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Abstract

We investigate the longitudinal and transversal vibrations of the viscoelastic beam with
nonlinear tension and nonlinear delay term under the general decay rate for relaxation
function. The existence theorem is proved by the Faedo—Galerkin method and using
suitable Lyapunov functional to establish the general decay result.
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1 Introduction
Consider the following viscoelastic nonlinear beam in two-dimensional space:
PWit + DWyyxxr + Er{w — h w}xxxx - {[TO +Ex (Ux + %w)zc)] wx}x =0,

pvi — Ea (ve + 3w2) + pig1 () + paga (vt — 1)) =0,
V(x,1) € (0,L) x (0, +oo[,

ey
with homogeneous boundary conditions
lU(O, t):w(Lvt)ZwX(O’ t):wx(Lat):Oa (2)
v(0,1) =v(L,t) =0, Vt>0,
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and initial conditions

w(x, 0) = wo(x), wy(x, 0) = wy(x),
v(x,0) =vo(x), v(x,0) =vi(x), Vx € (0, L), 3)
vr(x, —t) = f(x,1),¥Y(x,t) € (0, L) x (0, 7),

where x and ¢ denotes the space variable along the beam of length L and the time
variable, respectively, w(x, t) and v(x, t) are the displacements in the transverse and
longitudinal directions of the beam at the position x for time ¢, subscripts mean partial
derivatives. p, D, E, Tp and E4 are the uniform mass per unit length of the beam,
the Kelvin—Voigt damping coefficient, bending stiffness, the tension and the stiffness
of the beam, respectively. ;1 and o are two positive real numbers, g; and g, are
two functions, 7 is a time delay, and f is history function, % * wy, is the viscoelastic
damping term defined by

t

(h x wyy) (1) = / h(t — s)wyy(x, s)ds, Vi >0,
0

which describes the relationship between the stress and the strain from the Boltzmann
Principle [6,8]. The relaxation function & represents the kernel of the memory term.

The term g (v, (¢t — 7)) represents distributed delay term. Time delay is the property
of a physical system by which the response to an applied force is delayed in its effect
[31]. The presence of the delay can become a source of instability. For example, the
authors in [27,28,30] proved that the system is unstable under the condition ;1 < w2,
but otherwise the system is stable.

In recent years, energy decay in viscoelastic systems has become an important
research title, while the behaviour of the relaxation function influences the energy
decay rate. These behaviour of the relaxation function are generalized by the following
extended class of kernels, namely,

W(t) < —H(h(), =0,

where H satisfying some additional conditions imposed. We refer to previous studies
[9,12-14,16-18,32] that proved a general energy decay rate.

For a system with delay term and viscoelastic damping, It is important to mention
that the authors in [1,15,19,22,24] established the existence of solutions and general
decay rates under the assumption @1 > .

In the absence of a delay, damping term (1 = @2 = 0) and the relaxation function
satisfies

W (t) < —yh(t),

where y is a positive constant. Lekdim et al. [20] investigated the problem (1)—(3),with
the following boundary conditions

“

w(0,1) =w(L,t) = wy(0,1) = wy(L, 1) =0,
v(0,1) =0, EAv,.(L,t) =U(@), Vt>O0.
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They established an exponential stability under a suitable boundary control U (¢).

Motivated by the previous works, in this work we consider (1)-(3) in which we
generalize the results obtained in [20], without boundary control. By expanding the
class of relaxation functions into which the existence and unconditional stability are
established.

The rest of our paper is organized as follows. In Sect. 2, we present some notations,
assumptions and technical lemmas which will be needed later. In Sect. 3, we establish
the existence and uniqueness results. The general decay rate is provided in Sect. 4.

2 Hypothesis and preliminary results

In this section, we give some notations, hypotheses and lemmas necessary to prove
our results.
Notation. Let L2(0, L) be the Hilbert space with the inner product (-, -) and norms

[I-1I-
We introduce the Hilbert spaces

V=H! (0. L) N H*©, L), W=HZ©, L) N H*0, L) and Z=L> (o, L:H' (0, 1)) .
As in [29], we introduce the new dependent variable
z2(x, p,t) = ve(x,t —Tp), (x,p)e(0,L)x (0,1), t=>0, 5)
which satisfies
(X, p, ) +z2px, p, 1) =0, (x,p) € (0,L) x (0, 1). (6)
The problem (1)—(3) is equivalent to

pWir + Dwyyxyr + Ef{w — hx wh o, — {[TO +E4 (Ux + %w)zc)] Wy }x =0,
pvi — Eq (v + %wﬁ)x + 181 (vr) + p2g2 (z(x, p, 1)) =0,

tze(x, p, 1) + zp(x, p, 1) =0, pe©1),

2(x,0,1) = v (x, 1), V(x,t) € (0,L) x (0, +o0],

w(x, 0) = wo(x), we(x, 0) = wi(x),

v(x,0) =vo(x), v(x,0)=v1(x), Yx e (0,L),

z(x, p,0) = f(x, p1), V(x, p) € (0, L) x (0, 1),

(N

with boundary conditions (2).
Hypothesis on memory kernels, the damping and the delay functions

As in [1,25], we make the following hypotheses on the kernel functions :
(H1) h € C*(Ry, Ry) is differentiable function satisfying

h(0) > 0, 1—/Ooh(s)ds=l—}_l>0. 8)
0
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264 B. Lekdim, A. Khemmoudj

(H2) There exists a C!' function H : Ry — R witch is linear or strictly increasing
and strictly convex C? function on (0, €], € < 1,with H(0) = H’(0) = 0, such
that

W(t) < —H(h(t)), Vt=0. ©)

For the weight of the delay, following [4,10], we assume that

(H3) g1 € C(R, R) is nondecreasing function, such that there exist €, ¢y, ¢z > 0,

such that .
{Cl Is| < lg1 ()] < calsl if |s| > e,

s2+ g2 (s) < H™' (sg1 (9) if Is] < e. (10)

(H4) Let g € C LR, R) odd nondecreasing function, such that there exist c3, aj,
ay > 0 with

|5 ()] < ¢3 (11)
aisg2 (s) < G(s) < axsgi (s), (12)

where G(s) = [; g2(r)dr and
arply < ajpii. (13)

Remark 1 (see [26]) By (H1), we have limy_, o h(s) = O and assume that
limg_, 400 A’ (s) = 0. This implies that there exists 7y > 0 large enough such that

max {h(t), —h’(t)} < min{e, H(¢), Hy(¢)}, Vit > 1, (14)

where Hy(t) = H(D(t)) provided that D is a positive C ! function, D(0) = 0, for
which Hy is strictly increasing and strictly convex C2 function on (0, €] and

+00
/ _thds < +o00. (15)
0o Hy (=h'(s))

By the nonincreasing of &, we get
0<h(tg) <h() <h(), Vtel0,t], (16)
the continuity and positivity of H imply that
a < H(h()) <b, Vtel0,1], (17
for some positive constants @ and b. Then there exists y > 0 such that

W (t) < —yh(t), Vtel0,t]. (18)
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We define the energy functional of problem (1)—(3) by

! E
E@) = & [l + jul?] + (1 —/0 h(s)ds> 5 lwasl?

E 4 1 2
£ R

To 5
+? lwell” + > Wx

L 1
+% (howye) + sf f G (z(x, p. 1)) dpds. (19)
0 0

where £ is a positive constant such that

n1 (1 —ap) M1 — azjiy
T —— <é<7T———
aj an

and

t
(hou)(t) = fo h(t —s) lu@) — u(s)|* ds.

Lemma 1 Let (w, v, z) be a solution of the problem (7), then, for t > 0, the time
derivative of E(t) can be upper bounded by

E E
E'(t) < =D |wey|* + 7’h 0 Wy — 7’/10) w12
—n1 (. g1 () — 12 (z(x, 1,1), g2 (2(x. 1,1))) < 0. (20)

g

?_

3

where ) = 1 —ax: —apu and m = a1z — p2 (1 —ap).

Proof Taking the inner product in L%(0, L) of the first equation of (7) with wy, the
second equation with v;, , then integrating by parts, we obtain
| }

= —D [[wye > 4 (h % wer, werr) — w1 (07, g1 (0)) — w2 (vr, g2 (2(x, 1,1))) .
Q1)

d|p E; Ty Ex
= {5 [l 4 1o 12| 4+ S el + =2 12 4+ S o+ S0

2

dt

The second term of the right hand side of the above equality gives

2 (h % Wy, Wex) = h' 0 Wiy — h(t) wyy |

t
—%{(kowx»—(/o h(s)ds) ||wxx||2}. 22)
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266 B. Lekdim, A. Khemmoudj

By multiplying the third equation of (7) by £g2 (z(x, p, t)) then integrating over
(0,L) x (0, 1), we find

1 L g 1 L 9
5/ / 7182 (z(x, p, 1)) dpdx = ——/ f —G (z(x, p, 1)) dpdx
o Jo TJo Jo dp

L
— _éf [G (z(x,1,1)) — G (z(x,0,1))] dx.
0
(23)

Combining (21)—(23), using the fact that z(0, r) = v,(¢) and assumption (H4), we get

—E@) = =D l|lwyx I + -1 0 wexr — —-h(0) lwax I — = [ G (z(x, 1,1))dx
dt 2 2 T Jo

- <M1 - az%) (vr, 81 () — pa (vr, g2 (2(x, 1, 1)) . (24)

The conjugate function G* of the differentiable convex function G (see [7], pp. 9), i.e.

G*(s) = sup (st — G(1)).

t>0

On the other hand G* is the Legendre transform of G. We refer to ( [2], pp. 61-62),
that is given by

G5 =5(¢)" 0-6[(6)" @] w=zo, (25)
which satisfies the generalized Young inequality :
st < G*(s)+G(@), Vt,s>0. (26)
By the definition of G, we obtain
G*(5) =583 () =G [g5'®)]. @7)

Applying (26) with s = g2 (z(1,1)) and t = v,(¢), from the last term of (24), we
obtain

d E E £
TEW) = =D lwg’ +7’h’ o um—;’h(r) lwr|I? — (ul—az;) (v, 81 (V7))

L L
—th/(; (G(v) + G*(g2 (z (x, 1,1)))) dx — %/0 G (z(x, 1,0))dx.
(28)
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The equality (27) and assumption (H4) imply that

G* (g2 (z(x,1,0)) = z(x, 1,0)g2 (z(x, 1,1)) — G (z(x, 1, 1))
< —-apzx,1,0)g (z(x,1,1)). (29)

Combining (28) and (29), we have (20). O

Remark2 The Lemma 1 imply that E(f) nonincreasing, moreover
E(t) < E(0), vt > 0. (30)

The following lemmas will be used frequently in the sequel

Lemma2 ([11]) Let u € CY([0, L)) satisfying u(0,t) = 0. Then the following
inequality hold:

[o| <2monwor,  vi=o,

where ||.|| o is the norm of L*°([0, L]).

Lemma 3 ([23]) If w is a solution of problem (1)—(3), assuming that h satisfies (HI)
and (H2). then we have

L
/ (how)? dx < h(howyy), (31)
0
L
/ (W' ow)? dx < —h(0) (h o wyx) . (32)
0

where (h o u) (t) = [y h(t —5) (u(s) — u(t)) ds.

3 Well possedness

The main aim of this section is to prove the following existence and uniqueness
theorem:

Theorem 1 Let (wo, vo,20) € W x V x Z and (wy,v1) € HZ (0, L) x H] (0, L).
Assumee that (HI)-(H4) hold and satisfy

z(x, p,t) =v(x,t —1p), (x,p)€(0,L)*x(0,1),7=0. (33)
Then the system (1)—(3) has a unique solution (w, v, z) in the sense that

we L™ (0,T; H3 (0,L)), vel®(0,T;Hy0,L), z€L®(0,T;2).
w, € L (0, T5 Hy (0, L)), veL™(0,T; Hy (0,L)), z€L™®(0,T;L*((0, L) x (0, 1))).
wy € L% (0,75 L2 (0, L)) N L (0, T5 HF (0, L)), v, € L™ (0,T; L? (0, L)).
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268 B. Lekdim, A. Khemmoudj

Proof We employ the Faedo—Galerkin technique to construct a solution.

Approximate solutions: Let (w;, v;, zZi);<, be a complete orthogonal system
of W x V x Z. For each m € N, let W" = span{wi, w2, ..., wy}, W' =
span {vi,va,..., vy} and W3 = span{zi,22,...,2m}, such as the sequence
zi (x, p) defined by z;(x,0) = v;(x), we prolong z;(x,0) in Z by z;(x, p). For
w(0), w;(0) € W/, v(0),v,(0) € W' and z(p,0,s) € W3", searching for func-
tions w"(x, 1) = Y/t kM (Owi(x), v (x, 1) = Y7L k2 (t)vi(x) and 2" (x, 1, p) =
p kl.3 (t)zi (x, p), that satisfy the following equations

o (w;rtl’ (P) +D (wat’ ¢XX) + Ep (w)rrnx’ ‘pxx) + (T()LUT, (px)

1 2
LE <<v;" g ) ) " ¢x> — Bl ) =0, (34)

E
p (0 9) + Ea (07, 60) + 5 () 61

+ (w181 (V") + poga (" (x, 1,1)) . ¢) =0 (35)

and X
/0 (r (7, ¥) + (z';;, I//)) dp =0, (36)

for all (¢, ¢, %) € HZ(0,L) x H} (0, L) x L?((0, L) x (0, 1)), with the initial
conditions

(W™ (0), v"(0), 2" (p, 0, 5)) = (w§', v, 2§') = (wo, vo,20) In W xV xZ,
(w"(0), v1"(0)) = (w]', v}") = (wy,v1) in H(O,L) x H} (0,L).

A Priori Estimates

Throughout this part, B;,i = 1,2, ..., denote positive constants independent of
mandt € [0, T].

Estimate 1: Let E,, the energy defined by (19), for the solutions w™, v and z™.
By utilizing the same steps used in the proof of Lemma 1, we find

t
En@)+ [ [0l P+ 001 ()]s
t
+/O m (2"(1,5), g2 (2" (1, 8))) ds < E,(0) < By. (37)

where 11, 12 positive constants.

Estimate 2: Firstly, we estimate |w!?(0)] V™ (0) H2 and |z} (0) ||2

Fixed t = 0 and taking ¢ = w}}(0), ¢ = v/}(0) and ¢ = z}*(0) in (34), (35) and
(36), respectively, then integrate them by parts and apply Young’s inequality. From the
assumptions (H3), (H4) and the initial data are sufficiently smooth, we can be infer
that

2

[wi ],

v (0)]

1
2,/0 |2 dp < Ba. (38)
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and |z}

Letus fixs,Z > 0 such th|11t ¢ <|| T ”— t. Taking the difference of (34), (35)
and (36) with t = ¢ + ¢ and ¢+ = ¢, and simultaneously replacing ¢, ¢ and ¢ with
w4+ ¢) —wl (@), vt +¢) — v () and (2" (p,t + ¢) — 2" (p. 1)), respectively.
Then gather the two first relations and integrating the last relation over (0, 1) , we get

d
§d—||w (40— w0 +D||wm<r+c> wlt o
—|| <t+;)—wm<t)u+ ||w’”<t+c) w(0)|?

Ea
+——||v,’”(t+§)—v,’"(r)|| + == ||v'"(r+;)—v'"(t)||

o (@ +0) = v (1), 82 (2 ’"(1,r+;)) — ("1, 1))
+ur (V4 =), g1 (vt +0) — g1 (v]'(1)) = Fi + F2, (39)

and

Ld ', n 2 Lfhd m 2
EET/O |z (p.t+0) = 2" (p. 1) dp——E/O d—Hz (p. t+0) =" (p. || " dp

= -Hv, () =" 0

) ||z’"(1, t+¢) -z (40)
where
E L
A= ==t [ e+ 0) - (i o) ] [whe+ o - wiho] dx
0
L
—EA/(; [wiol (t + &) — wh @) ] [wih (e + ¢) — wi ()] dx
Ex L m 2 m 2 m m
—S [ [wr e+ 0)* = (i o) [V + 0 — o 0]dx
0
and

t+¢ t
F=E (/ h(t+§—S)wxx(S)ds—/ h(t—s)wyx (s)ds, wxxz(t+§)—wxxt(t)>-
0 0

Taking the first estimate, Young, Poincaré’s inequalities and Lemma 2 into account,
we can estimate F| and F> as follows :

D m m 2 m m 2
Al Jwi, & + &) —wi, | + Bs |wl'@ + ) — wi'®)||

83 (Juin @+ 6 = wi O + o« +0) =" 0]). (41
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270 B. Lekdim, A. Khemmoudj

2

L t+¢ ¢
[P < B4/ (/ h(t +¢ — s)wyx(s)ds —/ h(t — s)wxx(s)ds) dx
0 0 0

D 2
+Z lwyxs (2 4+ C) — wyrx (O (42)

Combining (39)—(42), then dividing both sides by ¢ and taking the limit as { — 0,
we get

d

g;MNW+ wme+ E @+ 2L uso?
2d Lo+ £ ||vxt(r>|| + 12 (v (02 (1, 1), 82( "(1,1)))
i ((v?:(r))z,gi(vm bt / I o0l ap+ 5 |2 .o

= Bs ([uwi o] + i, o + e o)

L t 2
+B4/ (h(O)w;"x + / Wt — s)w;"x(s)ds> dx. (43)
0 0
On the other hand, we have
((”tt (l)) g1 (v (t))> > 0, (44)

nac3
2

wo (01,0, 8 ("(1.0)) = 22 ([ @ o+ o) - @s)

and

L t T
/ / h'(t —s)w? (s)dsdx < sup || wi || (/ |h/(s)’ ds) < Bg. (46)
o Jo [0,7] 0

Integrating (43) over (0, ) , taking (37), (44)—(46) under consideration and noting that
the initial data are sufficiently smooth. By Gronwall’s lemma, we conclude

P+ [t P s+ i [P+ sty

t
P+ [ o Par+ [l apas < BT an
0 0

Passage to the limit
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The estimate (37) and (38) permits to deduce

(", v™), (wf", ") are bounded in L (0,75 HE (0. 1)) x L% (0,73 HY (0, 1))

(w™, ) is bounded in L (o, T:12(0, L)) nr2 (o, T H (0, L)) x L® (0, T: 120, L)) ,
(2, 2} is bounded in L (0, T; Z) x L (0, T:L2((0, L) x (0, 1))),

vgr (V). 2™ (1,1) g2 (2 (1,1)) are bounded in L1((0, L) x (0, T)),

G (z™) is bounded in L% (0, T:L2((0, L) x (0, 1)))

(vx+ % (wi)?) is bounded in L (0,73 L2(0, 1)) .

(48)
Therefore, there exists subsequences of (w™), (v™) and ("), still denoted by (w™),
(v™) and (z™) , respectively, such that

(w’”, wt’”) — (w, wy) weak star in L>® (0, T, Hg (0, L)) x L (O, T, HO2 (0, L)) ,
(vm, v,’”) — (v, v;) weak star in L™ (O, T, HOl (0, L)) x L (0, T, Hé (0, L)) ,
w! — wy, weak star in L (0, T; L?(0, L)) N L* (0, T; Hg (0, L)),

v} — v weak star in L® (0, T: L*(0, L)) ,

(zm, z;") — (z,z;) weak starin L (0, T; Z) x L™® (0, T: L%((0, L) x (0, 1))) ,
(g1 ™)., g2 (")) = (G1, G) weaksstar in [L*((0, T) x (0, L))]2 ,

(v)’g1 + % (w;”)z) — I" weak star in L> (0, T; L*(0, L)) .

49)
Analysis of the nonlinear terms
By Aubin-Lions compactness (see [3]), we conclude from (49), that
w™ — w strongly in wloeo (0, T; H& (0, L)) , (50
V™ — v strongly in W1 (0, T: L2 (0, L)) ,
therefore
7™ — z strongly and a.e in [0, T] x [0, L]. (51)

Lemma 4 ([5]) We have the convergence g (vt’") — g1 (vy) and g (™) — g2 (z) in
L1 ([0, T] x [0, L]) . Hence,

g1 (v") = g1 (v) weak in L* ([0, T] x [0, L]), 52)
22 (Z™) — g5 (z) weak in L? ([0, T] x [0, L]).

From (50) Lions Lemma ([21], pp. 12), we concluded that I" = (vx + % (wx)z)
and

(v;” + = (w;")z) wh — (vx + % (w)2> wy weakly in L% (0, T] x [0, L]).

(53)

Now, we can pass to the limit in the approximate problem (34)—(35) to get a weak
solution of the problem (1)—(3), (see [21,33]).

Uniqueness The uniqueness can be proved by following the same procedures as in

estimation 2. O
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272 B. Lekdim, A. Khemmoudj

4 Asymptotic behavior

The prove of energy decay relies heavily on the construction of Lyapunov functional
and exploitation of convex analysis. For this intent, we start by constructing a Lyapunov
functional :

L(1) = E@) + B1P(t) + fo¥ (1) + B3x (1) (54)

where 81, B2 and B3 are positive constants, E(¢) is given by (19) and

_P D 2
D(1) = 5 (w, we) + p (v, 1) + 7 lwax 17, (55)
V() =p((how),w). (56)
L 1
x (1) = / / e 2PG (z (x, p, 1)) dpdx (57)
0 0

It is our aim to prove that functional £(¢) satisfies an estimates. To pass this estimate
to E(t), we will need the following proposition.

Proposition 1 Let L(t) and E(t) be the functional defined by (54) and (19), respec-
tively. Then, for B1 B> and B3 small enough, we have

a1 E(t) < L(t) <apE(t), Vt>0. (58)

where a1 and ay are positive constants.

Proof By Young’s inequality, we have

D p pL? o pL?
2@ = - lweel® + 5wl + == el + 2 vl + == ol (59)
Obviously,
1 L1P 1 2
lorl? =2 Juc+ sud| + 5 |2
then using Holder’s inequality, Lemma 2 and inequality (30), we have
1,17 A
loell® < 2|vx + swi|| + = lwell?, (60)
2 2
where A| =4E(0)/,/To (E; (1 — h)).
Substituting (60) into (59), we obtain
o P D
@@ = ol + 5 ol + - lwe®
1+ Ap)pL? 1,7
+% ||w,c||2-|—,0L2 vx—l—iw% (61)
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Existence and general decay of solution for nonlinear... 273

For ¥, by Young’s inequality and Lemma 3, we get
4 2 L4P}_l
W ()| < E”wt||2+T(howxx)~ (62)
For x, from the decay of the function e=2tp , we have

1
Ix (@) < EE(t)- (63)

By combining (61), (62) and (63), we deduce that

(l + ﬂ;) E(t) < p1®(t) + B2 (1) + P3x (1) < ( ﬁ;) E(1),

_ B1 D (14A1)pL? 2pL? L4ph
where A = max (74—,32,}31» 2E1(1—ﬁ)’31’ 31— P B B2).

We take B1, B> and 83 small, so that A + % < 1, this complete proof. O

Lemma5 Let @ (t) be the functional given by (55), then, fort > 0,

') = 5 lwnl®+ p v I - M lwee I + ﬁ (h o wy)
2
- [% — 1Ay ﬂ lwell® = [Ea —201A,] o0 + %wi
+ % ler W ll? + ’227613 (. 1.1). g2 (z(x. 1, 1))). (64)
Proof Differentiating @ (¢) and using the equations (1), we obtain
®'(6) = Slwill? + p Nl + i+ Ja + 5 + Ui, (65)

where

le_%({w h*w}xxxxsw)v

Jr = ( lz)wxxxxt + 2 Wi, w) + 35 (wxxtv Wyx)

J= 3 ({(or + qud) wil, o w) + Ea (0 + 503), 0 v),
Jo =~ (g1 (v) + paga (z(x, 1,1)), v).

Using integrating J; by parts twice and the boundary conditions (2), we get

2, Ei
Ji =_7||wxx” +7(h*wxxs Wyy)
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add and subtract the term % (( fé h(s)ds) Wy, Wy x) in the above equality then using
Young’s inequality and Lemma 3, we have

E/(1—h—6 Eh
E(t-h-0) lweel? + =22 (h 0 wyy) - (66)

J1 < —
2 86

Integrating by parts the terms J> and J3, we find

To
h=-= lw %, (67)
1 2
h:—m‘w+§ﬁ (68)

By Young’s inequality, Poincaré’s inequality, inequality (60) and assumption (H4),
we infer for 6; > 0

2 M1 2 n2 2
Jo <A, lucll” + 10, g1 (w)ll” + 0, g2 (z(x, 1, 1)l

2
Ay "1
<014, (2 vy + Ewi + a5 ||wx||2) + E llg1 (Ut)||2
2C3
+IZTI (z(x, 1,1), g2 (z(x, 1, 1)) , (69)

where A, = (p1 + u2) L. i
Now, Substituting (66)—(69) into (65) and taking 6 = (lgh) , we have (64). O

Lemma 6 Let W (t) be the functional given by (56), then, fort > 0,

t L4 -
v < - [(/(; h(s)ds) - %zj| o lwel? = pL1O) (h" o wx) + Azh (h o wyy)

26>
+ 04T llwlI* + 03D [lwyxs 1?4+ 63 (1 + R) Ef wex
] 2
+O0.E4 vx—i-zw,% , (70

where 0;, 1 = 2,3, 4. are positive constants and

3 D L?Ty+ L2E4A,
A=+ —|E, + — 4+ — 2"~
2 <3+493> 1+493—|— 10,

Proof Substituting the first equation in (1) into the derivative of ¥ (¢), we obtain

t
W%):—ﬂ/h@MsMH@+Ky+KT+Ky+Km (71)
0
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where

K =p(h’<>w,w,),

Ky = —(how, Dwyyxyr + Ejwixxx) ,

K3 =E;(how,h* wyyxy),

Ki= Ea(how |[To-+ (os + bud)]wa],).

Let’s estimate these terms, for K similarly to (62), we get

pL4h(0)

Pt 2
K <— -
1= 3 ||wt||2 26,

(h’ o wxx) . (72)

For K3 and K3, using integrating by parts twice, Young’s inequality and Lemma 3,
we obtain

h(E; + D)
K2 < 63D |wyae* + 03 Ep lwyx|* + — (howyy), (73)

_ 1 -
K3 < 03Erh |wye|* + (93 + E) Erh (howyy). (714)

Integrating K4 by parts, applying Young’s inequality, Holder’s inequality and Lemma
3,we get

1 > L2To+ L2E4A, -
vy + —w? %h(kowm). (75)

Kg < 04To llwy > + 61 Ea 3

Combining (71)—(75), we obtain (70). O
Lemma 7 Let x(t) be the functional given by (55), then, fort > 0

ale—Zr

X (1) < —2x(1) + “T—z (v, g1 () + (. 1,0, 82 (z(x. 1,1))).  (76)

Proof Take derivative of x (¢) with respect to ¢, using the identity (62) and integrating
by parts, we obtain

1 L
X'(6) = __/ [e—zfc(z (x.1,1) — G (z (x,0, t))] dx
T Jo
L 1
—2/ /e_z”’G(z(x,p,t))dpdx.
0 0

In view of the hypotheses (H3) and the above equality, we have (70). O

Theorem 2 For the system dynamics described by (1)—(3), under assumptions (HI)—
(H4), given that (w, vo, z0) € W x V x Z and (w1, v1) € Hj (0, L) x HJ (0, L),
where

z(x, p,t,s) = v (x,t — pr), pe(,1). (77)
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Then, there exist strictly positive constants w1, w2, w3 and & such that

E(t) <o Hy ' (oo +w3), V1 >0, (78)
where
mo= [ -5
¢ Ha(s)
and ) o
H (1) = {iH/(st) ii Z iz ill(r)lﬁilizear. (79)

Proof Using the results (20), (64), (70) and (76), for all t > 5 > 0, we obtain

26> 1— /’l)

[(1-7)

7 P60 (1+ ﬁ)ﬁ2:| Ep lwerll* = [1 = 6382] D llwyeas |

i 6
_ (ho— —) By — %]p el

To A
- (— — 014, >ﬂ1 - 94T0,32] llw, 12

4
£ < [% - pL—h(O)ﬁz] (H 0 wyy) + [(E;hﬁl + Azhﬁ2:| (h o wer)

2
1 2
—[(Ea —261A,) Bi — O4EspBa] |lvx + sz
~[m- —m] (ur. 1 () + B I + By g (un) P
[ “e g ”fecfﬂl] (. 1.1), g2 (2(x. 1,1)) — 2B3x (1)

(80)

where hg = [,* h(t)dt.
Right now, we do select our parameters very carefully. First pick 8, < hy, after that
take 0;,i = 1,3, 4., B1, B2 and B3 sufficiently small so that

o= fmin |t £}
05 < min {1 G2 4
04 < 4%'2 < TO’
b2 < ki, e
,433 <ZTET71,
B3 + g2 B1 < m,
A3 > 0.
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Thus, (80) becomes
L) = =AE@ + As (ol + gt @012 + (howe) ), V10, (82)

where A3 and A4 are two positive constants.
To complete the proof, we partition the interval [0, L] into

L ={0<x <L:|vl >e€}, L=={0<x<L:|vl <e€}.

From (H3), we estimate that

| (Frgw)ar=a/are | wawidr=-ase@ 6

where As = (1/c1 4+ ¢2) /n1.
For the estimate of the last term in the right hand side of (82) on L=, we distinguish
two cases

Case 1 : H is linear. From the assumption(H3), we deduce that there exists c4, such
that s2 + gl2 (s) < casg1 (s) in [—¢, €], and therefore

/ (vf +g? (v;)) dx < C4f vig1 (v) dx < —AGE' (1) (84)
< L<

and the assumption (H2) gives

t
/ h(s)/ [Wax (1) — wyxu(t _s)|2dde < —AgE'(1). (85)
0 2
Combining (82)—(84), we obtain
(L(1) +0E(1)) < —A3Hy (E(1)). (86)

where 0 = A4 (As + 2A¢) .
Case 2: H is nonlinear. First, we deduce from (18) and (20) that

f . f
f°h<s> e () — wix (¢ — )P ds < —I/Oh%s) e () —wxx (1) 12 dis
0 Y 0

2 /
5 (). (87)

IA

Next, we define the functions «j, and « by

! h(s)

| (1) — wyx (£ — 5)||%ds (88)
w Hy ' (=1 (s))

kp(t)=p
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k() = — /th/(S)lh#llwxx(t) —we(t —9)|*ds,  (89)
fo Hy " (=h'(s))

8E(0)  +00 _ h(s) : .
where 1/p > 5 G Jo H()_l(_h,(s))ds and Hy is defined in (14), we

find that k, (t) < 1, forall # > 0.

The properties of the functions Hy, D and h gives

h(s) - h(s) k() 0
Hy'' (= (s)) ~ Hy '(H(h(s)) DThis)) — '

(90)

for some positive constant k.
We can easily verify that

t
<) < —ko / 1 () | (1) — wix (¢ — )|Pds
1o

_ 8koE(0)
Er(1—h) Jy
8o E(0)
T E/(1-h)

t
K (s)ds
1
h(tO) = 5 min {67 H(6)a HO(G)} ) Vi = 1.
We have, by the convexity property of Hy and Hy(0) = O that

Hy(vx) < vHpy(x), x €10,¢], v el0,1]. 91

By assumption (H2), identity (91) and Jensen’s inequality, we get

k(1) () lwyx () — wyr (f — 5)|12ds

v

/t Ho /cp(t)HO (= h’(s)))
Kp(t) 0_ (=h'(s))

KP(I)HO /’l/( )) )
(Kp(f) / Hy e h/( ) h(S) |wxx (t) — wyx (t — 5)||7ds

= Hy (/ h(s)llwxx (1) — wxx (2 — S)Ilzds> . Vi =1,
4]

| \/

this is equivalent to

t
/ R($) | wex (1) — wyr (t — $)|1°ds < Hy '(c(1)), Vi > 10. (92)
I

0

We can assume that € is small enough such that sgi(s) < mm {e, H(e), Hy(e)} for
all |s| < e. With (H3) and reversed Jensen’s inequality for concave function and the
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concavity of H —1 we obtain
2 2 -1 -1
/ (v + 8t @) dx = / H™' (uig1 ))dx < cH™ ' @), (93)
L< L=

where 9 (¢) = %fL< vig1 (vy) dx.
The inequalities (82), (83), (87), (92) and (93), gives

(L) + A7E(1)) < —A3E(t) + AscH ™ (9(0) + AgHy ' (k(1)). V1 = 10.
Since Hy'()=D""(H~'(t)), D"'(H~'(0) = D~'(0))=0 and H'(k(1))<e.
Moreover, the function D~(H~1(¢)) is concave, so its graph is below its tangent,

that HO_1 (k (1)) < cH " (k(1)). Therefore, for all t>1,

—A3E(t) + AscH™' (9 (1)) + AacH ™' (1)),
—AE(t) + AscH™ (90 (1) + 1 (1)) . (94)

(L(1) + A7E(0)

=
=

Take into account E’(r) < 0, H'(t) > 0, H”(¢t) > 0, and using the inequality (94),
for ¢ < € E(0), we infer

[H' (e EM)(L() + A7ED} + ASE®D)]
=¢E'(VH"(EM) {LWO+ATEM} +H (¢ EM) {L'(1)+A7E' (1)} +ASE' (1)
< —A3E()H'(eE(t)+AscH (cE)H ™" (9 (1) +i (1)) +AE (1), Vt>1o.
95)

Let H* by the convex conjugate of H, given by (25), then the increasing of the functions
(H")~!, H and the fact that H(0) = 0, yield

H*(s) <s (H) ' (5). (96)

Applying inequalities (26) and (96) to the second term of the right hand side of (95),
we obtain

H'(sE0)H™' (0() + k(1)) < H*(H'(¢E(1))) — (9 (1) + (1))
< eE()H'(eE()) — A3E'(1), 97)

combining (95) and (97), we have

[H'(eEM) L) + A7E)} + ARE(1)]' < — (A3 — Asce) E()H (e E(1))

= —AgHy(E(1)). (93)
Let us define
Ao LW +0E®) if H is linear,
Lo = { H'(sE(@)){L(t) + A7E(t)} + AgE(¢) if H is nonlinear. 99)
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From (86) and (98), we conclude
L(t) < —CHyE@), t=>1.

Since £(r) and E(¢) are equivalent and 0 < H'(¢E(r)) < H'(¢E(0)). So, there exist
a1 and &, two positive constants such that

a1E(t) < L(t) < &E().

Now we put L, (1) = af(t) for « < 1/ay, using the fact that H> is increasing, we
obtain

La(t) = al(t) < —aéHz(&ier(t))
< —aCHy(Lo(1), 1210
Taking into consideration that H{ = —1/H>, the above inequalities become
Lo(OH[(La(®) = aC, 1 =1,
integrate this differential inequality over (#y, ¢), we obtain
Hi (Lo () = Hi (Lo (10) +aC (1 —10).

Choosing « small enough such that Hy (L (tp)) — aC‘to > (. The decay of Hfl,
yields

Lo = H' (aCr+ (i (Lalo) - aCro) ).

finally, the equivalence of L(¢), L(t), Lo(t) and E (¢) , result
E(t) <o Hy (oot +@3), 1 >10.

One can easily find a similar estimate over the interval [0, 7], by using decreasing
of £ and H~ ! This completes the proof. O

Acknowledgements The authors would like to thank the anonymous referees for their valuable comments
and suggestions. and express their gratitude to DGRSDT for the financial support.
References

1. Aili, M., Khemmoudj, A.: General decay of energy for a viscoelastic wave equation with a distributed
delay term in the nonlinear internal dambing. Rendiconti del Circolo Matematico di Palermo Series 2,
1-21 (2019)

2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

@ Springer



Existence and general decay of solution for nonlinear... 281

.\OOO\]O\

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Aubin, J.P.: Analyse mathematique-un theoreme de compacite 256(24), 5042 (1963)
. Benaissa, A., Bahlil, M., etal.: Global existence and energy decay of solutions to a nonlinear timoshenko

beam system with a delay term. Taiw. J. Math. 18(5), 1411-1437 (2014)

. Benaissa, A., Benguessoum, A., Messaoudi, S.A.: Global existence and energy decay of solutions to

a viscoelastic wave equation with a delay term in the non-linear internal feedback. Int. J. Dyn. Syst.
Differ. Equ. 5(1), 1-26 (2014)

. Bland, D.R.: The theory of linear viscoelasticity. Courier Dover Publications (2016)
. Brezis, H.: Analyse fonctionnelle, théorie et applications. Masson, Paris; New York (1983)
. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Modern Phys. 33(2), 239 (1961)

Dai, Q., Yang, Z.: Global existence and exponential decay of the solution for a viscoelastic wave
equation with a delay. Zeitschrift fiir angewandte Mathematik und Physik 65(5), 885-903 (2014)

. Dijilali, L., Benaissa, A., Benaissa, A.: Global existence and energy decay of solutions to a viscoelastic

timoshenko beam system with a nonlinear delay term. Appl. Anal. 95(12), 2637-2660 (2016)

Do, K.D., Pan, J.: Boundary control of transverse motion of marine risers with actuator dynamics. J.
Sound Vib. 318(4-5), 768-791 (2008)

Feng, B.: Global well-posedness and stability for a viscoelastic plate equation with a time delay. Math.
Probl. Eng. 2015, 1-10 (2015)

Feng, B.: General decay for a viscoelastic wave equation with density and time delay term in R. Taiw.
J. Math. 22(1), 205-223 (2018)

Feng, B., Zahri, M.: Optimal decay rate estimates of a nonlinear viscoelastic kirchhoff plate. Complexity
2020, 14 (2020)

Gerbi, S., Said-Houari, B.: Existence and exponential stability of adamped wave equation with dynamic
boundary conditions and a delay term. Appl. Math. Comput. 218(24), 11900-11910 (2012)

Hassan, J.H., Messaoudi, S.A.: General decay rate for a class of weakly dissipative second-order
systems with memory. Math. Methods Appl. Sci. 42(8), 2842-2853 (2019)

. Khemmoudj, A., Djaidja, I.: General decay for a viscoelastic rotating Euler-Bernoulli beam. Commun.

Pure Appl. Anal. 19(7), 3531 (2020)

Khemmoudj, A., Mokhtari, Y.: General decay of the solution to a nonlinear viscoelastic modified
von-Karman system with delay. Discrete Contin. Dyn. Syst. A 39(7), 3839 (2019)

Kim, D., Park, J.Y., Kang, Y.H.: Energy decay rate for a von Karman system with a boundary nonlinear
delay term. Comput. Math. Appl. 75(9), 3269-3282 (2018)

Lekdim, B., Khemmoudj, A.: General decay of energy to a nonlinear viscoelastic two-dimensional
beam. Appl. Math. Mech. 39(11), 1661-1678 (2018)

Lions, J.: Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Paris
(1969)

Liu, W., Zhu, B., Li, G., Wang, D.: General decay for a viscoelastic Kirchhoff equation with
Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evol.
Equ. Control Theory 6(2), 239 (2017)

Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2),
1457-1467 (2008)

Mohamed, F., Ali, H.: On convexity for energy decay rates of a viscoelastic wave equation with a
dynamic boundary and nonlinear delay term. Facta Universitatis Ser. Math. Inform. 30(1), 67-87
(2015)

Mustafa, M.1., Abusharkh, G.A.: Plate equations with frictional and viscoelastic dampings. Appl. Anal.
96(7), 1170-1187 (2017)

Mustafa, M.I., Messaoudi, S.A.: General stability result for viscoelastic wave equations. J. Math. Phys.
53(5), 053702 (2012)

Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the
boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561-1585 (2006)

Nicaise, S., Pignotti, C., Valein, J.: Exponential stability of the wave equation with boundary time-
varying delay. Discrete Contin. Dyn. Syst. Ser. S 4(3), 693-722 (2011)

Nicaise, S., Pignotti, C., et al.: Stabilization of the wave equation with boundary or internal distributed
delay. Differ. Integral Equ. 21(9-10), 935-958 (2008)

Nicaise, S., Valein, J., Fridman, E.: Stabilization of the heat and the wave equations with boundary
time-varying delays, dcds-s pp. 559-581 (2009)

Shinskey, F.G.: Process Control Systems. McGraw-Hill, Inc. (1979)

@ Springer



282 B. Lekdim, A. Khemmoudj

32. Yang, X.G., Zhang, J., Wang, S.: Stability and dynamics of a weak viscoelastic system with memory
and nonlinear time-varying delay. Discrete Contin. Dyn. Syst. A 40(3), 1493 (2020)
33. Zheng, S.: Nonlinear Evolution Equations. CRC Press, Boca Raton (2004)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Existence and general decay of solution for nonlinear viscoelastic two-dimensional beam with a nonlinear delay
	Abstract
	1 Introduction
	2 Hypothesis and preliminary results
	3 Well possedness
	4 Asymptotic behavior
	Acknowledgements
	References




