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Abstract
Let G be a finite group. A subgroup H of a group G is called pronormal in G if the
subgroups H and Hg are conjugate in 〈H , Hg〉 for each g ∈ G. A group G is said
to be a PRN-group if every minimal subgroup of G or order 4 is pronormal in G. In
this paper, we characterize groups G such that G is a non-PRN-group of even order
in which every maximal subgroup of even order is a PRN-group, and come to that
such groups are solvable, have orders divisible by at most 3 distinct primes. And some
additional structural details are provided.

Keywords Finite groups · Pronormal subgroups · Minimal subgroups · Maximal
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1 Introduction

All groups considered in this paper are finite. The ways in which minimal subgroups
can be embedded in finite groups have been investigated by many scholars. For exam-
ple, a famous result due to Itô [6, III, 5.3 Satz] proved that a group G of odd order is
nilpotent if every subgroup of G of prime order lies in the center of G. An extension
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of Itô’s result is the following statement [6, IV, 5.5 Satz]: Let p be a prime dividing the
order of a group G. If every element of G of order p lies in Z(G) and, when p = 2,
every element of G of order 4 also lies in Z(G), then G is p-nilpotent. A group is
called a PN-group if its minimal subgroups are normal. In 1970, Buckley [3, Theorem
3] proved that a PN-group of odd order is supersolvable. In 1980, the structure of a
non-PN-group whose proper subgroups are PN-groups was described by Sastry [9].

Recall that a subgroup H of a group G is called pronormal in G if for each g ∈ G,
the subgroups H and Hg are conjugate in 〈H , Hg〉. This concept was introduced by
P. Hall in the 1960’s and arose naturally in the investigation of important subgroups of
finite solvable groups like Sylow subgroups, Hall subgroups, system normalizers and
Carter subgroups. Maximal subgroups, Hall subgroups of solvable normal subgroups
and Sylow subgroups of normal subgroups are examples of pronormal subgroups.
The pronormality is one of the most significant properties pertaining to subgroups of
groups andmany researchers have studied it extensively. For example, Peng [7] proved
that a finite group G is a solvable T-group (solvable groups for which normality is a
transitive relation) if and only if all prime power order subgroups of G are pronormal
in G. In 1988, Asaad [1] called that a group G is an (A)-group if every subgroup of G
of prime order is pronormal in G and either the Sylow 2-subgroups of G are abelian or
every cyclic subgroup ofG of order 4 is pronormal inG, and investigated finite groups
all of whose maximal subgroups are (A)-groups. In 2011, Shen and Shi [11] defined
a group G as a PRN-group if every cyclic subgroup of G of prime order or order 4
is pronormal in G. Then, they classified minimal non-PRN-groups (non-PRN-groups
all of whose proper subgroups are PRN-groups).

In this paper, we investigate the finite groups all of whose maximal subgroups of
even order are PRN-groups. More precisely, we prove the following theorem:

Main Theorem Let G be a non-PRN-group of even order. Suppose that all maximal
subgroups of even order are PRN-groups. Then G is solvable with |π(G)| ≤ 3, and
one of the following is true:

(a) G is a minimal non-PRN-group;
(b) G = C2 × M, where M is a minimal non-PRN-group of odd order;
(c) G = (C2 × R) � Q, where Q is a normal elementary abelian Sylow q-subgroup

of G with CQ(P) = 1, R is a cyclic Sylow r-subgroup of G and RQ is a minimal
non-PRN-group.

The notation and terminology used in this paper are standard, as in [4,8]. In addition,
π(G) denotes the set of primes dividing |G|; A � B or B � A denotes a semidirect
product with a normal subgroup A and a subgroup B. The expression Cn denotes a
cyclic group of order n. If G is a p-group, then �n(G) = 〈x ∈ G

∣
∣x pn = 1〉.

2 Preliminaries

In this section we show some lemmas, which are required in the proofs of our main
results.
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Lemma 2.1 [4, Lemma 6.3] Let H be a pronormal subgroup of a group G. Then the
following statements are true:

(1) H is pronormal in K for every subgroup K of G with H ≤ K.
(2) Let N be a normal subgroup of G. Then HN/N is pronormal in G/N.
(3) If H is subnormal in G, then H is normal in G.

Lemma 2.2 [11, Lemma 2.4] Let A and B be subgroups of a group G. Suppose that
G = AB, H is a pronormal subgroup of B and H is normalized by A, then H is
pronormal in G.

Lemma 2.3 [2, Theorem 3.2] Every PRN-group is supersolvable.

Lemma 2.4 [11, Theorem 3.2] If G is a minimal non-PRN-group, then G is solvable
and |π(G)| ≤ 2.

Lemma 2.5 [11, Lemma 2.7] Let G be a PRN-group. If X is a subgroup of G of order
q, where q is the largest prime dividing the order of G, then X is normal in G.

A group is called a minimal simple group if it is a nonabelian simple group and
every proper subgroup of it is solvable. Thompson in 1968 classified these groups:

Lemma 2.6 [12, Corollary 1] Every minimal simple group is isomorphic to one of the
following groups:

(i) PSL(3, 3);
(ii) The Suzuki group Sz(2 f ), where f is an odd prime;
(iii) PSL(2, p), where p is a prime with p > 3 and p2 �≡ 1(mod 5);
(iv) PSL(2, 2 f ), where f is a prime;
(v) PSL(2, 3 f ), where f is an odd prime.

Lemma 2.7 [10, Lemma 2.10] Suppose that all cyclic subgroups of a groupG of order
p are normal in G for a fixed prime p. If |Z(G)|p �= 1, then all elements of order p
of G are in Z(G).

Lemma 2.8 [5, Theorem 10.1.4] If a group G has a fixed-point-free automorphism of
order 2, then G is abelian.

3 The proof of main theorem

The proof of themain theoremwill be finished by showing the following theorems.
We first prove the following result for a group to be solvable.

Theorem 3.1 Let G be a group of even order. Suppose that all maximal subgroups of
G of even order are PRN-groups. Then G is solvable.

Proof Suppose that G is not solvable. Then G cannot be a minimal non-PRN-group
by Lemma 2.4. Thus there exists a maximal subgroup M of odd order in G such that
M is a non-PRN-group. Hence 2 /∈ π(�(G)), where �(G) is the Frattini subgroup
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of G. By the Feit-Thompson Theorem on the solvability of a group of odd order, we
can see that M is solvable. Then Lemma 2.3 and our hypothesis are combined to give
that all proper subgroups of G are solvable and hence G/�(G) is a minimal simple
group. We split the proof into the following steps:

(1) �(G) = Z(G)

Let M be a maximal subgroup of G containing a Sylow 2-subgroup of G. It is
clear from our hypothesis that M is a PRN-group. Let P ∈ Sylp(�(G)), where
p ∈ π(�(G)). Then every subgroup H of P of order p is pronormal in Mg

for all g ∈ G. Lemma 2.1 and P � G combine to give that H is normal in
G as 〈M, Mg

∣
∣g ∈ G〉 = G. Let P1 ∈ Sylp(G). Then H ≤ Z(P1) and so

P1 ≤ CG(H) � G. By the simplicity of G/�(G), we conclude that H lies in the
center Z(G). Put K = PT , where T ∈ Syl2(G). By Itô’s lemma [5, IV, 5.5 Staz],
we can see that K is p-nilpotent, which implies T ≤ CG(P) � G. Again by the
simplicity ofG/�(G), we get that P ≤ Z(G) and so�(G) ≤ Z(G). On the other
hand, Z(G) ≤ �(G). Hence �(G) = Z(G).

(2) �(G) = 1, i.e., G is a minimal simple group.
Applying Statement (1), we have that G/Z(G) is a minimal simple group and
so a quasisimple group with the center of odd order. By the table on the Schur
multipliers of the known simple groups (see [5, p. 302]), we get that the Schur
multiplier of each of the minimal simple groups is a 2-group. Hence �(G) =
Z(G) = 1.

(3) A contradiction.
Now, we assert that there is no simple group listed in Lemma 2.6 isomorphic to
G. Since each of PSL(2, p), PSL(2, 3 f ) and PSL(3, 3) contains a subgroup
isomorphic to A4, the alternating group of degree 4. By our hypothesis A4 is a
PRN-group. It follows from Lemma 2.3 that A4 is supersolvable, it is impossible.
Thus G can not be any one of PSL(2, p), PSL(2, 3 f ) and PSL(3, 3). If G is
isomorphic to PSL(2, 2 f ) or Sz(2 f ), then G is a Zassenhaus group of odd degree
and the stabilizer of a point is a Frobenius group with kernel a 2-group. This
means that G has a non-supersolvable subgroup of even order, our hypothesis and
Lemma2.3 provide a contradiction. ThereforeG can not be any one of PSL(2, 2 f )

or Sz(2 f ) as well. �	
We are now ready to prove the upper bound of |π(G)|.

Theorem 3.2 Let G be a non-PRN-group of even order. If all maximal subgroups of
G of even order are PRN-groups, then |π(G)| ≤ 3.

Proof Since G is solvable by Theorem 3.1, we can see that G has a Sylow system
{P1, P2, . . . , Pr } with 2 = p1 < p2 < · · · < pr , where pi is the prime dividing
|Pi |. Suppose that r ≥ 4. By our hypothesis and Lemma 2.4, there exists a maximal
subgroup M ofG such that M is not a PRN-group. Furthermore, M is a Hall subgroup
of G of odd order. Without loss of generality, we can assume that M = P2P3...Pr .
Since M is not a PRN-group, there is a minimal subgroup A of M such that A is
not a pronomal subgroup of M . If A ≤ Pr , then P1Pi Pr is a proper subgroup of G
of even order from our assumption for each i ∈ {2, 3, . . . , r − 1}. Thus, P1Pi Pr is
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a PRN-group. In view of Lemma 2.5, we get that A is normal in P1Pi Pr and so is
normal in M , a contradiction. Hence we may assume that A ≤ Pk for some fixed
k ∈ {1, 2, . . . , r − 1}.

We claim that k = 2. Suppose that k > 2. Set

U =
k

∏

i=2

Pi , V =
r

∏

j=k

Pj .

We have M = UV with A ≤ V < M . Obviously, both P1U and P1V are proper
subgroups of G of even order and hence are PRN-groups. It follows from Lemmas
2.1 and 2.5 that A is pronormal in V , and is normal in U . Lemma 2.2 yields that A is
pronormal in M , this contradiction shows k = 2.

It is clear that P1P2Pi is a PRN-group by hypothesis for each i ∈ {3, .., r}. From
Lemma 2.3, P1P2Pi is supersolvable and so Pi is normal in P1P2Pi , which implies
that A normalizes Pi . If A < P2, then B = A

∏r
i=3 Pi is a proper subgroup of M

and M = P2B. On the one hand, A is a Sylow subgroup of B and so A is pronormal
in B. On the other hand, since P1P2 is a PRN-group, P2 normalizes A by Lemma
2.5. Thus M = NM (A)B and we get that A is pronormal in M by Lemma 2.2, a
contradiction. We conclude that A = P2, which implies that A is pronormal in G.
This final contradiction completes the proof of the theorem. �	

It can be verified that either G is a minimal non-PRN-group or G has a normal
2-complement, as stated in the following result.

Theorem 3.3 Let G be a non-PRN-group of even order. Suppose that all maximal
subgroups of G of even order are PRN-groups. Then one of the following holds:

(1) G is a minimal non-PRN-group;
(2) G = C2HO2′(G), where NG(C2) = C2 × H and HO2′(G) is a 2-complement.

Proof Suppose that G is not a minimal non-PRN-group. Then there exists a maximal
subgroup M of G such that M is not a PRN-group. By hypothesis, M is a non-abelian
group of odd order. Furthermore, as G is solvable by Theorem 3.1, M is a Hall 2′-
subgroup of G. Now, let P be a Sylow 2-subgroup of G. It clear that G = PM .

Put Ḡ = G/O2′(G). The solvability of G yields that O2(Ḡ) �= 1. We get that
O2(Ḡ) = P̄ by comparing the orders. Thus,

Ḡ = NḠ(P̄) = NG(P)O2′(G)
/

O2′(G).

It follows that G = NG(P)O2′(G). Let A be a subgroup of P of order 2. If G =
NG(P), then PC is a proper subgroup of G for every cyclic subgroup C of M . By
hypothesis, PC is a PRN-group. Then A is pronormal in PC and so is normal in
PC by Lemma 2.1 (3). This implies that M normalizes A. Therefore G = AM since
M is a maximal subgroup of G. So |P| = |A| = 2 and hence M is the normal 2-
complement, as desired. Hence we may assume that NG(P) < G. Then from our
hypothesis A is pronormal in NG(P) and so is normal in NG(P) by Lemma 2.1 (3)
again. Let H be a Hall 2′-subgroup of NG(P). Then AH is a subgroup of G. Lemma
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2.3 and G = P(HO2′(G)) combine to give M = HO2′(G). Moreover, we can see
that AHO2′(G) = A(HO2′(G)) = AM > M , which implies that G = AM . It
follows that P = A. This complets our proof. �	

If π(G) = {2, q}, then we have the following result.

Theorem 3.4 Let G = PQ be a non-PRN-group, where P is a subgroup of order 2
and Q is a Sylow q-subgroup of G. Suppose that all maximal subgroups of G of even
order are PRN-groups. Then one of the following holds:

(1) G = P × Q and Q is a minimal non-PRN-group;
(2) Q is a normal abelian subgroup of G.

Proof If G is nilpotent, then PX is a PRN-group for every maximal subgroup X of Q.
Our hypothesis combinedwith Lemma 2.2 yields that Q is a minimal non-PRN-group.
Now we assume that G is not nilpotent.

We first claim that G is supersolvable. By Theorem 3.3, we have that Q is normal
in G. We only need to show that every chief factor of G below Q is cyclic in order to
conclude that G is supersolvable. Let K/L be a chief factor of G such that K ≤ Q.
Then K/L is an elementary abelian q-group. By [6, VI, 5.4 Satz], we can see that

F(G) ≤ CG(K/L).

Then the automorphism group induced by G on K/L is of order 2. In view of [13,
Chapter 1, Lemma 1.3], we get that K/L is cyclic of order p, as claimed.

It is clear that P acts on Q and Q/�(Q). By the completed reducible theorem,
Q/�(Q) = V1/�(Q)×V2/�(Q)×· · ·×Vd/�(Q), every Vi/�(Q) is P-invariant
and is of order q for any i ∈ {1, 2, . . . , d}. Put

Qi =
∏

j �=i

V j .

Then Qi is a maximal subgroup of Q and P-invariant. By hypothesis, PQi is a
PRN-group and every subgroup of Qi of order q is normal in PQi by Lemma 2.1.

Suppose that CQk (P) �= 1 for some k. Let x be an element of CQk (P) of order q,
then x ∈ Z(PQk). It follows from Lemma 2.7 all elements of order q of Qk are in
Z(PQk). Applying the Itô’s lemma [6, IV, 5.5 Staz], we obtain that PQk = P × Qk

since Qk is P-invariant. In particular, [P,�(Q)] ≤ [P, Qk] = 1 and so �(Q) ≤
CQ j (P) for any j ∈ {1, 2, . . . , d}. Again by Lemma 2.7, we conclude that [P, Q] = 1
and so G is nilpotent, contrary to our assumption. Hence CQi (P) = 1 for all i .

IfCQ(P) �= 1, thenCQ(P) has order q asCQ(P)∩Qi = 1. Set V = CQ(P)�(Q).
Then V is P-invariant and V < Q, which implies that PV is a PRN-group by
our hypothesis. By a similar argument, we can see that [P,�(Q)] = 1. However,
CQi (P) = 1, a contradiction. Hence CQ(P) = 1. Lemma 2.8 yields that Q is an
abelian group. �	

Now we suppose that π(G) = {2, r , q}, then we have the following theorem.
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Theorem 3.5 Let G = PM be a non-PRN-group of even order and M = RQ, where
P is a subgroup of order 2 and R and Q are a Sylow r-subgroup and Sylow q-subgroup
of G, respectively. Suppose that all maximal subgroups of G of even order are PRN-
groups. Then one of the following holds:

(1) G is a minimal non-PRN-group;
(2) G = P × M and M is a minimal non-PRN-group;
(3) G = (P × R) � Q and M is a minimal non-PRN-group, where R is cyclic and Q

is normal elementary abelian with CQ(P) = 1.

Proof Since P is a Sylow 2-subgroup of G of order 2, we conclude that G is 2-
nilpotent and M is the normal 2-complement. Also, we may choose {P, R, Q} as a
Sylow system from Theorem 3.1.

Suppose that CM (P) = 1. Then P as an automorphism of M of order 2 is fixed-
point-free. Lemma 2.8 means that M is abelian and so is a PRN-group. Therefore G
is a minimal non-PRN-group.

Hence we may assume that CM (P) �= 1. Since PR is a PRN-group, we get that
every subgroup of R of order r is pronormal in PR and so is normal in PR by Lemma
2.1. If |CM (P)| has divisor r , then from Lemma 2.7 every element of R of order r
lies in Z(PR). The Itô’s lemma [6, IV, 5.5 Staz] implies that PR = P × R and so
CR(P) = R. By the same reason, if q

∣
∣|CM (P)|, then PQ = P×Q. Thus, if rq divides

|CM (P)|, then we can conclude that G = P × M . Therefore PH is a PRN-group for
each proper subgroup H of M . It follows that M is a minimal non-PRN-group, which
yields (2).

Now we may assume without loss of generality that CR(P) = R and CQ(P) = 1.
Then

NG(P) = CG(P) = PR

since P is of order 2. Employing the Frattini argument, G = NG(P)PG = PRPG

and so Q ≤ PG . On the other hand, PG = 〈Pg
∣
∣g ∈ G〉 = 〈Px

∣
∣x ∈ Q〉 ≤ PQ. This

implies that PG = PQ. It follows that Q is normal in G.
Suppose that R is not cyclic. Then R possesses at least two distinct maximal

subgroups R1 and R2. By hypothesis, both K1 = PR1Q and K2 = PR2Q are
PRN-groups. It follows from Lemma 2.1 that every subgroup of Q of order q is nor-
mal in K1 and K2 and hence normal in G. Next, for each subgroup A of R of order
r , we have that PAQ is a PRN-group by our hypothesis. Since G = (PAQ)R and
A�R, we can see that A is pronormal inG by Lemma 2.2. Finally, P is also pronomal
in G. Consequently, G would be a PRN-group, which is a contradiction. Hence R is
cyclic.

By Lemma 2.8 again, Q is abelian. If�1(Q) < Q, then PR�1(Q) is a PRN-group
by hypothesis. Thus all minimal subgroups of Q are normal in PR�1(Q) and also
normal in G. Since M is not a PRN-group, there exists a subgroup A of R of order r
such that A is not pronormal in M and so |R| > r . Set H = PAQ. By hypotehsis, A is
pronormal in H . By Lemma 2.2, A is pronormal in (PAQ)R = G, this contradiction
forces that Q is elementary abelian.

We claim thatM is a minimal non-PRN-group. In fact, let L be amaximal subgroup
of M . If |M : L| is a power of r , then Q ≤ L and so L �G. Suppose that |M : L| is a
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power of q. Applying Lemma 2.1 (3), we conclude that P normalizes every subgroup
of Q of order q since PQ is a PRN-group and Q is elementary abelian, which means
that P normalizes L . In both cases, we have that PL is a PRN-group by hypothesis.
Consequently, L is a PRN-group, which completes the proof of the theorem. �	

The following corollary follows directly from the above results.

Corollary 3.6 Let G be a non-PRN-group of even order. Suppose that all maximal
subgroups of G of even order are PRN-groups. If |π(G)| ≥ 4, then G is a minimal
non-PRN-group.
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