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Abstract
We improve the boundedness of maximal function on the spaces defined by Cho-
quet integrals associated to both Bessel and Riesz capacities. The capacities will be
generalized to functionals as a means of proof.
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1 Introduction

This paper addresses the following boundedness issues.

Theorem 1.1 Let α > 0 and s, t > 1 be such that αs < n, 1/s + 1/t = 1. For any
q > t(n − αs)/n and measurable q.e. defined function ϕ, it follows that

∫
Rn

(Mlocϕ)qdC ≤ C(α, s, n, q)

∫
Rn

|ϕ|qdC, (1.1)

where C(α, s, n, q) is a constant depending only on α, s, n and q.

Theorem 1.2 Let α > 0 and s, t > 1 be such that αs < n, 1/s + 1/t = 1. For any
q > t(n − αs)/n and measurable q.e. defined function ϕ, it follows that

∫
Rn

(Mϕ)qdc ≤ C(α, s, n, q)

∫
Rn

|ϕ|qdc,
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408 K. H. Ooi

where C(α, s, n, q) is a constant depending only on α, s, n and q.

Related notations are introduced as follows. Denote Mloc(·) andM the local and
global Hardy-Littlewood maximal functions respectively by

Mloc(ϕ)(x) = sup
0<r≤1

1

|Br (x)|
∫
Br (x)

|ϕ(y)|dy, x ∈ R
n,

M(ϕ)(x) = sup
r>0

1

|Br (x)|
∫
Br (x)

|ϕ(y)|dy, x ∈ R
n

for a locally integrable function ϕ on Rn , the Choquet integrals
∫
Rn | · |dC of f that

∫
Rn

| f |dC =
∫ ∞

0
Capα,s({x ∈ R

n : | f (x)| > λ})dλ,

∫
Rn

| f |dc =
∫ ∞

0
capα,s({x ∈ R

n : | f (x)| > λ})dλ,

the Bessel and Riesz capacities Capα,s(·) and capα,s(·) respectively of a set E ⊆ R
n

that

Capα,s(E) = inf{‖ f ‖sLs : f ≥ 0,Gα ∗ f ≥ 1 on E},
Gα(x) = F−1[(1 + | · |2)−α/2](x), x ∈ R

n,

capα,s(E) = inf{‖ f ‖sLs : f ≥ 0, Iα ∗ f ≥ 1 on E},
Iα(x) = 1

|x |n−α
, x ∈ R

n,

whereF−1 is the inverse Fourier transform inRn . A property holds quasi-everywhere
(q.e.) with respect to Bessel capacity if it holds except on a set E with Capα,s(E) = 0,
a similar property with respect to Riesz capacity is defined canonically.

Note that the boundedness is valid for q < 1. A similar result is already obtained in
[6] regarding the case for q > (n−α)/n. Nevertheless, for certain values of α, s, t, n,
one has t(n − αs)/n < (n − α)/n, so Theorem 1.1 can be viewed as an improvement
to the boundedness obtained in [6] for certain cases. A similar issue regarding the
boundedness of maximal function associated to Hausdorff content is addressed in [7].

2 A functional generalization of capacities

In what follows, we always assume that α > 0, s, t > 1, 1/s + 1/t = 1, n ∈ N, and
that αs < n. Furthermore, we denote C0 the class of compactly supported continuous
functions on R

n and C∞
0 is the subclass of infinitely differentiable functions of C0.

By LSC we mean the class of lower semi-continuous functions on R
n . Let us write

χE the characteristic function of a set E ⊆ R
n . The notation A � B will abbreviate

the inequality that A ≤ CB for some constant C > 0 and A ≈ B simply means both
A � B and B � A.
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A functional approach to the boundedness of maximal function 409

Let M be a space equipped with a positive measure ν. By a kernel we mean a
nonnegative g on R

n × M such that g(·, y) is lower semicontinuous on R
n for each

y ∈ M, and g(x, ·) is measurable onM for each x ∈ R
n . Suppose that μ is a positive

measure on R
n and f is a nonnegative ν-measurable function, we define potentials

G f and Ǧμ to be

G f (x) =
∫
M

g(x, y) f (y)dν(y), x ∈ R
n

Ǧμ(y) =
∫
Rn

g(x, y)dμ(x), y ∈ M.

For any function ϕ on R
n , we let

�ϕ = { f : f ∈ Ls+(ν),G f (x) ≥ |ϕ(x)|1/s for all x ∈ R
n},

then we define C(·) = Cg(·) to be

C(ϕ) = inf{‖ f ‖sLs : f ∈ �ϕ}.

Therefore, C(·) is a generalization of the capacity Cg,s(·) defined by

Cg,s(E) = inf{‖ f ‖sLs : f ∈ Ls+(ν),G f (x) ≥ 1 on E}

for any set E ⊆ R
n . We call C(·) the functional generalization of Cg,s(·).

Suppose that M = R
n , g is said to be a radially decreasing convolution kernel

if g(x, y) = g0(|x − y|), where 0 ≤ g0 ∈ LSC, g0 is decreasing on [0,∞), and∫ 1
0 g0(t)tn−1dt < ∞. For f ∈ Ls+(Rn), we have G f = g ∗ f . The Bessel Gα(·) and
Riesz Iα(·) are radially decreasing convolution kernels. Note that

Gα(x) = (4π)α/2	(α/2)
∫ ∞

0
t

α−n
2 e− π |x |2

t − t
4π

dt

t
, x ∈ R

n,

see [1, Section 1.2.4].
In the sequel, if a statement is stated with C(·) without the subscript g as in Cg(·),

then the statement holds for any kernel g. We begin by introducing the following
subadditivity property of C(·).
Proposition 2.1 C(·) is subadditive.
Proof LetH be the set of all nonnegative functionsϕ onRn such thatG f (x) ≥ ϕ(x)1/s

for some function f ∈ Ls+(ν)with ‖ f ‖Ls (ν) ≤ 1.We claim thatH is convex. Suppose
that ϕ1, ϕ2 ∈ H and 0 < c < 1, then there are f1, f2 ∈ Ls+(ν) such that G f j (x) ≥
ϕ j (x)1/s and ‖ f j‖Ls (ν) ≤ 1 for j = 1, 2. It follows by the reverse Minkowski’s
inequality that

(
G(

(c f s1 + (1 − c) f s2 )1/s
)
(x)

)s
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410 K. H. Ooi

=
(∫

M

g(x, y)
(
c f1(y)

s + (1 − c) f2(y)
s)1/s dν(y)

)s

≥
(∫

M

g(x, y)
(
c f1(y)

s)1/s dν(y)

)s

+
(∫

M

g(x, y)
(
(1 − c) f2(y)

s)1/s dν(y)

)s

= c (G f1(x))
s + (1 − c) (G f2(x))

s

≥ (cϕ1 + (1 − c)ϕ2)(x).

On the other hand, we have

‖(c f s1 + (1 − c) f s2 )1/s‖Ls (ν) =
(∫

M

(
c f1(y)

s + (1 − c) f2(y)
s) dν(y)

)1/s

=
(
c‖ f1‖sLs (ν) + (1 − c)‖ f2‖sLs (ν)

)1/s

≤ (c + (1 − c))1/s

= 1.

As a result, the convexity of H is justified. Subsequently, we claim that

C(ϕ) = inf{c > 0 : ϕ ∈ cH}. (2.1)

Indeed, assume that c > 0 and ϕ/c ∈ H, then some f ∈ Ls+(ν) is such that
‖ f ‖Ls (ν) ≤ 1 and that G f ≥ (ϕ/c)1/s . It follows that G(c1/s f ) ≥ ϕ1/s and c ≥
c‖ f ‖sLs = ‖c1/s f ‖sLs ≥ C(ϕ). Consequently, inf{c > 0 : ϕ ∈ cH} ≥ C(ϕ). On
the other hand, assume that f ∈ Ls+(ν) and G f ≥ ϕ1/s . For any ε > 0, we have

G (
f /(‖ f ‖Ls (ν) + ε)

) ≥ (
ϕ/(‖ f ‖Ls (ν) + ε)s

)1/s and hence ϕ ∈ (‖ f ‖Ls (ν) + ε)s ·H.
It follows that (‖ f ‖Ls (ν) + ε)s ≥ inf{c > 0 : ϕ ∈ cH} and the arbitrariness of
ε > 0 yields that C(ϕ) ≥ inf{c > 0 : ϕ ∈ cH}. Therefore, (2.1) is justified and the
subadditivity of C(·) then follows. 
�

Next, C(·) possesses the outer regularity in the sense that

Proposition 2.2 For any ϕ ≥ 0, it holds C(ϕ) = inf{C(ψ) : ψ ≥ ϕ,ψ ∈ LSC}.
Proof We assume that C(ϕ) < ∞. Let ε > 0 be given. There is an f ∈ Ls+(ν) such
thatG f ≥ ϕ and that ‖ f ‖sLs (ν) < C(ϕ)+ε.Wewrite ((G f )s)1/s = G f , then it follows
by definition of C(·) that C ((G f )s) ≤ ‖ f ‖sLs (ν) and hence C ((G f )s) < C(ϕ) + ε.
Now we note that G f ∈ LSC (see [1, Proposition 2.3.2]). 
�

The aforementioned regularity resembles the property of capacity that

Capα,s(E) = inf{Capα,s(G) : G ⊇ E,G open}

for any set E ⊆ R
n .

The next three propositions are the generalization of [1, Proposition 2.3.9], [1,
Theorem 2.3.10], and [1, Proposition 2.3.12] respectively, which the proofs are almost
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A functional approach to the boundedness of maximal function 411

identical and hence will be omitted. However, there are much to say about Proposition
2.4. In [1, Theorem 2.3.10], for any subset E of Rn with Cg,s(E) < ∞, there is a
unique capacitary function f E of E such that f E ∈ Ls+(ν) and G f E ≥ 1 (Cg,s)-q.e.
on E , and

∫
M

( f E )sdν = Cg,s(E).

We also call G f E as the capacitary potential of E . As a generalization, in the
following Proposition 2.4, given any nonnegative ϕ, the term fϕ will serve as the
capacitary function of ϕ, and G fϕ is then the capacitary potential of ϕ for which
G fϕ(x) ≥ ϕ(x)1/s q.e. and

∫
M

( fϕ)sdν = C(ϕ).

Proposition 2.3 For any ϕ ≥ 0, by denoting �ϕ the closure of �ϕ in Ls(ν), it follows
that

�ϕ = { f : f ∈ Ls+(ν),G f (x) ≥ ϕ(x)1/s q.e. with respect to Cg,s(·)}.

Proposition 2.4 Let ϕ ≥ 0 and C(ϕ) < ∞, then there is a unique fϕ ∈ Ls+(ν) such
that G fϕ(x) ≥ ϕ(x)1/s q.e. with respect to Cg,s , and

∫
M

( fϕ)sdν = C(ϕ).

Proposition 2.5 If {ϕi }∞i=1 is an increasing sequence of nonnegative functions with
ϕ = supϕi , then

C(ϕ) = lim
i→∞ C(ϕi ).

As a result of Proposition 2.5, we obtain the Fatou property of C(·) that

C
(
lim inf
i→∞ ϕi

)
≤ lim inf

i→∞ C(ϕi ), ϕi ≥ 0. (2.2)

Proposition 2.5 also resembles the property of capacity that

Capα,s(E) = lim
i→∞Capα,s(Ei )

for any increasing sequence {Ei } of arbitrary subsets of Rn with union E .
The following Corollary 2.6 addresses the countably subadditivity of C(·), which

is a direct consequence of the Fatou property of C(·).
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412 K. H. Ooi

Corollary 2.6 Let ϕi ≥ 0, i = 1, 2, ..., it follows that

C
( ∞∑

i=1

ϕi

)
≤

∞∑
i=1

C(ϕi ).

The Fatou property of C(·) also entails the following corollary once we recall the
fact that for any nonnegative ϕ ∈ LSC, there is an increasing sequence {ψi } of C0
such that ψi (x) ↑ ϕ(x) pointwise everywhere.

Corollary 2.7 For any 0 ≤ ϕ ∈ LSC, it holds

C(ϕ) = sup{C(ψ) : 0 ≤ ψ ≤ ϕ,ψ ∈ C0}.

The above corollary resembles the property of capacity that

Capα,s(G) ≈ sup{Capα,s(K ) : K ⊆ G, K compact}

for any open set G.

Theorem 2.8 Assume that g is a radially decreasing kernel, then

Cg(ϕ) ≈
∫
Rn

ϕdCg,s . (2.3)

In particular, we have

CGα (χE ) ≈ Capα,s(E),

CIα (χE ) ≈ capα,s(E)

for any set E ⊆ R
n.

Proof First of all, we have the capacitary strong type inequality that

∫ ∞

0
Cg,s({x ∈ R

n : (g ∗ f (x))s > λ})dλ � ‖ f ‖sLs (Rn),

(see [1, Theorem 7.1.1]) which shows that

∫
Rn

ϕdCg,s =
∫ ∞

0
Cg,s({x ∈ R

n : ϕ(x) > λ})dλ � C(ϕ).

Furthermore, let us write that

ϕ =
∞∑

i=−∞
ϕχ{λi≤ϕ<λi+1}.
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A functional approach to the boundedness of maximal function 413

By re-examining the proof of [1, Proposition 7.4.1] and combining Corollary 2.6,
we deduce the estimate that

Cg(ϕ) ≤ c2

c − 1

∫ ∞

0
Cg,s({x ∈ R

n : ϕ(x) > λ})dλ (2.4)

for any fixed constant c > 1. In fact, (2.4) holds regardless of whether g is a radially
decreasing convolution kernel. Therefore, (2.3) is then established. 
�

The following proposition characterizes the zeros of C(·).
Proposition 2.9 Let ϕ ≥ 0, then C(ϕ) = 0 if and only if there is a f ∈ Ls+(ν) such
that

ϕ−1((0,+∞]) ⊆ (G f )−1({+∞}).

Proof First we prove for sufficiency. We have

C (
χ(G f )−1([λ,+∞])

) ≤ 1

λs
‖ f ‖sLs (ν)

for any λ > 0, it follows that C (
χ(G f )−1({+∞})

) = 0 and hence

C (
χϕ−1((0,∞])

) = 0.

We deduce from (2.4) that C(ϕ) = 0. Note that C(χE ) = Cg,s(E) for any set
E ⊆ R

n and (2.4) holds regardless of whether g is a radially decreasing convolution
kernel.

Now we prove for necessity. Assuming that C(ϕ) = 0, then we can choose fi ∈
Ls+(ν) such that G fi ≥ ϕ1/s and that ‖ fi‖sLs (ν) < 2−is for i = 1, 2, ... The function
f = ∑

i fi satisfies that G f (x) ≥ ∑
i G fi (x) = ∞ for ϕ(x) > 0 and that ‖ f ‖Ls (ν) <

1. 
�
Recall that we have the dual definition of the capacity that

Cg,s(K )1/s = sup{μ(K ) : μ ∈ M+(K ), ‖Ǧμ‖Lt (ν) ≤ 1}

for any compact set K ⊆ R
n , 1/s + 1/t = 1, and M+(K ) is the space of positive

measures on K (see [1, Theorem 2.5.1]). The following Theorem 2.10 corresponds to
the dual definition of C(·) under certain conditions imposed to the kernel g. Throughout
Theorems 2.10 and 2.11 we will assume that M is locally compact and that

g(x, y) = h(φ(x, y)), x ∈ R
n, y ∈ M (2.5)

for some functions φ : Rn × M → [0,+∞) and h : [0,+∞) → (0,+∞], where
φ(F × K ) is bounded for any compact sets F ⊆ R

n, K ⊆ M, and h is decreasing. If
g(x) = g0(|x |) > 0 is a radially decreasing convolution kernel, thenM = R

n and we
can simply take h = g0 and φ(x, y) = |x − y|.
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414 K. H. Ooi

Theorem 2.10 Suppose that the kernel g satisfies the condition (2.5). For any function
ϕ with compact support supp(ϕ), if

ϕ|supp(ϕ)

is continuous with minsupp(ϕ) ϕ > 0, then

Cg(ϕ) = sup

{(∫
Rn

ϕ1/sdμ

)s

: μ ∈ M+(supp(ϕ)), ‖Ǧμ‖Lt (ν) ≤ 1

}
.

Proof The following proof is modified from [2, Theorem 6.1]. For any ψ ≥ 0, let

D(ψ) = Cg(ψ s),

M(ψ) = sup

{∫
Rn

ψdμ : μ ∈ M+(supp(ψ)), ‖Ǧμ‖Lt (ν) ≤ 1

}
,

then by letting ψ = ϕ1/s , we are to prove that

D(ψ)1/s = M(ψ).

Let

Mψ =
{
μ ∈ M+(supp(ψ)) :

∫
Rn

ψ(x)dμ = 1

}
,

and

F = { f ∈ Ls+(ν) : ‖ f ‖Ls (ν) ≤ 1}.

We also let

D1(ψ) =
(
sup
F

inf
Mψ

∫
Rn

G f (x)dμ

)−s

,

and

M1(ψ) =
(
inf
Mψ

sup
F

∫
Rn

G f (x)dμ

)−1

.

We claim that

D1(ψ)1/s = M1(ψ). (2.6)

The setsMψ andF are convex. The setMψ is vaguely compact by the observation
thatμ(supp(ψ)) ≤ (minsupp(ψ) ψ)−1 forμ ∈ Mψ and the Banach-Alaoglu Theorem.
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A functional approach to the boundedness of maximal function 415

The linearity of the maps

f →
∫
Rn

G f (x)dμ,

μ →
∫
Rn

G f (x)dμ,

and the continuity of the second map allow us to invoke Fan’s Minimax Theorem (see
[1, Theorem 2.4.1]), and hence (2.6) follows by the minimax theorem. We are now to
show that

D(ψ) = D1(ψ), (2.7)

and

M(ψ) = M1(ψ). (2.8)

We begin by showing that

D1(ψ) ≤ D(ψ). (2.9)

We could assume that D(ψ) < ∞. For any ε > 0, there is an fε ∈ Ls+(ν) such
that G fε ≥ ψ and

‖ fε‖sLs (ν) < D(ψ) + ε.

As a result,

∥∥∥∥ fε
(D(ψ) + ε)1/s

∥∥∥∥
Ls (ν)

≤ 1.

For any μ ∈ Mψ , we have

∫
Rn

G
(

fε
(D(ψ) + ε)1/s

)
(x)dμ ≥ 1

(D(ψ) + ε)1/s
.

Thus,

D(ψ) + ε ≥
(∫

Rn
G

(
fε

(D(ψ) + ε)1/s

)
(x)dμ

)−s

,

which implies that D(ψ) + ε ≥ D1(ψ), so (2.9) follows. Now we show that

D(ψ) ≤ D1(ψ). (2.10)
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416 K. H. Ooi

We assume that D1(ψ) < ∞. For any ε > 0, there is a fε ∈ F such that

(
inf

μ∈Mψ

∫
Rn

G fε(x)dμ

)−s

< D1(ψ) + ε.

Thus,

1 ≤ inf
μ∈Mψ

∫
Rn

G( fε · (D1(ψ) + ε)1/s)(x)dμ.

Fix an x ∈ supp(ψ), and let dμ = (ψ(x))−1dδx , where dδx is the point mass
measure at x , then

∫
Rn ψ(x)dμ = 1 and hence

1 ≤ G( fε · (D1(ψ) + ε)1/s)(x) · 1

ψ(x)

ψ(x) ≤ G( fε · (D1(ψ) + ε)1/s)(x).

Since ‖ fε‖Ls (ν) ≤ 1, we get

D(ψ) ≤ ‖ fε · (D1(ψ) + ε)1/s‖sLs (ν) ≤ D1(ψ) + ε,

so (2.10) follows and hence (2.7). We are now to show (2.8). As before, we will
separate the cases to

M1(ψ) ≤ M(ψ), (2.11)

and

M(ψ) ≤ M1(ψ). (2.12)

We note that M1(ψ) ≥ 0 since 0 ∈ F . Assume at the moment that

M1(ψ) < ∞, (2.13)

we invoke the dual pair (Lt (ν), Ls(ν)), then for every ε > 0, there is a measure
μ ∈ Mψ satisfying

M1(ψ) <

(
sup
f ∈F

∫
Rn

G f (x)dμ

)−1

+ ε

=
(
sup
f ∈F

∫
M

f (y)(Ǧμ)(y)dν

)−1

+ ε

= ‖Ǧμ‖−1
Lt (ν)

+ ε.
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A functional approach to the boundedness of maximal function 417

Set σ = ‖Ǧμ‖−1
Lt (ν)

μ, we get

M1(ψ) − ε < ‖Ǧμ‖−1
Lt (ν)

=
∫
Rn

ψ(x)dσ ≤ M(ψ),

so (2.11) follows. Now we justify (2.12). For any μ ∈ M+(supp(ψ)) with
‖Ǧμ‖Ls (ν) ≤ 1, and f ∈ F , set σ = (∫

Rn ψ(x)dμ
)−1

μ, we have

∫
Rn

G f (x)dσ =
∫
M

(Ǧσ)(y) f (y)dν

=
(∫

Rn
ψ(x)dμ

)−1 ∫
M

(Ǧμ)(y) f (y)dν

≤
(∫

Rn
ψ(x)dμ

)−1

,

by the dual pair (Lt (ν), Ls(ν)). Therefore,

∫
Rn

ψ(x)dν ≤ M1(ψ)

which implies (2.12), so (2.8) is established as well.
We now justify (2.13). Assume the contrary that a sequence {μ j } ⊆ Mψ is such

that

sup
f ∈F

∫
Rn

G f (x)dμ j → 0.

By the dual pair (Lt (ν), Ls(ν)), we get immediately that

‖Ǧμ j‖Lt (ν) → 0. (2.14)

Denote F = supp(ψ) and choose a compact set K ⊆ M such that ν(K ) > 0. Let
η0 > 0 be such that φ(x, y) < η0 for all x ∈ F and y ∈ K , see the notations in (2.5).
We have

Ǧμ j (y) =
∫
Rn

h(φ(x, y))dμ j ≥ h(η0)μ j (F), y ∈ K ,

then μ j (F) ≤ ‖Ǧμ j‖Lt (ν)(h(η0)ν(K ))−1, and hence the sequence {μ j (F)} is
bounded.ByBanach-AlaogluTheorem, there exists a subnet {μ jk } converging vaguely
to a measure μ and hence

∫
Rn ψ(x)dμ = 1. On the other hand, we have μ jk (F) → 0,

so
∫
Rn ψ(x)dμ = 0, we get a contradiction, and (2.13) follows. 
�
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418 K. H. Ooi

By the dual definition of capacity, one obtains the capacitary measure μK ∈
M+(K ) for K such that f K = (ǦμK )t−1, and

μK (K ) =
∫
M

(ǦμK )t dν =
∫
Rn

G f K dμK = Cg,s(K ),

(see [1, Theorem 2.5.3]). The following theorem is a counterpart for the case of C(·),
and we call μϕ the capacitary measure for ϕ.

Theorem 2.11 Suppose that the kernel g satisfies the condition (2.5). For any function
ϕ with compact support supp(ϕ), if

ϕ|supp(ϕ)

is continuous with minsupp(ϕ) ϕ > 0, then there is a μϕ ∈ M+(supp(ϕ)) such that

fϕ = (Ǧμϕ)1/(s−1), and

∫
Rn

ϕ1/sdμϕ =
∫
M

(Ǧμϕ)t dν =
∫
Rn

G fϕdμϕ = Cg(ϕ). (2.15)

Proof Let {μi } be a sequence inM+(supp(ϕ)) such that ‖Ǧμi‖Lt (ν) = 1 and

lim
i→∞

(∫
Rn

ϕ1/sdμi

)s

= Cg(ϕ).

Sinceμi (supp(ϕ)) ≤ (minsupp(ϕ) ϕ)−1 for all i = 1, 2, ..., we can assume that {μi }
converges vaguely to a measure μ ∈ M+(supp(ϕ)), and hence

(∫
Rn

ϕ1/sdμ

)s

= Cg(ϕ).

By [1, Proposition 2.3.2], Ǧμ(y) ∈ LSC on M+(supp(ϕ)) for each y ∈ M, it
follows that ‖Ǧμ‖Lt (ν) ≤ 1, and thus, ‖Ǧμ‖Lt (ν) = 1 by Theorem 2.10.

Now we let

μϕ =
(∫

ϕ1/sdμ

)s/t

μ,

then
∫
M

(Ǧμϕ)t dν = ‖Ǧμ‖tLt (ν)

(∫
ϕ1/sdμ

)s

= Cg(ϕ).

On the other hand,

∫
Rn

ϕ1/sdμϕ =
(∫

Rn
ϕ1/sdμ

)s/t (∫
Rn

ϕ1/sdμ

)
= Cg(ϕ).

123



A functional approach to the boundedness of maximal function 419

Let fϕ be the capacitary function for ϕ in Theorem 2.4, so that G fϕ(x) ≥ ϕ(x)1/s

q.e. with respect to Cg,s . Let

S = {x ∈ supp(ϕ) : G fϕ(x) < ϕ(x)1/s}

and K ⊆ S be a compact set, then Cg,s(K ) = 0. Applying Theorem 2.10 to the
function χK , we have

Cg,s(K ) ≥
(

μϕ(K )

C(ϕ)1/t

)s

,

and hence μϕ(K ) = 0. As S is a Borel set, it follows that μϕ(S) = 0 and hence
G fϕ(x) ≥ ϕ(x)1/s a.e. with respect to μϕ . By Fubini’s theorem and Hölder’s inequal-
ity, we have

Cg(ϕ) =
∫
Rn

ϕ1/sdμϕ

≤
∫
Rn

G fϕdμϕ

=
∫
M

Ǧμϕ fϕdν

≤ ‖Ǧμϕ‖Lt (ν)‖ fϕ‖Ls (ν)

= Cg(ϕ)1/tCg(ϕ)1/s

= Cg(ϕ).

The equality in Hölder’s inequality implies that ( fϕ)s = (Ǧμϕ)t . 
�
On the other hand, one may suspect whether we can weaken the q.e. condition in

Proposition 2.3. In fact, for any set E ⊆ R
n , one has

Capα,s(E) = inf ‖ f ‖sLs (Rn),

where the infimum is taken for all f ∈ Ls+(Rn) such that Gα ∗ f (x) ≥ 1 a.e. on some
neighborhood of E (see [1, Corollary 2.6.8]). Before looking at the general case for
C(·), we need the following lemma, which is a simple generalization of [1, Proposition
2.6.7].

Lemma 2.12 Suppose that g(x) = g0(|x |) is a radially decreasing convolution kernel,
continuous on R

n \ {0}, and such that
∫
|x |>1 g(x)

t dx < ∞. Assume that there is an
L and a δ > 0 such that g0 satisfies

g0(r) ≤ Lg0(2r), 0 < r ≤ δ. (2.16)

Let f ∈ Ls+(Rn), 0 ≤ ϕ ∈ LSC, and suppose that g ∗ f (x) ≥ ϕ(x) a.e. on an
open set U, then g ∗ f (x) ≥ ϕ(x) everywhere on U.
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Proof Without loss of generality, we can assume that g ∗ f (x) ≥ ϕ(x) a.e. on a
neighborhood of 0, and prove that g ∗ f (0) ≥ ϕ(0). We can also assume that

g ∗ f (0) =
∫
Rn

g(x) f (x)dx < ∞.

Let 0 < a < b and define a weight function ηa,b by

ηa,b(x) = g(x)∫
|y|<|x | g(y)dy

, a < |x | < b,

and ηa,b(x) = 0 otherwise. We set G(r) = ∫
|y|<r g(y)dy, it follows that∫

Rn ηa,b(x)dx = logG(b) − logG(a). Since
∫ 1
0 g0(t)tn−1dt < ∞, we have

lima→0 G(a) = 0. For any b > 0, we can choose an a > 0 such that
∫
Rn ηa,b(x)dx =

1.
For small enough b > 0,

inf
Bb(0)

ϕ ≤
∫
Rn

ηa,b(x)(g ∗ f )(x)dx =
∫
Rn

(ηa,b ∗ g)(y) f (y)dy. (2.17)

Fix a ρ such that 0 < ρ ≤ δ. Then,

lim
a,b→0

ηa,b ∗ g(y) = lim
a,b→0

∫
Rn

ηa,b(x)g(y − x)dx = g(y)

uniformly for |y| ≥ ρ, and also

∫
Rn

ηa,b(x)g(y − x)dx ≤ g0(|y| − b).

Thus, for any 0 < R < ∞ and ε > 0,

lim
a,b→0

∫
ρ≤|y|≤R

(ηa,b ∗ g)(y) f (y)dy =
∫

ρ≤|y|≤R
g(y) f (y)dy,

and

∫
|y|≥R

(ηa,b ∗ g)(y) f (y)dy ≤ ‖ f ‖Ls (Rn)

(∫
|y|≥R−b

g(y)t dy

)1/t

< ε,

if R > 0 is large enough.
To estimate ηa,b ∗ g(y) for |y| ≤ ρ, we observe that if |x − y| ≤ 2−1|y|, then

|x | ≥ 2−1|y|, and |x | ≥ |x − y|. Thus,
∫

|x−y|≤2−1|y|
ηa,b(x)g(y − x)dx =

∫
|x−y|≤2−1|y|

g(x)g(y − x)∫
|t |<|x | g(t)dt

dx
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A functional approach to the boundedness of maximal function 421

≤ g(2−1y)
∫

|x−y|≤2−1|y|
g(y − x)∫

|t |<|x−y| g(t)dt
dx

≤ g(2−1y)
∫
Rn

ηa,b(x)dx

= g(2−1y).

On the other hand,

∫
|x−y|≥2−1|y|

ηa,b(x)g(y − x)dx ≤ g(2−1y)
∫
Rn

ηa,b(x)dx = g(2−1y).

The assumption (2.16) gives that ηa,b ∗ g(y) ≤ 2Lg(y) for |y| ≤ 2δ, and thus

∫
|y|≤ρ

(ηa,b ∗ g)(y) f (y)dy ≤ 2L
∫

|y|≤ρ

g(y) f (y)dy < ε,

if ρ > 0 is small enough.
We obtain from (2.17) and the lower semi-continuity of ϕ that

ϕ(0) ≤ lim inf
b→0

(
inf
Bb(0)

ϕ

)
≤

∫
ρ≤|y|≤R

g(y) f (y)dy + 2ε.

The proposition follows if ρ → 0 and R → ∞. 
�
As a corollary, we have the following result.

Corollary 2.13 Let g be a kernel satisfying the conditions in Lemma 2.12. For any
0 ≤ ϕ ∈ LSC, it follows that

Cg(ϕ) = inf ‖ f ‖sLs ,

where the infimum is taken for all f ∈ Ls+(Rn) such that g ∗ f (x) ≥ ϕ(x)1/s a.e.

The proof of Theorem 1.1 will be given independently in Sect. 3 as an application
of the functional generalization of local Riesz capacities. However, if we seek for the
proof of Theorem 1.1 under the range that s > 2−α/n, one may apply the functional
generalization of Bessel capacities without the technicalities as in Sect. 3 (see Sect. 4
for the remarks). The proof of Theorem 1.2 will be put in the last section.

3 Local Riesz capacities and proof of Theorem 1.1

In this section we will review some background materials about the local Riesz capac-
ities. The following approach is adopted from [8, Section 3.6.1], which is equivalent
to [1, Section 4.4]. As usual, we denote α > 0, s, t > 1, 1/s + 1/t = 1, n ∈ N, and
that αs < n.

123



422 K. H. Ooi

Let χ = χB1(0), M = R
n × R, and 0 < ρ < ∞. Define the kernel gρ on R

n × M

by gρ(x, (y, z)) = z−(n−α)χ(0,ρ)(z)χ((x − y)/z). We also define the measure νρ on
M by

dνρ(y, z) = χ(0,ρ)(z)dy × dz

z
.

If f is a function on M, we see that

Gρ f (x) =
∫ ρ

0

(∫
|x−y|<z

f (y, z)

zn−α
dy

)
dz

z
.

Besides that, for μ ∈ M+(Rn), it follows that

Ǧρμ(y, z) = 1

zn−α
χ(0,ρ)(z)μ(Bz(y)).

We define the local Riesz capacity Rα,s,ρ(·) by

Rα,s,ρ(E) = inf{‖ f ‖sLs (νρ) : f ∈ Ls+(νρ),Gρ f ≥ 1 on E}

for any set E ⊆ R
n , and the corresponding functional CR,ρ(·) is defined by

CR,ρ(ϕ) = inf{‖ f ‖sLs (νρ) : f ∈ Ls+(νρ),Gρ f ≥ ϕ1/s}

for any ϕ ≥ 0. Subsequently, the nonlinear potential Vμ
ρ is defined by Vμ

ρ =
Gρ((Ǧρμ)1/(s−1)) and hence

Vμ
ρ (x) =

∫ ρ

0

(∫
|x−y|<z

(
μ(Bz(y))

zn−α

) 1
s−1 1

zn−α
dy

)
dz

z
, x ∈ R

n .

For any compact set K ⊆ R
n , the capacitary measure μK has the properties that

VμK

ρ (x) ≥ 1 q.e. with respect toRα,s,ρ(·) on K ,

VμK

ρ (x) ≤ 1 for every x ∈ supp(μK ),

and such that

μK (K ) =
∫
Rn

VμK

ρ dμK = Rα,s,ρ(K ).

On the other hand, we also define theWolff potential Wμ
ρ by

Wμ
ρ (x) =

∫ ρ

0

(
μ(Bz(x))

zn−αs

) 1
s−1 dz

z
, x ∈ R

n .
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A functional approach to the boundedness of maximal function 423

We observe that Bz(y) ⊆ B2z(x) for |x − y| < z, and hence

Vμ
ρ (x) �

∫ ρ

0
μ(B2z(x))

1
s−1

1

z
n−α
s−1 −α

dy
dz

z
≈ Wμ

2ρ(x).

Besides that, Bz(x) ⊆ B2z(y) for |x − y| < z by symmetry, then

Vμ
ρ (x) ≈

∫ ρ/2

0

(∫
|x−y|<2z

(
μ(B2z(y))

zn−α

) 1
s−1 1

zn−α
dy

)
dz

z

≥
∫ ρ/2

0

(∫
|x−y|<z

(
μ(B2z(y))

zn−α

) 1
s−1 1

zn−α
dy

)
dz

z

≥
∫ ρ/2

0
μ(Bz(x))

1
s−1

1

z
n−α
s−1 −α

dy
dz

z

= Wμ
ρ/2(x).

Therefore, we obtain the estimate that

Wμ
ρ/2 � Vμ

ρ � Wμ
2ρ. (3.1)

On the other hand, let us recall the inhomogeneous Riesz kernel Iα,ρ(·) and non-
linear inhomogeneous Riesz potential Vμ

ρ defined by

Iα,ρ(x) = |x |−(n−α)χ|x |<ρ

and Vμ
ρ = Iα,ρ((Iα,ρμ)1/(s−1)) respectively. A Wolff type inequality says that

∫
Rn

Vμ
ρ dμ ≈

∫
Rn

Wμ
ρ dμ, (3.2)

see [8, Theorem 3.6.6]. By an application of Fubini’s theorem, one has

∫
Rn

Vμ
ρ dμ =

∫
Rn

(Iα,ρμ)t dx, (3.3)

then we deduce from (3.3) that

∫
Rn

Vμ
ρ dμ ≈

∫
Rn

Vμ
ρ/2dμ, (3.4)

see the proof of [8, Lemma 3.3.8]. As a consequence, we combine (3.1), (3.2), and
(3.4) to obtain the estimate that

∫
Rn

Vμ
ρ dμ ≈

∫
Rn

Vμ
ρ/2dμ
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≈
∫
Rn

Wμ
ρ/2dμ

�
∫
Rn

Vμ
ρ dμ

�
∫
Rn

Wμ
2ρdμ

≈
∫
Rn

Vμ
2ρdμ

≈
∫
Rn

Vμ
ρ dμ,

and hence
∫
Rn

Vμ
ρ dμ ≈

∫
Rn

Vμ
ρ dμ. (3.5)

Following the similar reasoning given in the proof of [8, Theorem 3.3.7], we con-
clude by the equivalence in (3.5) that

Rα,s,ρ(E) ≈ Capα,s(E) (3.6)

for any E ⊆ R
n .

The equivalence in (3.6) suggests the following fact.

Proposition 3.1 For any ϕ ≥ 0, it holds CR,ρ(ϕ) ≈ CGα (ϕ).

The proof needs several technical lemmas. First of all, let us address the quasi-
subadditivty of CR,ρ(·) as the following shown.

Lemma 3.2 Let {B j } j≥0 be a covering of Rn by balls with unit diameter. Let this
covering have a finite multiplicity, depending only on n. It follows that

CR,ρ(ϕ) ≈
∑
j≥0

CR,ρ(ϕχB j )

for any ϕ ≥ 0.

Proof By subadditivity of CR,ρ(·), we just need to address on

∑
j≥0

CR,ρ(ϕχB j ) � CR,ρ(ϕ).

We start with an observation that

CR,ρ(ϕ)

= inf{‖ f ‖sLs (νρ) : f ∈ Ls(νρ),Gρ f ≥ ϕ1/s q.e. with respect toRα,s,ρ(·)}. (3.7)
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We note that by Proposition 2.9 (or simply [1, Proposition 2.3.7]), the term
Gρ f (x) = Gρ f +(x) − Gρ f −(x) is defined and finite q.e. with respect to Rα,s,ρ(·).
Suppose that Gρ f (x) ≥ ϕ(x)1/s for such an x , then Gρ f +(x) ≥ ϕ(x)1/s . We also
have ‖ f +‖Ls (νρ) ≤ ‖ f ‖Ls (νρ), then (3.7) follows by Propositions 2.3 and 2.4.

Now we pick an f ∈ Ls(ν) such that Gρ f ≥ ϕ1/s q.e. as in (3.7). Let Oj be the
center of B j , O0 = 0, and η j = η(x − Oj ), where η ∈ C∞

0 (2B0) and η = 1 on B0,
then (Gρ f )η j ≥ ϕ1/sχB j q.e. and hence

∑
j≥0

CR,ρ(ϕχB j ) ≤
∑
j≥0

‖(Gρ f )η j‖sWα,s .

Now we appeal to Strichartz formula that

∑
j≥0

‖uη j‖sWα,s ≈ ‖u‖sWα,s ,

(see [4, Theorem 3.1.2]), we obtain

∑
j≥0

CR,ρ(ϕχB j ) � ‖Gρ f ‖sWα,s = ‖ f ‖sLs (νρ),

then the result follows by (3.7). 
�
Lemma 3.3 For any function ϕ with compact support supp(ϕ) and

diam(supp(ϕ)) < 1,

if ϕ|supp(ϕ) is continuous with minsupp(ϕ) ϕ > 0, then

CR,ρ(ϕ) = sup

{(∫
Rn

ϕ1/sdμ

)s

: μ ∈ M+(supp(ϕ)), ‖Ǧρμ‖Lt (νρ) ≤ 1

}
.

Proof This lemma does not follow immediately by Theorem 2.10 since it is not clear
if the defining kernel satisfies (2.5). We let F = supp(φ), by re-examining the proof
of Theorem 2.10, one only needs to deduce from (2.14) that the sequence {μ j (F)} is
bounded.

Let {Bρ/4(Ok)}k≥0 be a covering for Rn with finite multiplicity and denote Bk =
Bρ/4(Ok). Then there is a dimensional constant cn such that the setN = {k : Bk∩F �=
∅} has elements no more than cn . As a consequence,

‖Ǧρμ j‖sLs (νρ) =
∫ ρ

0

∫
Rn

(
μ j (Bz(y))

zn−α

)s

dy
dz

z

≥ Cn

∑
k≥0

∫ ρ

ρ/2

∫
Bk

(
μ j (Bz(y))

zn−α

)s

dy
dz

z
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≥ Cn

∑
k≥0

∫ ρ

ρ/2

∫
Bk

(
μ j (Bk)

zn−α

)s

dy
dz

z

= Cn,ρ

∑
k≥0

μ j (Bk ∩ F)s, (3.8)

where the dimensional constant Cn in (3.8) depends on the multiplicity of {B j } j≥0.
Finally, we note that

μ j (F)s ≤ cs−1
n

∑
k≥0

μ j (Bk ∩ F)s ≤ C ′
n,ρ‖Ǧρμ j‖sLs (νρ),

so the sequence {μ j (F)} is bounded. 
�
Proof of Proposition 3.1 Suppose that ϕ is given as in the assumption of Lemma 3.3
and μ ∈ M+(supp(ϕ)). We have

∫
Rn

(Iα,ρμ)t dx ≈
∫
Rn

(Gα ∗ μ)t dx,

see [1, Theorem 3.6.2], then we deduce from (3.3) and (3.5) that

∫
Rn

(Gα ∗ μ)t dx ≈
∫
Rn

Vμ
ρ dμ.

Keep in mind that Vμ
ρ = Gρ((Ǧρμ)1/(s−1)) and

‖Ǧρμ‖tLt (νρ) =
∫
Rn

Vμ
ρ dμ,

then CR,ρ(ϕ) ≈ CGα (ϕ) follows by Theorem 2.10 and Lemma 3.3.
Now we drop the assumption that diam(supp(ϕ)) < 1. Lemma 3.2 implies

CR,ρ(ϕ) ≈
∑
j≥0

CR,ρ(ϕχB j ) ≈
∑
j≥0

CGα (ϕχB j ) ≈ CGα (ϕ).

Indeed, the last ≈ follows by the quasi-additivity of CGα (·) which the proof is
exactly the same as in Lemma 3.2.

Now we assume that ϕ ∈ C0. Let ϕn = (ϕ + n−1)χsupp(ϕ), we get

CR,ρ(ϕ) ≤ CR,ρ(ϕn) ≈ CGα (ϕn) � CGα (ϕ) + 1

n
· Capα,s(supp(ϕ)).

Taking n → ∞, we have CR,ρ(ϕ) � CGα (ϕ). By symmetry and (3.6), one obtains
CR,ρ(ϕ) ≈ CGα (ϕ).
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Now we assume that ϕ ∈ LSC and pick a 0 ≤ ψ ∈ C0, so

CR,ρ(ψ) ≈ CGα (ϕ) ≤ CGα (ϕ).

By Corollary 2.7, one has CR,ρ(ϕ) � CGα (ϕ), the other direction follows by sym-
metry.

One can argue by Proposition 2.2 for the general case that ϕ ≥ 0, the result now
follows. 
�

In the sequel, for any μ ∈ M+(Rn) and ρ > 0, we denote

Mρ(μ)(x) = sup
0<r≤ρ

μ(Br (x))

rn
, x ∈ R

n .

Lemma 3.4 Let ρ > 0 and x ∈ R
n. For any compactly supported positive measure μ,

it follows that

∫ ρ

0

(
μ(Bz(x))

zn−αs

) 1
s−1 dz

z
� ‖μ‖ αs

n(s−1)Mρ(μ)(x)
n−αs
n(s−1) . (3.9)

In other words,

Wμ
ρ � ‖μ‖ αs

n(s−1)Mρ(μ)
n−αs
n(s−1) .

Proof Let 0 < δ ≤ ρ be determined later. We write

∫ ρ

0

(
μ(Bz(x))

zn−αs

) 1
s−1 dz

z

=
∫ δ

0

(
μ(Bz(x))

zn−αs

) 1
s−1 dz

z
+

∫ ρ

δ

(
μ(Bz(x))

zn−αs

) 1
s−1 dz

z

= I1 + I2.

We have

I1 =
∫ δ

0
z

αs
s−1

(
μ(Bz(x))

zn

) 1
s−1 dz

z

≤ Mρ(μ)(x)
1

s−1

∫ δ

0
z

αs
s−1

dz

z

= s − 1

αs
· Mρ(μ)(x)

1
s−1 δ

αs
s−1 . (3.10)

On the other hand,

I2 ≤ ‖μ‖ 1
s−1

∫ ∞

δ

1

z
n−αs
s−1

dz

z
= s − 1

n − αs
‖μ‖ 1

s−1
1

δ
n−αs
s−1

. (3.11)
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In view of (3.9), we can actually assume that μ is supported in Bρ(x), then

Mρ(μ)(x) ≥ μ(Bρ(x))

ρn
= ‖μ‖

ρn
.

If we choose

δ =
( ‖μ‖
Mρ(μ)(x)

) 1
n

,

it satisfies that 0 < δ ≤ ρ and

Mρ(μ)(x)
1

s−1 δ
αs
s−1 = ‖μ‖ 1

s−1
1

δ
n−αs
s−1

,

then (3.9) follows by routine simplification of (3.10) and (3.11). 
�
The following proposition addresses the fact that Wμ

ρ satisfies the almostMucken-
houpt local A1 condition.

Proposition 3.5 For 0 < δ < n(s − 1)/(n − αs), and x0 ∈ R
n, it follows that

Mloc

⎛
⎝

(∫ 2

0

(
μ(Bz(·))
zn−αs

) 1
s−1 dz

z

)δ
⎞
⎠ (x0) �

(∫ 4

0

(
μ(Bz(x0))

zn−αs

) 1
s−1 dz

z

)δ

.

(3.12)

In other words,

Mloc(Wμ
2 ) � Wμ

4 .

Proof Let 0 < r < 1 be fixed. We are to estimate

I = 1

rn

∫
Br (x0)

(∫ 2

0

(
μ(Bz(x))

zn−αs

) 1
s−1 dz

z

)δ

dx � I1 + I2,

where

I1 = 1

rn

∫
Br (x0)

(∫ r

0

(
μ(Bz(x))

zn−αs

) 1
s−1 dz

z

)δ

dx,

I2 = 1

rn

∫
Br (x0)

(∫ 2

r

(
μ(Bz(x))

zn−αs

) 1
s−1 dz

z

)δ

dx .
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For the integral I1, we can assume that μ is supported in B2r (x0). By Lemma 3.4,
it suffices to estimate

∫
Br (x0)

Mr (μ)(x)
δ(n−αs)
n(s−1) dx .

Let p = δ(n − αs)/(n(s − 1)) < 1, we appeal to the inequality that

∫
E

|F |pdx ≤ 1

1 − p
|E |1−p‖F‖p

L1,∞(E)

for any measurable set E ⊆ R
n with |E | < ∞ and F ∈ L1,∞(E), here L1,∞(E) is

the weak Lebesgue space on E (see [3, Exercise 1.1.11]). As a consequence,

I1 � ‖μ‖ δαs
n(s−1) r−n|Br (x0)|1−p‖Mrμ‖p

L1,∞

� r− δ(n−αs)
s−1 ‖μ‖ δαs

n(s−1) +p (3.13)

=
(
r− n−αs

s−1 μ(B2r (x0))
1

s−1

)δ

�
(∫ 3r

2r

(
μ(Bz(x0))

zn−αs

) 1
s−1 dz

z

)δ

≤
(∫ 3

0

(
μ(Bz(x0))

zn−αs

) 1
s−1 dz

z

)δ

, (3.14)

where we have used the weak type (1, 1) boundedness ofM(·) in (3.13), where

M(μ)(·) = sup
r>0

μ(Br (·))
rn

,

and note that Mr (·) ≤ M(·) for all r > 0.
For the integral I2, we observe that Bz(x) ⊆ B2z(x0) for x ∈ Br (x0) and z > r ,

this gives

I2 �
(∫ 2

r

(
μ(B2z(x0))

zn−αs

) 1
s−1 dz

z

)δ

≈
(∫ 4

2r

(
μ(Bz(x0))

zn−αs

) 1
s−1 dz

z

)δ

≤
(∫ 4

0

(
μ(Bz(x0))

zn−αs

) 1
s−1 dz

z

)δ

, (3.15)

then (3.12) follows by combining (3.14) and (3.15). 
�
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Proof of Theorem 1.1 The result in [6] has tackled the case for q ≥ 1. Therefore, we
assume that t(n − αs)/n < q < 1. Suppose that ϕ is given as in the assumption of
Lemma 3.3. It suffices to prove that

CGα ((Mlocϕ)q) � CGα (ϕ
q),

which in turn is equivalent to

CR,8((Mlocϕ)q) � CR,1(ϕ
q) (3.16)

by Proposition 3.1. Let μ = μϕ be the capacitary measure for ϕ such that Vμ
1 =

G1((Ǧ1μ)1/(s−1)) ≥ ϕq/s and that

CR,1(ϕ
q) =

∫
Rn

Vμ
1 dμ.

By (3.1), we see that ϕq/s � Wμ
2 and hence Mlocϕ � Mloc((Wμ

2 )s/q). Using
Proposition 3.5, one obtains (Mlocϕ)q/s � Wμ

4 provided that

s

q
<

n(s − 1)

n − αs
,

which holds by the assumption that q > t(n−αs)/n. As a consequence, (Mlocϕ)q/s �
Vμ
8 by (3.1) again. By the definition of CR,8(·) and Wolff’s inequality, we have

CR,8((Mlocϕ)q) ≤ ‖(Ǧ8μ)1/(s−1)‖sLs (νρ) =
∫
Rn

Vμ
8 dμ ≈

∫
Rn

Vμ
1 dμ,

so (3.16) follows.
We are now to extend the validity of (3.16) for general ϕ ≥ 0. If we drop that

diam(supp(ϕ)) < 1, we can argue by Lemma 3.2 that

ϕ ≤
∑
j≥0

ϕχsupp(ϕ)∩B j ,

Mloc(ϕq) ≤
∑
j≥0

Mloc(ϕqχsupp(ϕ)∩B j ),

where we have used the elementary inequality that (
∑

j a j )
q ≤ ∑

j a
q
j for a j ≥ 0

and 0 < q < 1. Taking CR,8(·) both sides,

CR,8(Mloc(ϕq)) ≤
∑
j≥0

CR,8(Mloc(ϕqχsupp(ϕ)∩B j ))

�
∑
j≥0

CR,1(ϕ
qχsupp(ϕ)∩B j ), (3.17)
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so (3.16) follows by the finite multiplicity of {B j }.
For the case that ϕ ∈ C0, one can argue as in Proposition 3.1. Now assuming that

ϕ ∈ LSC, find a sequence {ϕn} of C0 such that ϕn(x) ↑ ϕ(x), then (3.16) follows by
the Fatou property of CR,ρ(·). The general case that ϕ ≥ 0 can be argued by the outer
regularity of CR,ρ(·), the proof is now complete. 
�

4 Concluding remarks and proof of Theorem 1.2

As a maneuver for the proof of Theorem 1.1, we replace the Choquet integrals∫
Rn |·| dC with the functionals C(·). In proving Theorem 1.1, the countably subad-
ditivity in (3.17) is crucial. However, the Choquet integral is generally not subadditive
but

∫
Rn

( f + g)dC ≤ 2
∫
Rn

f dC + 2
∫
Rn

gdC

for f , g ≥ 0, so it fails to be countably subadditive generally. We also use approxi-
mation by outer regularity of C(·) which the Choquet integral seems to be lacking. As
in Proposition 2.11, we are able to switch the functional C(·) to the regular integral
associated to the nonlinear potential and Proposition 3.5 comes into play subsequently,
it is unknown if the Choquet integral can be switched to the form of (2.15).

On the other hand, one has the exactMuckenhoupt local A1 condition forGα((Gα ∗
μ)1/(s−1)) that

Mloc
(
(Gα ∗ ((Gα ∗ μ)1/(s−1)))δ

)
� (Gα ∗ ((Gα ∗ μ)1/(s−1)))δ (4.1)

for 0 < δ < n(s−1)/(n−αs) and s > 2−α/n. Therefore, for the case that s > 2−α/n,
one may prove Theorem 1.1 without going through the materials regarding local Riesz
capacities, it suffices to replace (3.12) with (4.1) in Proposition 3.5. However, for the
case that s ≤ 2−α/n, (4.1) holds only for 0 < δ < n/(n−α) and the bound n/(n−α)

is simply too crude for our purpose. Meanwhile, Proposition 3.5 holds for any s > 1
with the expected bound. There is no need to obtain the exact Muckenhoupt local A1
condition in proving Theorem 1.1 since all the functionals CR,ρ(·) are equivalent for
any ρ > 0.

A way of proving Theorem 1.2 can be described in few lines. As contrast to the
machinery in Sect. 3, we start with

M = R
n × (0,∞),

dν(y, z) = dy × dz

z
,

G f (x) =
∫ ∞

0

(∫
|x−y|<z

f (y, z)

zn−α
dy

)
dz

z
.
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One has

Rα,s(E) = inf{‖ f ‖sLs (ν) : f ∈ Ls+(ν),G f ≥ 1 on E} ≈ capα,s(E).

The most crucial proposition as contrast to that of (3.12) is the following.

M
⎛
⎝

(∫ ∞

0

(
μ(Bz(·))
zn−αs

) 1
s−1 dz

z

)δ
⎞
⎠ (x0) �

(∫ ∞

0

(
μ(Bz(x0))

zn−αs

) 1
s−1 dz

z

)δ

for 0 < δ < n(s − 1)/(n − αs), and x0 ∈ R
n . The proof now follows in the same

fashion as Theorem 1.1.
We end this section by giving another remarks about C(·). In [6] we have showed

that

I(ϕ) = inf{‖ f ‖Z ′ : f ∈ Ls+(Rn),Gα ∗ f ≥ ϕ q.e.} ≈
∫
Rn

ϕdC, ϕ ≥ 0,

whereZ = Mα,s
t , 1/s +1/t = 1, is the Sobolev Multiplier space, andZ ′ is the Köthe

dual of Z , see [5] for details. There are some reasons that we do not take I(·) as a
functional generalization of the capacity. The subadditivity of I(·) holds apparently,
but it is unclear that I(·) has the Fatou property as in (2.2). It is also unclear that I(·)
satisfies the inner or outer regularity. Since Z ′ is not reflexive nor uniformly convex
in general, Proposition 2.4 fails to hold for I(·), neither will do for Theorem 2.11.
In some sense, it is the reflexivity and uniformly convexity of the space Ls(Rn) that
makes C(·) having those specific properties, which I(·) is lacking. As a consequence,
we will take C(·) rather than I(·) as the functional generalization of the capacity.
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