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Abstract
In this paper, we initiate the study of impact of the existence of a unit vector ν,
called a concurrent-recurrent vector field, on the geometry of a Riemannian manifold.
Some examples of these vector fields are provided on Riemannian manifolds, and
basic geometric properties of these vector fields are derived. Next, we characterize
Ricci solitons on 3-dimensional Riemannian manifolds and gradient Ricci almost
solitons on a Riemannian manifold (of dimension n) admitting a concurrent-recurrent
vector field. In particular, it is proved that the Riemannian 3-manifold equipped with a
concurrent-recurrent vector field is of constant negative curvature−α2 when its metric
is a Ricci soliton. Further, it has been shown that a Riemannian manifold admitting a
concurrent-recurrent vector field, whose metric is a gradient Ricci almost soliton, is
Einstein.

Keywords Conformal vector field · Ricci soliton · Ricci almost soliton · Gradient
Ricci almost soliton

Mathematics Subject Classification 53C25 · 53C44 · 53C21

1 Introduction

Ricci solitons have received a lot of attention by many geometers, mainly due to the
intense works of Hamilton (and also Perelman). In the recent years, Ricci solitons
are of much interest in the field of differential geometry and geometric analysis as it
naturally extends Einstein metric (that is, the Ricci tensor Ric is a constant multiple of
the metric tensor g). Thus, it becomes an important issue to investigate Ricci solitons
and to classify them geometrically.
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ARiemannianmetric g is said to be aRicci soliton if there exist a smooth vector field
X (called soliton vector field) and a scalar λ ∈ R (called soliton constant) satisfying

£X g + 2Ric + 2λg = 0, (1)

where £ denotes the Lie-derivative. Thus, we may regard Ricci soliton as the gen-
eralization of the Einstein metric. The metric g satisfying (1) is called Ricci almost
soliton when λ is a smooth function (i.e., λ ∈ C∞(M)). We say that the Ricci soliton
is steady, expanding or shrinking depending on the value of soliton constant as λ = 0,
λ > 0 or λ < 0. Given a Riemannian manifold (M, g), the Hamilton’s Ricci flow
(see [22]) is given by ∂

∂t g(t) = −2S(t) with the initial data g(0) = g. The study of
Ricci solitons is interesting due to the fact that they are self-similar solutions to the
Hamilton’s Ricci flow. If X = grad γ , where grad is the gradient operator and γ is a
differentiable function, then the metric g is called a gradient Ricci soliton and so (1)
takes the form

Hessγ + Ric + λg = 0, (2)

where Hessγ is the Hessian of a smooth function γ which is a symmetric bilinear
form defined by

Hessγ (Y , Z) = g(∇Y grad γ, Z).

The metric g satisfying (2) is called gradient Ricci almost soliton when λ ∈ C∞(M).
A Ricci soliton (resp. gradient Ricci soliton) is said to be trivial when the soliton vector
field X is Killing (resp. γ is constant) or equivalently the metric is Einstein.

Recently there are many interesting results concerning the classification of Ricci
solitons on Riemannian manifolds with certain geometric conditions. In particular,
Barros and Ribeiro [1] proved that if the metric of a compact Riemannian manifold
is a Ricci almost soliton in which the soliton vector field is a nontrivial conformal
vector field then the manifold is isometric to Euclidean sphere. In [4], Chen and
Deshmukh classified Ricci solitons for which the potential field is a concurrent field.
Afterwards, Diógenes et al. [16] investigated gradient Ricci solitons on a complete
Riemannian manifold admitting a nonparallel closed conformal vector field. Further,
Sharma [28] undertook the study of gradient Ricci solitons on a Riemannian manifold
having constant scalar curvature and admitting a non-homothetic conformal vector
field which leaves the soliton field invariant. More recently, Silva Filho in [18] (resp.
in [19]) investigated Ricci solitons on a Riemannian manifold admitting a nonparallel
closed homothetic vector filed (resp. nonparallel closed conformal vector field). For
the studies of Ricci solitons on other classes of Riemannian manifolds, we refer the
reader to [7–9,21,23–25,29–31].

Before to proceed, we shall recall some basic well-known vector fields on a Rie-
mannian manifold (M, g). A smooth vector field ν in M is said to be conformal if
there is a smooth function ψ (called conformal coefficient) on M such that

£νg = 2ψg. (3)
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As a particular case, ν is called homothetic (resp. Killing) when the conformal coeffi-
cient ψ is constant (resp. ψ = 0). If ν is closed (i.e., it dual 1-form ν� is closed), then
(3) takes the form

∇Y ν = ψY , (4)

for all vector field Y , where ∇ indicates the Levi–Civita connection on M . If ψ is
constant (resp. ψ = 0) satisfying the aforementioned equation, then ν is called closed
homothetic vector field (resp.parallel). Particularly, ν is called concurrentwhenψ = 1
in Eq. (4). For more information regarding this, we recommend [3,6,11,12]. On the
other hand, ν is called recurrent vector field if

∇ν = ν� ⊗ ν, (5)

where ν� is the 1-form dual to ν. Details and results for Riemannian manifold carrying
recurrent vector field can be found in [5,20]. At this time, one may tempt to consider
a vector field satisfying the following equation

∇Y ν = αY + βν�(Y )ν, α, β ∈ R, (6)

which generalizes both closed homothetic vector field (and so concurrent vector field),
and recurrent vector field. In such a case, we see that £νg = 2α id + 2βν� ⊗ ν�. If ν

is a unit vector field, then one may see that (£νg)(ν, ν) = 0 = 2(α +β), and (6) turns
into

∇Y ν = α{Y − ν�(Y )ν}, (7)

for any Y ∈ X(M) and a constant α ∈ R. In this article, a unit non-parallel vector
field ν satisfying the above equation is called a concurrent-recurrent vector field. As
we shall see later (see Theorem 3), any warped product I × f (t) F of an open interval
I ⊆ R and a Riemannian manifold F with the warping function f (t) = eαt admits
concurrent-recurrent vector field (i.e., a vector field satisfying (7)).

Presence of special vector fields on a Riemannian manifold form a significant
portion of the differential geometry of Riemannian manifolds. These vector fields are
roughly divided in two classes, one class containing those vector fields whose integral
curves are geodesics such as Killing vector fields of constant length, geodesic vector
fields (cf. [13]) and other class containing those vector fields whose integral curves
are conformal geodesics such as conformal vector fields, generalized geodesic vector
fields (cf. [2,10,14,15]). In this sense concurrent-recurrent vector field introduced in
this paper belongs to the class ofKilling vector fields and therefore it has scope of future
developments. It is interesting to remark here that the Riemannian manifold admitting
concurrent-recurrent vector field is not compact because we have div ν = (n − 1)α
and by Stokes’s theorem we get α = 0 for n > 1 a contradiction.

Motivated by the study of Ricci solitons and gradient Ricci solitons as mentioned
previously, in this paper, we shall examine the geometry of Ricci (almost) solitons on
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a Riemannian manifold carrying a concurrent-recurrent vector field. Our first result in
this direction is:

Theorem 1 If the metric of a Riemannian manifold admitting a concurrent-recurrent
vector field is a Ricci soliton, then the soliton is expanding with soliton constant
λ = (n − 1)α2.

In the sequel, we characterize the Riemannian 3-manifolds admitting a concurrent-
recurrent vector field when its metric is a Ricci soliton.

Corollary 1 If themetric of a Riemannian 3-manifold admitting a concurrent-recurrent
vector field is a Ricci soliton, then the manifold is of constant negative curvature−α2.

On the other hand, we also characterize Riemannianmanifolds admitting a concurrent-
recurrent vector field whose metric is a gradient Ricci almost soliton.

Theorem 2 If the metric of a Riemannian manifold admitting a concurrent-recurrent
vector field is a gradient Ricci almost soliton, then it is Einstein.

As a consequence, we prove:

Corollary 2 If the metric of a Riemannian 3-manifold M endowed with a concurrent-
recurrent vector field is a gradient Ricci almost soliton, then M is of constant negative
curvature −α2.

Corollary 3 Let M = I × f F with the warping function f (t) = eαt , where α ∈ R, I is
an open interval in R and F is a Riemannian 2-manifold. If the metric of M is a Ricci
soliton (or gradient Ricci almost soliton), then the manifold is of constant negative
curvature −α2.

2 Background and key results

Let ν be a concurrent-recurrent vector field. Thus, from (7) we find ∇νν = 0. Thus,
we may see that the integral curves of ν are geodesics in M and so the distribution
D = span{ν} is a totally geodesic foliation, i.e., D is an integrable distribution whose
leaves are totally geodesic in M .

Now, we extend ν = e1 to an orthonormal frame e1, e2, . . . , en on M . Let us define
the connection forms ω

j
i , (1 ≤ i, j ≤ n) as given below

∇Y ei =
n∑

j=1

ω
j
i (Y )e j , 1 ≤ i ≤ n.

The above equation together with (7) shows that

ω
j
1(ek) = αδk j , 2 ≤ k, j ≤ n. (8)

It follows from (8) that the distribution D⊥ = span{e2, . . . , en} is integrable whose
leaves are totally umbilical hypersurfaces of M with constant mean curvature, i.e., D⊥
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is a spherical foliation. Using Corollary 1 of [27], we see that M is isometric to the
warped product I× f F , where F is a Riemannian (n−1)-manifold and ν = ∂

∂t , t ∈ I .
Conversely, suppose that M = I × f F with the metric given by

g = dt2 + f (t)2gF ,

where gF denotes the metric of F . Let f (t) = eαt and ν = ∂
∂t . By Proposition 7.35

of [26], one can easily verify that (7) holds and so ν is a concurrent-recurrent vector
field. The above discussion can be summarized in the following way:

Theorem 3 A Riemannian n-manifold admitting a concurrent-recurrent vector field
is locally isometric to the warped product I × f F, where I ⊆ R is an open interval
and F is a Riemannian (n − 1)-manifold. Conversely, the warped product I × f F
with the warping function f (t) = eαt admits a concurrent-recurrent vector field.

2.1 Some examples

Now, we present few examples of Riemannian manifolds admitting a concurrent-
recurrent vector field. Also, we provide Ricci soliton on a Riemannian manifold
admitting a concurrent-recurrent vector field.

Example 1 Consider the manifold M = R
n−1 × R+ with coordinates (xi , z) where

i = 1, . . . , n − 1. Let us define the Riemannian metric g on M by

g = 1

(αz)2

n−1∑

i=1

(dxi )2 + 1

(αz)2
dz2, (9)

where α = const . 	= 0. Now using Koszul’s formula (or Christoffel symbols), the
non-zero components of Levi–Civita connection is given by

∇ ∂

∂xi

∂

∂z
= −1

z

∂

∂xi
,

∇ ∂

∂xi

∂

∂xi
= 1

z

∂

∂z
,

∇ ∂
∂z

∂

∂z
= −1

z

∂

∂z
.

Let ν = −αz ∂
∂z . Then from above we can easily verify

∇Y ν = α{Y − ν�(Y )ν},

for any Y ∈ X(M). Thus, the vector field ν = −αz ∂
∂z is a concurrent-recurrent vector

field.
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Example 2 Let g be the Riemannian metric on M = R
2 × R+ ⊂ R

3 given by

(gi j ) =
⎛

⎝
e2αz + x2 0 x

0 e2αz 0
x 0 1

⎞

⎠ ,

where α = const . 	= 0. Using Koszul’s formula, the components of Levi–Civita
connection is given by

∇ ∂
∂x

∂

∂x
= αx

∂

∂x
− (αx2 + αe2αz + 1)

∂

∂z
, ∇ ∂

∂x

∂

∂ y
= 0, ∇ ∂

∂x

∂

∂z
= α

∂

∂x
− αx

∂

∂z
,

∇ ∂
∂ y

∂

∂x
= 0, ∇ ∂

∂ y

∂

∂ y
= αx

∂

∂x
− α(x2 + e2αz)

∂

∂z
, ∇ ∂

∂ y

∂

∂z
= α

∂

∂ y
,

∇ ∂
∂z

∂

∂x
= α

∂

∂x
− αx

∂

∂z
, ∇ ∂

∂z

∂

∂ y
= α

∂

∂ y
, ∇ ∂

∂z

∂

∂z
= 0.

Using these we can verify that

∇∂i

∂

∂z
= α

{
∂i − ν�(∂i )

∂

∂z

}
,

for all 1 ≤ i ≤ 3, where ∂1 = ∂
∂x , ∂2 = ∂

∂ y and ∂3 = ∂
∂z . Thus, the vector field ν = ∂

∂z
is a concurrent-recurrent vector field.

Example 3 Let M = R
2 × R+ ⊂ R

3 and we denote the Cartesian coordinates by
(x, y, z). Let g be the Riemannian metric given by

g = e2azdx2 + e2azdy2 + dz2,

where α = const . 	= 0. Then, we have

∇ ∂
∂x

∂

∂x
= −αe2az

∂

∂z
, ∇ ∂

∂x

∂

∂ y
= 0, ∇ ∂

∂x

∂

∂z
= α

∂

∂x
,

∇ ∂
∂ y

∂

∂x
= 0, ∇ ∂

∂ y

∂

∂ y
= −αe2az

∂

∂z
, ∇ ∂

∂ y

∂

∂z
= α

∂

∂ y
,

∇ ∂
∂z

∂

∂x
= α

∂

∂x
, ∇ ∂

∂z

∂

∂ y
= α

∂

∂ y
, ∇ ∂

∂z

∂

∂z
= 0.

(10)

From (10), one easily verifies:

∇∂i

∂

∂z
= α

{
∂i − ν�(∂i )

∂

∂z

}
, (11)
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for all 1 ≤ i ≤ 3, where ∂1 = ∂
∂x , ∂2 = ∂

∂ y and ∂3 = ∂
∂z . Thus, the vector field ν = ∂

∂z
is a concurrent-recurrent vector field. With the help of (10), we find the following:

R(
∂

∂ y
,

∂

∂x
)

∂

∂z
= R(

∂

∂z
,

∂

∂ y
)

∂

∂x
= R(

∂

∂z
,

∂

∂x
)

∂

∂ y
= 0,

R(
∂

∂z
,

∂

∂x
)

∂

∂x
= R(

∂

∂z
,

∂

∂ y
)

∂

∂ y
= −α2e2az

∂

∂z
,

R(
∂

∂ y
,

∂

∂x
)

∂

∂x
= −α2e2az

∂

∂ y
, R(

∂

∂ y
,

∂

∂z
)

∂

∂z
= −α2 ∂

∂ y
,

R(
∂

∂z
,

∂

∂x
)

∂

∂z
= α2 ∂

∂x
, R(

∂

∂ y
,

∂

∂x
)

∂

∂ y
= α2e2αz

∂

∂x
.

(12)

From (12), we see that

R(∂i , ∂ j )∂k = −α2{g(∂ j , ∂k)∂i − g(∂i , ∂k)∂ j },

for all 1 ≤ i, j, k ≤ 3. Thus, M is of constant curvature −α2 and so M is Einstein. If
we choose e1 = e−αz ∂

∂x , e2 = e−αz ∂
∂ y and e3 = ν = ∂

∂z , then we see that {e1, e2, e3}
is an orthonormal frame. Hence, we have

Ric(∂i , ∂ j ) =
3∑

k=1

g(R(ek, ∂i )∂ j , ek) = −2α2g(∂i , ∂ j ). (13)

Let X = −y ∂
∂x + x ∂

∂ y . Then, we see that

(£X g)(∂i , ∂ j ) + 2Ric(∂i , ∂ j ) + 4α2g(∂i , ∂ j ) = 0,

for all 1 ≤ i, j ≤ 3. Hence the metric g is a Ricci soliton having the potential field
X = −y ∂

∂x + x ∂
∂ y and the soliton constant λ = 2α2.

Example 4 Here we shall consider a particular case of Example 1, and we show that
the metric is a Ricci soliton. Let g be the Riemannian metric on M = R

2 × R+ ⊂ R
3

defined by

g = 1

(αz)2
(dx2 + dy2 + dz2),

where α = const . 	= 0. From Koszul’s formula, we have

∇ ∂
∂x

∂

∂x
= 1

z

∂

∂z
, ∇ ∂

∂x

∂

∂ y
= 0, ∇ ∂

∂x

∂

∂z
= −1

z

∂

∂x
,

∇ ∂
∂ y

∂

∂x
= 0, ∇ ∂

∂ y

∂

∂ y
= 1

z

∂

∂z
, ∇ ∂

∂ y

∂

∂z
= −1

z

∂

∂ y
,

∇ ∂
∂z

∂

∂x
= −1

z

∂

∂x
, ∇ ∂

∂z

∂

∂ y
= −1

z

∂

∂ y
, ∇ ∂

∂z

∂

∂z
= −1

z

∂

∂z
.

(14)

123



538 D. M. Naik

Put ν = −αz ∂
∂z . From (14), one easily verifies:

∇∂i ν = α
{
∂i − ν�(∂i )ν

}
, (15)

for all 1 ≤ i ≤ 3. Thus, the vector field ν = −αz ∂
∂z is a concurrent-recurrent vector

field. Also, we find the Ricci tensor as given below

(Rici j ) =
⎛

⎜⎝
− 2

z2
0 0

0 − 2
z2

0

0 0 − 2
z2

⎞

⎟⎠ ,

and so M is Einstein (being 3-dimensional it is of constant curvature).
Let X = x ∂

∂x + y ∂
∂ y + z ∂

∂z . Then, one may easily verify that

(£X g)(∂i , ∂ j ) + 2Ric(∂i , ∂ j ) + 4α2g(∂i , ∂ j ) = 0,

for all 1 ≤ i, j ≤ 3. Hence, the metric g is a Ricci soliton having the potential field
X = x ∂

∂x + y ∂
∂ y + z ∂

∂z and the soliton constant λ = 2α2.

2.2 Key lemmas

In this paper, we denote Ric� for the Ricci operator defined by g(Ric�Y , Z) =
Ric(Y , Z) and s for the scalar curvature. From the Eq. (7), with straight forward
computation we have:

Lemma 1 In a Riemannian manifold admitting a concurrent-recurrent vector field, we
have

R(Y , Z)ν = −α2{ν�(Z)Y − ν�(Y )Z}, (16)

R(ν,Y )Z = −α2{g(Z ,Y )ν − ν�(Z)Y }, (17)

Ric(·, ν) = −(n − 1)α2ν�(·) (⇒ Ric�ν = −(n − 1)α2ν), (18)

(∇Y ν�)Z = α{g(Z ,Y ) − ν�(Y )ν�(Z)}. (19)

Now, we prove:

Lemma 2 A Riemannian manifold admitting a concurrent-recurrent vector field sat-
isfies

(∇Y Ric
�)ν = −(n − 1)α3Y − αRic�Y , (20)

(∇νRic
�)Y = −2(n − 1)α3Y − 2αRic�Y , (21)

£νRic = 2α3(n − 1){ν� ⊗ ν� − g}. (22)
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Proof First, we differentiate Ric�ν = −(n − 1)α2ν along Y and avail (7) in order to
deduce (20). From (16), we have

n∑

i=1

g((∇ei R)(ei , Z)ν,W ) = −(1 − n)α3g(Z ,W ) + αRic(Z ,W )

where {ei } is an orthonormal frame. On the other hand, the second Bianchi identity
enable us to obtain

n∑

i=1

g((∇ei R)(W , ν)Z , ei ) = g((∇W Ric�)ν, Z) − g((∇νRic
�)W , Z).

We combine the above two equations and use (20) to find

g((∇νRic
�)W , Z) = −2(n − 1)α3g(Z ,W ) − 2αRic(Z ,W ),

which proves (21). In light of (7) we see that

£νg = 2α{g − ν� ⊗ ν�}. (23)

According to Yano [32], we know

(£X∇Y g−∇Y £X g−∇[X ,Y ]g)(Z ,W )=−g((£X∇)(Y , Z),W )− g((£X∇)(Y ,W ), Z).

Because of ∇g = 0, it follows directly that

(∇Y £X g)(Z ,W ) = g((£X∇)(Y , Z),W ) + g((£X∇)(Y ,W ), Z).

Using the symmetric property of £X∇, from the above equation we have

2g((£X∇)(Y , Z),W ) = (∇Y £X g)(Z ,W ) + (∇Z£X g)(W ,Y ) − (∇W£X g)(Y , Z).

(24)

We differentiate (23) and use (19) and (24) to deduce

(£ν∇)(Y , Z) = −2α2{g(Y , Z)ν − ν�(Y )ν�(Z)ν} (25)

According toYano [32], we know the following relation on anyRiemannianmanifold:

(£X R)(Y , Z)W = (∇Y £X∇)(Z ,W ) − (∇Z£X∇)(Y ,W ). (26)

Now, we differentiate (25) along W and employ the identity (26) to find

(£νR)(Y , Z)W = 2α3{g(Y ,W )Z − g(Z ,W )Y + ν�(Z)ν�(W )Y − ν�(Y )ν�(W )Z}.

Contracting the above equation gives (22). �
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As an outcome of Lemma 2, we have the following result which characterizes an
Einstein manifold:

Theorem 4 An n-dimensional connected Riemannian manifold (M, g) admits a
concurrent-recurrent vector field ν is an Einstein manifold, if and only if, the Ricci
operator satisfies

(∇Y Ric
�)ν = (∇νRic

�)Y ,

for any Y ∈ X(M).

Proof If the given condition holds, then we have Ric�Y = −(n − 1)α2Y , that is,
Ric = −(n − 1)α2g, and the converse is trivial. �

Lemma 3 Let the metric of a Riemannian manifold M admitting a concurrent-
recurrent vector field be a Ricci almost soliton. If [X , ν] ∈ L(ν), where L(ν) is
the linear span of ν, then M is Einstein.

Proof First we take Lie derivative to the Ricci almost soliton equation (1) along ν and
avail (22) and (23) to obtain

£ν£X g = (4α3(n − 1) − 4λα − 2ν(λ))g − (4α3(n − 1) − 4λα)ν� ⊗ ν�. (27)

Taking Lie derivative to (23) along the potential field X and using the Ricci almost
soliton equation (1), we get

(£X£νg)(Y , Z) = − 4α{Ric(Y , Z) + λg(Y , Z)} − 2α{(£Xν�)(Y )ν�(Z)

+ (£Xν�)(Z)ν�(Y )}. (28)

FromO’Neill [26], we know the following fundamental identity on Lie derivative (see
also Silva Filho [18, Proposition 1]):

£[Y ,Z ]g = £Y £Z g − £Z£Y g, (29)

for all vector fields Y , Z . The Eqs. (27) and (28) and the above identity enables us to
obtain

(£[X ,ν]g)(Y , Z) = − 4αRic(Y , Z) − {4α3(n − 1) − 2ν(λ)}g(Y , Z)

+ (4α3(n − 1) − 4λα)ν�(Y )ν�(Z). (30)

Lie differentiating g(ν, ν) = 1 along the soliton field X and using (1) and (18),
we find g(ν, £Xν) = −((n − 1)α2 − λ). So the hypothesis [X , ν] ∈ L(ν) implies
[X , ν] = (λ − (n − 1)α2)ν. From here, it is not difficult to show

(£[X ,ν]g)(Y , Z)=Y (λ)ν�(Z)+Z(λ)ν�(Y )+2{αλ − (n − 1)α3}{g(Y , Z)−ν�(Y )ν�(Z)}.
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Comparing the above equation with (30) gives

Y (λ)ν�(Z)+Z(λ)ν�(Y )+2{αλ − (n − 1)α3}{g(Y , Z) − ν�(Y )ν�(Z)} + 4αRic(Y , Z)

+ {4α3(n − 1) − 2ν(λ)}g(Y , Z) − (4α3(n − 1) − 4λα)ν�(Y )ν�(Z) = 0. (31)

Finally, we plug Y = Z = ν in the above equation to obtain λ = (n − 1)α2, and we
substitute this into (31) to claim Ric = −α2(n − 1)g. Hence, M is Einstein. �


3 Proof of themain results

3.1 Proof of Theorem 1

Proof First, we operate ∇W to the Ricci soliton equation (1) to deduce

(∇W£X g)(Y , Z) = −2(∇W Ric)(Y , Z).

We fetch the above equation into the Eq. (24) to infer

g((£X∇)(Y , Z),U ) = (∇U Ric)(Y , Z) − (∇Y Ric)(Z ,U ) − (∇Z Ric)(U ,Y ).

Now, we set Z = ν in the above equation and use the Eqs. (20) and (21) to yield

(£X∇)(Y , ν) = 2(n − 1)α3Y + 2aRic�Y . (32)

Now, we differentiate the above equation along Z and use the identity (7) to find

(∇Z£X∇)(Y , ν)=−α(£X∇)(Y , Z)+2a2ν�(Z){(n − 1)α2Y + Ric�Y }+2a(∇Z Ric
�)Y .

We feed the above equation into the identity (26) and then use the symmetric property
of £X∇ to arrive

(£X R)(Y , Z)ν = − 2a2ν�(Z){(n − 1)α2Y + Ric�Y } + 2a2ν�(Y ){(n − 1)α2Z

+ Ric�Z} + 2a{(∇Y Ric
�)Z − (∇Z Ric

�)Y }. (33)

We set Z = ν in the above equation to derive

(£X R)(Y , ν)ν = 0. (34)

Now Lie-differentiating R(Y , ν)ν = −α2{Y − ν�(Y )ν} (which can be obtained by
(16)) along X gives

(£X R)(Y , ν)ν = −α2g(Y , £Xν)ν + 2a2ν�(£Xν)Y + α2(£Xν�)(Y )ν.
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Combining the above two equations and using the fact that α 	= 0 is constant, we have

(£Xν�)(Y )ν = g(Y , £Xν)ν − 2ν�(£Xν)Y . (35)

Now, with the help of (18), Eq. (1) reads

(£X g)(Y , ν) = 2(n − 1)α2ν�(Y ) − 2λν�(Y ). (36)

Substituting Y = ν in the above equation, we get

ν�(£Xν) = −(n − 1)α2 + λ. (37)

Now Lie-differentiating ν�(Y ) = g(Y , ν) yields

(£Xν�)(Y ) = (£X g)(Y , ν) + g(Y , £Xν). (38)

We use the above equation and (37) in (35) and then consider the fact that α 	= 0 to
arrive

0 = −α[−α2(n − 1) + λ]Y − [(n − 1)α3 − λα]ν�(Y )ν. (39)

Then the above equation leads to

[(n − 1)α3 − λα](Y − ν�(Y )ν) = 0,

and contracting this over Y shows that λ = (n−1)α2. Hence, the soliton is expanding
with soliton constant λ = (n − 1)α2. �


3.2 Proof of Corollary 1

Proof In dimension three, the Riemann curvature tenor is given by

R(Y , Z)W =g(Z ,W )Ric�Y − g(Y ,W )Ric�Z + g(Ric�Z ,W )Y − g(Ric�Y ,W )Z

− s

2
{g(Z ,W )Y − g(Y ,W )Z}. (40)

Setting Z = W = ν in the above equation and using (18), we get

Ric�Y =
( s
2

+ α2
)
Y +

(
−3α2 − s

2

)
ν�(Y )ν. (41)

Since λ = (n − 1)α2 (which follows from above theorem), the Eqs. (36)–(38) gives
(£X g)(Y , ν) = 0, ν�(£Xν) = 0 and (£Xν�)(Y ) = g(Y , £Xν). Using these and (41) in
the Lie-derivative of Ric(Y , ν) = −2α2ν�(Y ) gives

( s
2

+ 3α2
)
g(Y , £Xν) = 0.
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Suppose if s = −6α2, then (41) shows that Ric�Y = −2α2Y and using this in (40)
implies the manifold is of constant curvature −α2.

So that we assume s 	= −6α2 on some open set U of M . So that £Xν = 0 on U ,
and this together with the identity (7) implies

∇νX = α{X − ν�(X)ν}. (42)

Making use of (£X g)(Y , ν) = 0, the above equation and (42) gives

g(∇Y X , ν) = −g(∇νX ,Y ) = −ag(Y , X) + αν�(Y )ν�(X). (43)

According to Duggal and Sharma [17], we write

(£X∇)(Y , Z) = ∇Y∇Z − ∇∇Y Z X + R(X ,Y )Z .

Now, we set Z = ν in the above equation and use the relations (7), (16), (42) and (43)
to find

(£X∇)(Y , ν) = 0.

Thus (32) implies that Ric�Y = −2α2Y and contracting this we find s = −6α2. This
leads to a contradiction as s 	= −6α2 on U and completes the proof. �


3.3 Proof of Theorem 2

Proof In the light of (2), we infer

∇Y grad γ = −Ric�Y − λY . (44)

We operate the above equation by ∇Z to obtain

∇Z∇Y grad γ = − (∇Z Ric
�)Y − Ric�(∇ZY ) − Z(λ)Y − λ∇ZY .

Using this in the definition of curvature tensor, we obtain

R(Y , Z)grad γ = (∇Z Ric
�)Y − (∇Y Ric

�)Z + Z(λ)Y − Y (λ)Z . (45)

Now, we take scalar product of the above equation with ν and utilize the Eq. (20) to
deduce

g(R(Y , Z)grad γ, ν) = Z(λ)ν�(Y ) − Y (λ)ν�(Z).

From (16), we see that

g(R(Y , Z)ν, grad γ ) = α2{Z(γ )ν�(Y ) − Y (γ )ν�(Z)}.
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We combine above two equations and then plug Z = ν to yield

Y (λ + α2γ ) = ν(λ + α2γ )ν�(Y ),

and this is equivalent to

d(λ + α2γ ) = ν(λ + α2γ )ν�. (46)

Now, we put Y = ν in the Eq. (45) and then take scalar product with W to infer

g(R(ν, Z)grad γ,W ) = αRic(Y ,W ) + ((n − 1)α3 − ν(λ))g(Z ,W ) + Z(λ)ν�(W ).

On the other hand, from (16) we easily find

g(R(ν,Y )W , grad γ ) = α2{−g(Y ,W )ν(γ ) + ν�(W )Y (γ )}.

Now, we combine the above two equations to obtain

αRic(Y ,W ) = ((1 − n)α3 + ν(λ + α2γ ))g(Y ,W ) − ν(λ + α2γ )ν�(Y )ν�(W ).

(47)

We contract the above equation to get

ν(λ + α2γ ) = αs

n − 1
+ nα3. (48)

Using the above equation in (47), one can easily have

Ric =
(

s

n − 1
+ α2

)
g −

(
s

n − 1
+ nα2

)
ν� ⊗ ν�, (49)

Now, we contract Eq. (45) over Y to find

Ric(Z , grad γ ) = 1

2
Z(s) + (n − 1)Z(λ).

Comparing the above equation with (49), we get

n − 1

2
Z(s) + (n − 1)2Z(λ)=(s + (n − 1)α2)Z(γ )−(s+ n(n − 1)α2)ν(γ )ν�(Z),

(50)

for all Z ∈ X(M). Now, we plug Z = ν in the above equation and use (48) to infer

ds(ν) = −2(n − 1)

{
αs

n − 1
+ nα3

}
. (51)
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From dν� = 1
2 {Yν�(Z) − Zν�(Y ) − ν�([Y , Z ])} and (19), we see that the 1-form ν�

is closed, that is, dν� = 0. Now,operating (46) by the exterior derivative d, and since
d2 = 0 and dν� = 0, we obtain α

n−1ds ∧ ν� = 0, and since α 	= 0, we have

ds(W )ν�(U ) − ds(U )ν�(W ) = 0,

for any vector fieldsW ,U . Putting ν in place ofU in the above equation and utilizing
(51), we see that ds(W ) = ds(ν)ν�(W ), which means

grad s = ν(s)ν. (52)

We use the above equation in (50) and substitute Z = Z − ν�(Y )ν to deduce

(s + n(n − 1)α2)(grad γ − ν(γ )ν) = 0.

If s = −α2n(n − 1), then it follows from (49) that Ric = −(n − 1)α2g, so that M is
Einstein. Now, suppose that s 	= −α2n(n − 1) on some open set U of M . Then, the
above equation shows that gradγ = ν(γ )ν. From here, it is not hard to see

[X , ν] = [gradγ, ν] = −∇νgradγ = (λ − (n − 1)α2)ν,

wherewe used (7), (44) and the second identity of (18). Then, it follows fromLemma 3
that Ric = α2(n − 1)g on U , and contracting this shows s = −α2n(n − 1). This is a
contradiction and consequently proves our result. �


3.4 Proof of Corollary 2

Proof Invoking Theorem 2, we see that M is Einstein, that is, Ric�Y = −(n−1)α2Y .
We feed this in (40) to conclude the result. �


3.5 Proof of Corollary 3

Proof The result follows from the Theorem 3, Corollary 1 and Corollary 2. �

Acknowledgements We would like to thank anonymous reviewers for their constructive comments and
suggestions, which helped us to improve the manuscript.

Declarations

Conflict of interest The author declares that he have no conflict of interest.

References

1. Barros, A., Ribeiro, E., Jr.: Some characterizations for compact almost Ricci solitons. Proc. Am.Math.
Soc. 140(3), 213–223 (2012)

123



546 D. M. Naik

2. Blaga, A.M., Ishan, A., Deshmukh, S.: A note on solitons with generalized geodesic vector field.
Symmetry 13, 1104 (2021)

3. Brickell, F., Yano, K.: Concurrent vector fields and Minkowski structure. Kodai Math. Ser. Rep. 26,
22–28 (1974)

4. Chen, B.-Y., Deshmukh, S.: Ricci solitons and concurrent vector fields. Balkan J. Geom. Appl. 20,
14–25 (2015)

5. Collinson, C.D., Vaz, E.G.L.R.: Killing pairs constructed from a recurrent vector field. Gen. Rel. Grav.
27, 751–759 (1995)

6. Deshmukh, S.: Conformal vector fields and Eigenvectors of Laplace operator.Math. Phys. Anal. Geom.
15, 163–172 (2012)

7. Deshmukh, S.: Almost Ricci solitons isometric to spheres. Int. J. Geom. Methods Mod. Phys. 16(5),
9 (2019)

8. Deshmukh, S., Al-Sodais, H.: A note on Ricci solitons. Symmetry (MDPI) 12, 289 (2020)
9. Deshmukh, S., Al-Sodais, H.: A note on almost Ricci solitons. Anal. Math. Phys. 10, 76 (2020)

10. Deshmukh, S., Alsolamy, F.: Conformal gradient vector fields on a compact Riemannian manifold.
Colloq. Math. 112, 157–161 (2008)

11. Deshmukh, S., Alsolamy, F.: A note on conformal vector fields on a Riemannian manifold. Colloq.
Math. 136, 65–73 (2014)

12. Deshmukh, S., Alsolamy, F.: Conformal vector fields on a Riemannian manifold. Balkan J. Geom.
Appl. 19, 86–93 (2014)

13. Deshmukh, S., Khan, V.A.: Geodesic vector fields and Eikonal equation on a Riemannian manifold.
Indag. Math. 30, 542–552 (2019)

14. Deshmukh, S., Peska, P., Turki, N.B.: Geodesic vector fields on a Riemannian manifold. Mathematics
8, 137 (2020)

15. Deshmukh, S., Mikes, J., Turki, N.B., Vilku, G.E.: A note on geodesic vector fields. Mathematics
8(10), 1663 (2020)

16. Diógenes, R., Ribeiro, E., Filho, J.F.S.: Gradient Ricci solitons admitting a closed conformal vector
field. J. Math. Anal. Appl. 455, 1975–1983 (2017)

17. Duggal, K.L., Sharma, R.: Symmetries of Spacetimes and Riemannian Manifolds. Kluwer, Dordrecht
(1999)

18. Filho, J.F.S.: Some uniqueness results for Ricci solitons. Illinois J. Math. 61, 399–413 (2017)
19. Filho, J.F.S.: Some results on conformal geometry of gradient Ricci solitons. Bull. Braz. Math. Soc.

New Ser. 51, 937–955 (2020)
20. Ghanam, R., Thompson, G.: Two special metrics with R14-type holonomy. Class. Quant. Grav. 18,

2007–2014 (2001)
21. Ghosh, A.: Kenmotsu 3-metric as a Ricci soliton. Chaos Solitons Fractals 4(4), 647–650 (2011)
22. Hamilton, R.: The Ricci flow on surfaces. Contemp. Math. 71, 237–262 (1988)
23. Naik, D.M., Venkatesha, V.: η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds.

Int. J. Geom. Methods Mod. Phys. 16, 1950134 (2019)
24. Naik, D.M., Venkatesha, V., Prakasha, D.G.: Certain results on Kenmotsu pseudo-metric manifolds.

Miskolc Math. Notes 20, 1083–1099 (2019)
25. Naik, D.M., Venkatesha, V., Kumara, H.A.: Ricci solitons and certain related metrics on almost

coKaehler manifolds. J. Math. Phys. Anal. Geom. 16, 402–417 (2020)
26. ONeill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York

(1983)
27. Ponge, R., Reckziegel, H.: Twisted products in pseudo-Riemannian geometry. Geom. Dedic. 48, 15–25

(1993)
28. Sharma, R.: Gradient Ricci solitons with a conformal vector field. J. Geom. 109, 01–07 (2018)
29. Wang, Y.: A generalization of the Goldberg conjecture for coKähler manifolds. Mediterr. J. Math. 13,

2679–2690 (2016)
30. Wang, Y.: Ricci solitons on almost co-Kähler manifolds. Can. Math. Bull. 62, 912–922 (2019)
31. Wang, Y., Liu, X.: Ricci solitons on three dimensional η-Einstein almost Kenmotsu manifolds. Taiwan.

J. Math. 19, 91–100 (2015)
32. Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Ricci solitons on Riemannian manifolds admitting certain vector field
	Abstract
	1 Introduction
	2 Background and key results
	2.1 Some examples
	2.2 Key lemmas

	3 Proof of the main results
	3.1 Proof of Theorem 1
	3.2 Proof of Corollary 1
	3.3 Proof of Theorem 2
	3.4 Proof of Corollary 2
	3.5 Proof of Corollary 3

	Acknowledgements
	References




