in MATLAB (discussed in Sect. 3). Now the critical Rayleigh number of non-
linear theory is obtained on minimizing R2 for fixed wave number a and maximizing
for (λ1 > 0, λ2 > 0 ) thus the critical Rayleigh number RaE

RaE � max
λ1 λ2

min
a

R2(λ1, λ2, a) (45)

Now, in order to solve the eigenvalue problem (42–44) analytically, substitute Eq.
(23) into the Eqs. (42–44) and integrating over [0,1] to obtain a homogeneous system,
which yields to following Rayleigh number

R2 �
8 Pr

(
a4
30 + 24

)(
a2
6 + 2

)2 − 2a2Le
(
a2
6 + 2

)
RcN3N4

2a2N1N2

(
2 + a2

6

) (46)

where,N1 � ∫ 1
0 L1(z)z(1 − z)dz, N2 � ∫ 1

0 L1(z)z2(1 − z)2dz, N3 �
∫ 1
0 L2(z)z(1 − z)dz, N4 � ∫ 1

0 L2(z)z2(1 − z)2dzand L1(z) �
(
s(z)Pr +λ1 fT (z)√

λ1

)
,

L2(z) �
(
s(z)Pr−λ2 Le−1 fC (z)√

λ2

)
.

Now, in the limiting case, when Rc � 0, Q � 0, ε � 0, N1 tends to 1
6

(
Pr +λ1√

λ1

)
and

N2 tends to 1
30

(
Pr +λ1√

λ1

)
thus, Eq. (46) reduces in the following form

R2 �
720 Pr λ1

(
a4
30 + 24

)(
a2
6 + 2

)

a2(Pr +λ1)
2 (47)
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Now, to find the optimum value of R2 corresponding to λ1, we solve dR2

dλ1
� 0

which gives λ1 � Pr and thus Eq.(47) reduces to

R2 �
180

(
a4
30 + 24

)(
a2
6 + 2

)

a2
(48)

The Rayleigh number in Eq. (48), shows the results of nonlinear stability analysis
which is equal to the Rayleigh number obtained from linear analysis [see, Eq. (26)].
Thus, it is also clear that for a constant gravity, in absence of solute and throughflow,
linear analysis accurately encapsulates the physics of convection.

5 Results and discussion section

In the present paper, the effect of throughflow on the double diffusive convection in
a fluid layer with variable gravity field for heated from below and salted from below
system is discussed using linear and nonlinear stability analysis. The linear analysis
is applied with the help of normal mode technique however; the energy method is
conducted to apply nonlinear analysis. The eigenvalue problems obtained from the
linear and nonlinear stability analyses are solved using Chebyshev pseudo-spectral
method. The numerical technique is checked, after solving the present problem where
solute and throughflow are absent [see Table 1]. The present results show a close
concurrence with the previous results.

In the Fig. 1, the variation of critical Rayleigh numbers (RaL , RaE ) against solute
Rayleigh number Rc is shown for the different cases of gravity variation function
h(z) when the fixed parameters are Le � 10, Pr � 10, Q � 0.5, ε � 0.5. It is
clear that an increase in value of the solute Rayleigh number Rc increases the critical
Rayleigh number of linear theory (RaL) however, the critical Rayleigh number of
nonlinear theory (RaE ) remains approximately unchanged for all the assumed cases
of gravity variation functions h(z).Thus, an advancement in Rc values widens the
region of subcritical instability.

Figure 2 express the variation of (RaL , RaE ) with gravity variation parameter ε.
It is deduced that the region of subcritical instability widens with the advancement
in gravity variation parameter ε for the case of h(z) � −z, −z2 however, there is
unnoticeable changes in the region of subcritical instability on advancing in gravity
variation parameter ε for h(z) � z. It is also very clear that for h(z) � z, increase
in the values of ε destabilizes the system, since an increase in the ε value reveals an
increase in the gravity field. On the other hand, on increasing the value of ε increases
the (RaL , RaE ) values for h(z) � −z, −z2 and an increase in the critical Rayleigh
number values are sufficiently large for h(z) � −z when compared with the other
form of h(z). Thus, h(z) � −z is the most stable profile of gravity among the other
gravity profiles that we have considered.

Figure 3 gives a visual representation of linear and nonlinear stability thresholds
against Q for the different cases of h(z) and it is observed that direction of through-
flow has considerable effect on the stability of the system. The positive value of Q
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Fig. 1 Critical Rayleigh numbers (RaL , RaE ) are displayed against Rc. The fixed parameters are Le � 10,
Pr � 10, Q � 0.5, ε � 0.5, for a h(z) � z, b h(z) � −z, c h(z) � −z2

Fig. 2 Critical Rayleigh numbers (RaL , RaE ) are displayed against ε for the different cases of gravity
variation function h(z), for a h(z) � z, b h(z) � −z, c h(z) � −z2. The fixed parameters are Le � 10,
Pr � 10, Q � 0.5, Rc � 20
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Fig. 3 Critical Rayleigh numbers (RaL , RaE ) are displayed against throughflow parameter Q. The fixed
parameters are Le � 10, Pr � 10, Rc � 20, ε � 0.5, for a h(z) � z , b h(z) � −z, c h(z) � −z2

corresponds to the throughflow in the upward direction while, the negative value of Q
corresponds the throughflow in downward direction. And, for h(z) � z, the convec-
tion occurs fast with increasing in Q value in the range Q ∈ [−2, 0], this is because
of the presence of downward throughflow, the highest value of temperature differ-
ence stagnate in that part of medium where the vertical perturbation velocity takes
its largest value and thus, the rate at which energy is supplied to the disturbances is
increased, and this leads to the destabilization of the system however, advancing in Q
values delay the occurrence of convection in the range Q ∈ [0.5, 2], this is because
the upward throughflow shifts the thermal gradients to the temperature boundary layer
at the boundary towards which throughflow is directed and thus, large value of crit-
ical Rayleigh number is required to initiate the convection. On the other hand, for
h(z) � −z, −z2 the onset of convection hastens with the increase in Q in the range
Q ∈ [−2, −0.5] however, increasing in Q values delaying the onset of convection
in the range Q ∈ [0, 2]. From the Fig. 3, it is also noticed that for h(z) � z, the
linear and nonlinear stability thresholds have less agreement for negative value of
throughflow parameter Q in comparison of positive value of throughflow parameter
Q. On the other hand, for the function h(z) � −z, −z2, the thresholds have less
agreement for positive values of throughflow parameter Q in comparison of negative
values of throughflow parameter Q. This pattern of results is approximately similar to
the nature of throughflow in a porous medium [39]. As we have explained above that
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Fig. 4 Critical Rayleigh numbers (RaL , RaE ) are displayed against Lewis number Le. The fixed parameters
are Q � 0.5 , Pr � 10 , ε � 0.5, for a h(z) � z, b h(z) � −z, c h(z) � −z2

for increasing upward throughflow the convection is delayed and for increasing down-
ward throughflow the onset of convection hastens but it is very interesting to notice
that the effect of gravity field on the system is dominant to the effect of throughflow,
which is visible in Fig. 3 i.e. on advancing the gravity field, leads to hastens the onset
of convection for the small upward throughflow Q ∈ [0, 0.5]. However, for the case
when gravity field decreases with height, leads to delay the convection in the range
Q ∈ [−0.5, 0](small downward throughflow). The reader may refer the work [40,
41], for more studies related to throughflow.

Figure 4 displays the variation of critical Rayleigh numbers against Lewis number
Le for the different cases of gravity variation function h(z). For each examined cases
of h(z), increasing the Lewis number rapid the onset of convection however, the
energy stability threshold remains constant with increasing Lewis number. It is very
interesting to note that increasing the Rc values delays the onset of convection for
Le ≤ 20 but, for a value of Lewis number Le larger than a certain value, the linear
instability thresholds coincide for the different values of Rc.

6 Conclusions

In the fluid layer, our proposal is to apply the linear and nonlinear stability analysis for
the double diffusive convection problem with the effect of through flow and variable
gravity field. The linear theory is performed using normal mode technique, how-
ever nonlinear stability analysis is performed using energy method. The eigenvalue
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problems obtained from the linear and nonlinear theories are solved using Cheby-
shev pseudo-spectral method in MATLAB. A comparison is made between linear and
nonlinear results. The following observations are found from the investigation of the
present problem. The solute Rayleigh number Rc is found to have stabilizing impact
on the system for Le ≤ 20. The system is most stable for gravity variation function
h(z) � −z while the most unstable for h(z) � z. For h(z) � z, the thresholds have
good agreement in the neighborhood of Q � 0.5, however, for h(z) � −z, −z2,
the thresholds have good agreement in the neighborhood of Q � −0.5. The linear
instability thresholds coincide for the different values of solute Rayleigh number Rc
at Lewis number Le values greater than a fixed value however, the nonlinear stability
thresholds remains constant with the increase in Lewis number.
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