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Abstract
We investigate the longitudinal and transversal vibrations of the viscoelastic beamwith
nonlinear tension and nonlinear delay term under the general decay rate for relaxation
function. The existence theorem is proved by the Faedo–Galerkin method and using
suitable Lyapunov functional to establish the general decay result.
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1 Introduction

Consider the following viscoelastic nonlinear beam in two-dimensional space:

⎧
⎨

⎩

ρwt t + Dwxxxxt + EI {w − h ∗ w}xxxx − {[
T0 + E A

(
vx + 1

2w
2
x

)]
wx
}

x = 0,
ρvt t − E A

(
vx + 1

2w
2
x

)

x + μ1g1 (vt ) + μ2g2 (vt (t − τ)) = 0,
∀ (x, t) ∈ (0, L) × (0,+∞ [,

(1)
with homogeneous boundary conditions

{
w(0, t) = w(L, t) = wx (0, t) = wx (L, t) = 0,

v(0, t) = v(L, t) = 0, ∀t > 0,
(2)
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and initial conditions

⎧
⎨

⎩

w(x, 0) = w0(x), wt (x, 0) = w1(x),

v(x, 0) = v0(x), vt (x, 0) = v1(x), ∀x ∈ (0, L),

vt (x,−t) = f (x, t),∀ (x, t) ∈ (0, L) × (0, τ ),

(3)

where x and t denotes the space variable along the beam of length L and the time
variable, respectively, w(x, t) and v(x, t) are the displacements in the transverse and
longitudinal directions of the beam at the position x for time t , subscripts mean partial
derivatives. ρ, D, EI , T0 and E A are the uniform mass per unit length of the beam,
the Kelvin–Voigt damping coefficient, bending stiffness, the tension and the stiffness
of the beam, respectively. μ1 and μ2 are two positive real numbers, g1 and g2 are
two functions, τ is a time delay, and f is history function, h ∗ wxx is the viscoelastic
damping term defined by

(h ∗ wxx ) (t) =
∫ t

0
h(t − s)wxx (x, s)ds, ∀t ≥ 0,

which describes the relationship between the stress and the strain from the Boltzmann
Principle [6,8]. The relaxation function h represents the kernel of the memory term.

The term g2 (vt (t − τ)) represents distributed delay term.Timedelay is the property
of a physical system by which the response to an applied force is delayed in its effect
[31]. The presence of the delay can become a source of instability. For example, the
authors in [27,28,30] proved that the system is unstable under the condition μ1 < μ2,

but otherwise the system is stable.
In recent years, energy decay in viscoelastic systems has become an important

research title, while the behaviour of the relaxation function influences the energy
decay rate. These behaviour of the relaxation function are generalized by the following
extended class of kernels, namely,

h′(t) ≤ −H(h(t)), t ≥ 0,

where H satisfying some additional conditions imposed. We refer to previous studies
[9,12–14,16–18,32] that proved a general energy decay rate.

For a system with delay term and viscoelastic damping, It is important to mention
that the authors in [1,15,19,22,24] established the existence of solutions and general
decay rates under the assumption μ1 > μ2.

In the absence of a delay, damping term (μ1 = μ2 = 0) and the relaxation function
satisfies

h′(t) ≤ −γ h(t),

where γ is a positive constant. Lekdim et al. [20] investigated the problem (1)–(3),with
the following boundary conditions

{
w(0, t) = w(L, t) = wx (0, t) = wx (L, t) = 0,
v(0, t) = 0, E Avx (L, t) = U (t), ∀t > 0.

(4)
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They established an exponential stability under a suitable boundary control U (t).
Motivated by the previous works, in this work we consider (1)–(3) in which we

generalize the results obtained in [20], without boundary control. By expanding the
class of relaxation functions into which the existence and unconditional stability are
established.

The rest of our paper is organized as follows. In Sect. 2, we present some notations,
assumptions and technical lemmas which will be needed later. In Sect. 3, we establish
the existence and uniqueness results. The general decay rate is provided in Sect. 4.

2 Hypothesis and preliminary results

In this section, we give some notations, hypotheses and lemmas necessary to prove
our results.

Notation. Let L2(0, L) be the Hilbert space with the inner product (·, ·) and norms
‖·‖.

We introduce the Hilbert spaces

V =H1
0 (0, L) ∩ H2(0, L), W=H2

0 (0, L) ∩ H4(0, L) and Z=L2
(
0, L; H1 (0, 1)

)
.

As in [29], we introduce the new dependent variable

z(x, p, t) = vt (x, t − τ p), (x, p) ∈ (0, L) × (0, 1) , t ≥ 0, (5)

which satisfies

τ zt (x, p, t) + z p(x, p, t) = 0, (x, p) ∈ (0, L) × (0, 1) . (6)

The problem (1)–(3) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρwt t + Dwxxxxt + EI {w − h ∗ w}xxxx − {[
T0 + E A

(
vx + 1

2w
2
x

)]
wx
}

x = 0,
ρvt t − E A

(
vx + 1

2w
2
x

)

x + μ1g1 (vt ) + μ2g2 (z(x, p, t)) = 0,
τ zt (x, p, t) + z p(x, p, t) = 0, p ∈ (0, 1) ,

z(x, 0, t) = vt (x, t), ∀ (x, t) ∈ (0, L) × (0,+∞ [,
w(x, 0) = w0(x), wt (x, 0) = w1(x),

v(x, 0) = v0(x), vt (x, 0) = v1(x), ∀x ∈ (0, L),

z(x, p, 0) = f (x, pτ), ∀ (x, p) ∈ (0, L) × (0, 1),
(7)

with boundary conditions (2).

Hypothesis on memory kernels, the damping and the delay functions

As in [1,25], we make the following hypotheses on the kernel functions :

(H1) h ∈ C2(R+,R+) is differentiable function satisfying

h(0) > 0, 1 −
∫ ∞

0
h(s)ds = 1 − h̄ > 0. (8)
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264 B. Lekdim, A. Khemmoudj

(H2) There exists a C1 function H : R+ → R+ witch is linear or strictly increasing
and strictly convex C2 function on (0, ε], ε < 1, with H(0) = H ′(0) = 0, such
that

h′(t) ≤ −H(h(t)), ∀t ≥ 0. (9)

For the weight of the delay, following [4,10], we assume that

(H3) g1 ∈ C(R,R) is nondecreasing function, such that there exist ε, c1, c2 > 0,
such that {

c1 |s| ≤ |g1 (s)| ≤ c2 |s| if |s| ≥ ε,

s2 + g2
1 (s) ≤ H−1 (sg1 (s)) if |s| ≤ ε.

(10)

(H4) Let g2 ∈ C1(R,R) odd nondecreasing function, such that there exist c3, a1,
a2 > 0 with

∣
∣g′

2 (s)
∣
∣ ≤ c3 (11)

a1sg2 (s) ≤ G(s) ≤ a2sg1 (s) , (12)

where G(s) = ∫ s
0 g2(r)dr and

a2μ2 < a1μ1. (13)

Remark 1 (see [26]) By (H1), we have lims→+∞ h(s) = 0 and assume that
lims→+∞ h′(s) = 0. This implies that there exists t0 > 0 large enough such that

max
{
h(t),−h′(t)

}
< min {ε, H(ε), H0(ε)} , ∀t ≥ t0, (14)

where H0(t) = H(D(t)) provided that D is a positive C1 function, D(0) = 0, for
which H0 is strictly increasing and strictly convex C2 function on (0, ε] and

∫ +∞

0

h(s)

H−1
0 (−h′(s))

ds < +∞. (15)

By the nonincreasing of h, we get

0 < h (t0) ≤ h(t) ≤ h(0), ∀t ∈ [0, t0] , (16)

the continuity and positivity of H imply that

a ≤ H(h(t)) ≤ b, ∀t ∈ [0, t0] , (17)

for some positive constants a and b. Then there exists γ > 0 such that

h′(t) ≤ −γ h(t), ∀t ∈ [0, t0] . (18)
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We define the energy functional of problem (1)–(3) by

E(t) = ρ

2

[
‖wt‖2 + ‖vt‖2

]
+
(

1 −
∫ t

0
h(s)ds

)
EI

2
‖wxx‖2

+T0
2

‖wx‖2 + E A

2

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

+ EI

2
(h ◦ wxx ) + ξ

∫ L

0

∫ 1

0
G (z(x, p, t)) dpdx . (19)

where ξ is a positive constant such that

τ
μ1 (1 − a1)

a1
< ξ < τ

μ1 − a2μ1

a2

and

(h ◦ u) (t) =
∫ t

0
h(t − s) ‖u(t) − u(s)‖2 ds.

Lemma 1 Let (w, v, z) be a solution of the problem (7), then, for t ≥ 0, the time
derivative of E(t) can be upper bounded by

E ′(t) ≤ −D ‖wxxt‖2 + EI

2
h′ ◦ wxx − EI

2
h(t) ‖wxx‖2

−η1 (vt , g1 (vt )) − η2 (z(x, 1, t), g2 (z(x, 1, t))) ≤ 0. (20)

where η1 = μ1 − a2
ξ
τ

− a2μ2 and η2 = a1
ξ
τ

− μ2 (1 − a1) .

Proof Taking the inner product in L2(0, L) of the first equation of (7) with wt , the
second equation with vt , , then integrating by parts, we obtain

d

dt

{
ρ

2

[
‖wt‖2 + ‖vt‖2

]
+ EI

2
‖wxx‖2 + T0

2
‖wx‖2 + E A

2

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2
}

= −D ‖wxxt‖2 + (h ∗ wxx , wxxt ) − μ1 (vt , g1 (vt )) − μ2 (vt , g2 (z(x, 1, t))) .

(21)

The second term of the right hand side of the above equality gives

2 (h ∗ wxx , wxxt ) = h′ ◦ wxx − h(t) ‖wxx‖2

− d

dt

{

(h ◦ wxx ) −
(∫ t

0
h(s)ds

)

‖wxx‖2
}

. (22)
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266 B. Lekdim, A. Khemmoudj

By multiplying the third equation of (7) by ξg2 (z(x, p, t)) then integrating over
(0, L) × (0, 1) , we find

ξ

∫ 1

0

∫ L

0
zt g2 (z(x, p, t)) dpdx = − ξ

τ

∫ 1

0

∫ L

0

∂

∂ p
G (z(x, p, t)) dpdx

= − ξ

τ

∫ L

0
[G (z(x, 1, t)) − G (z(x, 0, t))] dx .

(23)

Combining (21)–(23), using the fact that z(0, t) = vt (t) and assumption (H4),we get

d

dt
E(t) = −D ‖wxxt‖2 + EI

2
h′ ◦ wxx − EI

2
h(t) ‖wxx‖2 − ξ

τ

∫ L

0
G (z(x, 1, t)) dx

−
(

μ1 − a2
ξ

τ

)

(vt , g1 (vt )) − μ2 (vt , g2 (z(x, 1, t))) . (24)

The conjugate function G∗ of the differentiable convex function G (see [7], pp. 9), i.e.

G∗(s) = sup
t≥0

(st − G(t)) .

On the other hand G∗ is the Legendre transform of G. We refer to ( [2], pp. 61-62),
that is given by

G∗(s) = s
(
G ′)−1

(s) − G
[(

G ′)−1
(s)
]
, ∀s ≥ 0, (25)

which satisfies the generalized Young inequality :

st ≤ G∗(s) + G(t), ∀t, s ≥ 0. (26)

By the definition of G, we obtain

G∗(s) = sg−1
2 (s) − G

[
g−1
2 (s)

]
. (27)

Applying (26) with s = g2 (z(1, t)) and t = vt (t), from the last term of (24), we
obtain

d

dt
E(t) ≤ −D ‖wxxt‖2 + EI

2
h′ ◦ wxx− EI

2
h(t) ‖wxx‖2 −

(

μ1−a2
ξ

τ

)

(vt , g1 (vt ))

+μ2

∫ L

0

(
G(vt ) + G∗(g2 (z (x, 1, t)))

)
dx − ξ

τ

∫ L

0
G (z(x, 1, t)) dx .

(28)
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The equality (27) and assumption (H4) imply that

G∗(g2 (z(x, 1, t))) = z(x, 1, t)g2 (z(x, 1, t)) − G (z(x, 1, t))

≤ (1 − a1) z(x, 1, t)g2 (z(x, 1, t)) . (29)

Combining (28) and (29), we have (20). �
Remark 2 The Lemma 1 imply that E(t) nonincreasing, moreover

E(t) ≤ E(0), ∀t ≥ 0. (30)

The following lemmas will be used frequently in the sequel

Lemma 2 ([11]) Let u ∈ C1([0, L]) satisfying u(0, t) = 0. Then the following
inequality hold:

∥
∥
∥u2(t)

∥
∥
∥∞ ≤ 2 ‖u(t)‖ ‖ux (t)‖ , ∀t ≥ 0,

where ‖.‖∞ is the norm of L∞([0, L]).

Lemma 3 ([23]) If w is a solution of problem (1)–(3), assuming that h satisfies (H1)
and (H2). then we have

∫ L

0
(h � w)2xx dx ≤ h̄ (h ◦ wxx ) , (31)

∫ L

0

(
h′ � w

)2
xx dx ≤ −h(0)

(
h′ ◦ wxx

)
, (32)

where (h � u) (t) = ∫ t
0 h(t − s) (u(s) − u(t)) ds.

3 Well possedness

The main aim of this section is to prove the following existence and uniqueness
theorem:

Theorem 1 Let (w0, v0, z0) ∈ W × V × Z and (w1, v1) ∈ H2
0 (0, L) × H1

0 (0, L).
Assumee that (H1)–(H4) hold and satisfy

z(x, p, t) = vt (x, t − τ p), (x, p) ∈ (0, L) × (0, 1) , t ≥ 0. (33)

Then the system (1)–(3) has a unique solution (w, v, z) in the sense that

w ∈ L∞ (
0, T ; H2

0 (0, L)
)
, v ∈ L∞ (

0, T ; H1
0 (0, L)

)
, z ∈ L∞ (0, T ; Z) .

wt ∈ L∞ (
0, T ; H2

0 (0, L)
)
, vt∈L∞ (

0, T ; H1
0 (0, L)

)
, zt∈L∞ (

0, T ; L2 ((0, L) × (0, 1))
)
.

wt t ∈ L∞ (
0, T ; L2 (0, L)

) ∩ L2 (0, T ; H2
0 (0, L)

)
, vt t ∈ L∞ (

0, T ; L2 (0, L)
)
.
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268 B. Lekdim, A. Khemmoudj

Proof We employ the Faedo–Galerkin technique to construct a solution.
Approximate solutions: Let (wi , vi , zi )i≤m be a complete orthogonal system

of W × V × Z . For each m ∈ N, let W m
1 = span {w1, w2, . . . , wm} , W m

2 =
span {v1, v2, . . . , vm} and W m

3 = span {z1, z2, . . . , zm} , such as the sequence
zi (x, p) defined by zi (x, 0) = vi (x), we prolong zi (x, 0) in Z by zi (x, p). For
w(0), wt (0) ∈ W m

1 , v(0), vt (0) ∈ W m
2 and z(p, 0, s) ∈ W m

3 , searching for func-
tions wm(x, t) = ∑m

i=1 k1i (t)wi (x), vm(x, t) = ∑m
i=1 k2i (t)vi (x) and zm(x, t, p) =

∑m
i=1 k3i (t)zi (x, p), that satisfy the following equations

ρ
(
wm

tt , ϕ
)+ D

(
wm

xxt , ϕxx
)+ EI

(
wm

xx , ϕxx
)+ (

T0w
m
x , ϕx

)

+E A

((

vm
x + 1

2

(
wm

x

)2
)

wm
x , ϕx

)

− EI (h ∗ wm
xx , ϕxx ) = 0, (34)

ρ
(
vm

tt , φ
)+ E A

(
vm

x , φx
)+ E A

2

((
wm

x

)2
, φx

)

+ (
μ1g1

(
vm

t

)+ μ2g2
(
zm(x, 1, t)

)
, φ
) = 0 (35)

and ∫ 1

0

(
τ
(
zm

t , ψ
)+

(
zm

p , ψ
))

dp = 0, (36)

for all (ϕ, φ,ψ) ∈ H2
0 (0, L) × H1

0 (0, L) × L2 ((0, L) × (0, 1)) , with the initial
conditions

(wm(0), vm(0), zm(p, 0, s)) = (
wm
0 , vm

0 , zm
0

) → (w0, v0, z0) in W × V × Z ,
(
wm

t (0), vm
t (0)

) = (
wm
1 , vm

1

) → (w1, v1) in H2
0 (0, L) × H1

0 (0, L) .

A Priori Estimates
Throughout this part, Bi , i = 1, 2, . . . , denote positive constants independent of

m and t ∈ [0, T ] .
Estimate 1: Let Em the energy defined by (19), for the solutions wm, vm and zm .

By utilizing the same steps used in the proof of Lemma 1, we find

Em(t) +
∫ t

0

[
D
∥
∥wm

xxt

∥
∥2 + η1

(
vm

t , g1
(
vm

t

))]
ds

+
∫ t

0
η2
(
zm(1, s), g2

(
zm(1, s)

))
ds ≤ Em(0) ≤ B1. (37)

where η1, η2 positive constants.
Estimate 2: Firstly, we estimate

∥
∥wm

tt (0)
∥
∥2 ,

∥
∥vm

tt (0)
∥
∥2 and

∥
∥zm

t (0)
∥
∥2.

Fixed t = 0 and taking ϕ = wm
tt (0), φ = vm

tt (0) and ψ = zm
t (0) in (34), (35) and

(36), respectively, then integrate them by parts and apply Young’s inequality. From the
assumptions (H3), (H4) and the initial data are sufficiently smooth, we can be infer
that

∥
∥wm

tt (0)
∥
∥2 ,

∥
∥vm

tt (0)
∥
∥2 ,

∫ 1

0

∥
∥zm

t (0)
∥
∥2 dp ≤ B2. (38)
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Now, we estimate
∥
∥wm

tt

∥
∥2 ,

∥
∥vm

tt

∥
∥2 and

∥
∥zm

t

∥
∥2.

Let us fix t , ζ > 0 such that ζ < T − t . Taking the difference of (34), (35)
and (36) with t = t + ζ and t = t , and simultaneously replacing ϕ, φ and ψ with
wm

t (t + ζ ) − wm
t (t), vm

t (t + ζ ) − vm
t (t) and (zm(p, t + ζ ) − zm(p, t)), respectively.

Then gather the two first relations and integrating the last relation over (0, 1) , we get

ρ

2

d

dt

∥
∥wm

t (t + ζ ) − wm
t (t)

∥
∥2 + D

∥
∥wm

xxt (t + ζ ) − wm
xxt (t)

∥
∥2

+ EI

2

d

dt

∥
∥wm

xx (t + ζ ) − wm
xx (t)

∥
∥2 + T0

2

d

dt

∥
∥wm

x (t + ζ ) − wm
x (t)

∥
∥2

+ ρ

2

d

dt

∥
∥vm

t (t + ζ ) − vm
t (t)

∥
∥2 + E A

2

d

dt

∥
∥vm

x (t + ζ ) − vm
x (t)

∥
∥2

+μ2
(
vm

t (t + ζ ) − vm
t (t), g2

(
zm(1, t + ζ )

)− g2
(
zm(1, t)

))

+μ1
(
vm

t (t + ζ ) − vm
t (t), g1

(
vm

t (t + ζ )
)− g1

(
vm

t (t)
)) = F1 + F2, (39)

and

1

2

d

dt
τ

∫ 1

0

∥
∥zm(p, t+ζ ) − zm(p, t)

∥
∥2 dp = −1

2

∫ 1

0

d

dp

∥
∥zm(p, t+ζ )−zm(p, t)

∥
∥2 dp

= 1

2

∥
∥vm

t (t + ζ ) − vm
t (t)

∥
∥2

−1

2

∥
∥zm(1, t + ζ ) − zm(1, t)

∥
∥2 , (40)

where

F1 = − E A

2

∫ L

0

[(
wm

x (t + ζ )
)3 − (

wm
x (t)

)3
] [

wm
xt (t + ζ ) − wm

xt (t)
]

dx

−E A

∫ L

0

[
wm

x vm
x (t + ζ ) − wm

x vm
x (t)

] [
wm

xt (t + ζ ) − wm
xt (t)

]
dx

− E A

2

∫ L

0

[(
wm

x (t + ζ )
)2 − (

wm
x (t)

)2
] [

vm
xt (t + ζ ) − vm

xt (t)
]

dx,

and

F2 = EI

(∫ t+ζ

0
h(t+ζ−s)wxx (s)ds−

∫ t

0
h(t−s)wxx (s)ds, wxxt (t+ζ )−wxxt (t)

)

.

Taking the first estimate, Young, Poincaré’s inequalities and Lemma 2 into account,
we can estimate F1 and F2 as follows :

|F1| ≤ D

4

∥
∥wm

xxt (t + ζ ) − wm
xxt (t)

∥
∥2 + B3

∥
∥wm

x (t + ζ ) − wm
x (t)

∥
∥2

+B3

(∥
∥wm

xx (t + ζ ) − wm
xx (t)

∥
∥2 + ∥

∥vm
t (t + ζ ) − vm

t (t)
∥
∥2
)

, (41)
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|F2| ≤ B4

∫ L

0

(∫ t+ζ

0
h(t + ζ − s)wxx (s)ds −

∫ t

0
h(t − s)wxx (s)ds

)2

dx

+ D

4
‖wxxt (t + ζ ) − wxxt (t)‖2 . (42)

Combining (39)–(42), then dividing both sides by ζ 2 and taking the limit as ζ → 0,
we get

ρ

2

d

dt

∥
∥wm

tt (t)
∥
∥2 + D

2

∥
∥wm

xxtt (t)
∥
∥2 + EI

2

d

dt

∥
∥wm

xxt (t)
∥
∥2 + T0

2

d

dt

∥
∥wm

xt (t)
∥
∥2

+ρ

2

d

dt

∥
∥vm

tt (t)
∥
∥2 + E A

2

d

dt

∥
∥vm

xt (t)
∥
∥2 + μ2

(
vm

tt (t)z
m
t (1, t), g′

2

(
zm(1, t)

))

+μ1

((
vm

tt (t)
)2

, g′
1

(
vm

t (t)
))+ 1

2

d

dt
τ

∫ 1

0

∥
∥zm

t (p, t)
∥
∥2 dp + 1

2

∥
∥zm

t (1, t)
∥
∥2

≤ B5

(∥
∥wm

xt (t)
∥
∥2 + ∥

∥wm
xxt (t)

∥
∥2 + ∥

∥vm
tt (t)

∥
∥2
)

+B4

∫ L

0

(

h(0)wm
xx +

∫ t

0
h′(t − s)wm

xx (s)ds

)2

dx . (43)

On the other hand, we have

μ1

((
vm

tt (t)
)2

, g′
1

(
vm

t (t)
)) ≥ 0, (44)

μ2
(
vm

tt (t)z
m
t (1, t), g′

2

(
zm(1, t)

)) ≤ μ2c3
2

(∥
∥zm

t (1, t)
∥
∥2 + ∥

∥vm
tt (t)

∥
∥2
)

, (45)

and

∫ L

0

∫ t

0
h′(t − s)wm

xx (s)dsdx ≤ sup
[0,T ]

∥
∥wm

xx

∥
∥

(∫ T

0

∣
∣h′(s)

∣
∣ ds

)

≤ B6. (46)

Integrating (43) over (0, t) , taking (37), (44)–(46) under consideration and noting that
the initial data are sufficiently smooth. By Gronwall’s lemma, we conclude

∥
∥wm

tt

∥
∥2 +

∫ t

0

∥
∥wm

xxtt

∥
∥2 ds + ∥

∥wm
xxt

∥
∥2 + ∥

∥wm
xt

∥
∥2 + ∥

∥vm
tt

∥
∥2

+ ∥
∥vm

xt

∥
∥2 + τ

∫ 1

0

∥
∥zm

t (p, t)
∥
∥2 dp +

∫ t

0

∥
∥zm

t (1, s)
∥
∥2 dpds ≤ B7eB8T . (47)

Passage to the limit
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The estimate (37) and (38) permits to deduce

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
wm , vm) ,

(
wm

t , vm
t
)

are bounded in L∞ (
0, T ; H2

0 (0, L)
)

× L∞ (
0, T ; H1

0 (0, L)
)

,
(
wm

tt , v
m
tt
)
is bounded in L∞ (

0, T ; L2(0, L)
)

∩ L2
(
0, T ; H2

0 (0, L)
)

× L∞ (
0, T ; L2(0, L)

)
,

(
zm , zm

t
)
is bounded in L∞ (0, T ; Z) × L∞ (

0, T ; L2((0, L) × (0, 1))
)

,

vm
t g1

(
vm

t
)
, zm (1, t) g2

(
zm (1, t)

)
are bounded in L1((0, L) × (0, T )),

G
(
zm) is bounded in L∞ (

0, T ; L2((0, L) × (0, 1))
)

(
vx + 1

2
(
wm

x
)2
)
is bounded in L∞ (

0, T ; L2(0, L)
)

.

(48)
Therefore, there exists subsequences of (wm) , (vm) and (zm), still denoted by (wm) ,

(vm) and (zm) , respectively, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
wm, wm

t

)→ (w,wt ) weak star in L∞ (
0, T ; H2

0 (0, L)
)×L∞ (

0, T ; H2
0 (0, L)

)
,(

vm, vm
t

) → (v, vt ) weak star in L∞ (
0, T ; H1

0 (0, L)
)× L∞ (

0, T ; H1
0 (0, L)

)
,

wm
tt → wt t weak star in L∞ (

0, T ; L2(0, L)
) ∩ L2

(
0, T ; H2

0 (0, L)
)
,

vm
tt → vt t weak star in L∞ (

0, T ; L2(0, L)
)
,(

zm, zm
t

) → (z, zt ) weak star in L∞ (0, T ; Z) × L∞ (
0, T ; L2((0, L) × (0, 1))

)
,

(
g1 (vm) , g2

(
zm

t

)) → (G1, G2) weak star in
[
L2((0, T ) × (0, L))

]2
,(

vm
x + 1

2

(
wm

x

)2
)

→ Γ weak star in L∞ (
0, T ; L2(0, L)

)
.

(49)
Analysis of the nonlinear terms

By Aubin-Lions compactness (see [3]), we conclude from (49), that

wm → w strongly in W 1,∞ (
0, T ; H1

0 (0, L)
)
,

vm → v strongly in W 1,∞ (
0, T ; L2 (0, L)

)
,

(50)

therefore
zm → z strongly and a.e in [0, T ] × [0, L] . (51)

Lemma 4 ([5]) We have the convergence g1
(
vm

t

) → g1 (vt ) and g2 (zm) → g2 (z) in
L1 ([0, T ] × [0, L]) . Hence,

g1
(
vm

t

) → g1 (vt ) weak in L2 ([0, T ] × [0, L]) ,

g2 (zm) → g2 (z) weak in L2 ([0, T ] × [0, L]) .
(52)

From (50) Lions Lemma ([21], pp. 12), we concluded that Γ = (
vx + 1

2 (wx )
2)

and
(

vm
x + 1

2

(
wm

x

)2
)

wm
x →

(

vx + 1

2
(w)2

)

wx weakly in L2 ([0, T ] × [0, L]) .

(53)
Now, we can pass to the limit in the approximate problem (34)–(35) to get a weak
solution of the problem (1)–(3), (see [21,33]).

Uniqueness The uniqueness can be proved by following the same procedures as in
estimation 2. �
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4 Asymptotic behavior

The prove of energy decay relies heavily on the construction of Lyapunov functional
and exploitation of convex analysis. For this intent,we start by constructing aLyapunov
functional :

L(t) = E(t) + β1Φ(t) + β2Ψ (t) + β3χ(t) (54)

where β1, β2 and β3 are positive constants, E(t) is given by (19) and

Φ(t) = ρ

2
(w,wt ) + ρ (v, vt ) + D

4
‖wxx‖2 , (55)

Ψ (t) = ρ ((h � w) ,wt ) . (56)

χ(t) =
∫ L

0

∫ 1

0
e−2τ pG (z (x, p, t)) dpdx (57)

It is our aim to prove that functional L(t) satisfies an estimates. To pass this estimate
to E(t), we will need the following proposition.

Proposition 1 Let L(t) and E(t) be the functional defined by (54) and (19), respec-
tively. Then, for β1 β2 and β3 small enough, we have

α1E(t) ≤ L(t) ≤ α2E(t), ∀t > 0. (58)

where α1 and α2 are positive constants.

Proof By Young’s inequality, we have

|Φ(t)| ≤ D

4
‖wxx‖2 + ρ

4
‖wt‖2 + ρL2

4
‖wx‖2 + ρ

2
‖vt‖2 + ρL2

2
‖vx‖2 . (59)

Obviously,

‖vx‖2 ≤ 2

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

+ 1

2

∥
∥
∥w

2
x

∥
∥
∥
2
,

then using Holder’s inequality, Lemma 2 and inequality (30), we have

‖vx‖2 ≤ 2

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

+ A1

2
‖wx‖2 , (60)

where A1 = 4E(0)/
√

T0
(
EI

(
1 − h̄

))
.

Substituting (60) into (59), we obtain

|Φ(t)| ≤ ρ

4
‖wt‖2 + ρ

2
‖vt‖2 + D

4
‖wxx‖2

+ (1 + A1) ρL2

4
‖wx‖2 + ρL2

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

. (61)

123



Existence and general decay of solution for nonlinear… 273

For Ψ , by Young’s inequality and Lemma 3, we get

|Ψ (t)| ≤ ρ

2
‖wt‖22 + L4ρh̄

2
(h ◦ wxx ) . (62)

For χ , from the decay of the function e−2τ p, we have

|χ(t)| ≤ 1

ξ
E(t). (63)

By combining (61), (62) and (63), we deduce that

−
(

λ + β3

ξ

)

E(t) ≤ β1Φ(t) + β2Ψ (t) + β3χ(t) ≤
(

λ + β3

ξ

)

E(t),

where λ = max
(

β1
2 + β2, β1,

D
2EI (1−h̄)

β1,
(1+A1)ρL2

2T0
β1,

2ρL2

E A
β1,

L4ρh̄
EI

β2

)
.

We take β1, β2 and β3 small, so that λ + β3
ξ

< 1, this complete proof. �
Lemma 5 Let Φ(t) be the functional given by (55), then, for t ≥ 0,

Φ ′(t) ≤ ρ

2
‖wt‖2 + ρ ‖vt‖2 − EI

(
1 − h̄

)

4
‖wxx‖2 + EI h̄

4
(
1 − h̄

) (h ◦ wxx )

−
[

T0
2

− θ1Aμ

A1

2

]

‖wx‖2 − [
E A − 2θ1Aμ

]
∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

+ μ1

4θ1
‖g1 (vt )‖2 + μ2c3

4θ1
(z(x, 1, t), g2 (z(x, 1, t))) . (64)

Proof Differentiating Φ(t) and using the equations (1), we obtain

Φ ′(t) = ρ

2
‖wt‖2 + ρ ‖vt‖2 + J1 + J2 + J3 + J4, (65)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J1 = − EI
2 ({w − h ∗ w}xxxx , w) ,

J2 =
(
− D

2 wxxxxt + T0
2 wxx , w

)
+ D

2 (wxxt , wxx ) ,

J3 = E A
2

({(
vx + 1

2w
2
x

)
wx
}

x , w
)+ E A

((
vx + 1

2w
2
x

)

x , v
)
,

J4 = − (μ1g1 (vt ) + μ2g2 (z(x, 1, t)) , v) .

Using integrating J1 by parts twice and the boundary conditions (2), we get

J1 = − EI

2
‖wxx‖2 + EI

2
(h ∗ wxx , wxx ) ,
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add and subtract the term EI
2

((∫ t
0 h(s)ds

)
wxx , wxx

)
in the above equality then using

Young’s inequality and Lemma 3, we have

J1 ≤ − EI
(
1 − h̄ − θ

)

2
‖wxx‖2 + EI h̄

8θ
(h ◦ wxx ) . (66)

Integrating by parts the terms J2 and J3, we find

J2 = −T0
2

‖wx‖2 , (67)

J3 = −E A

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

. (68)

By Young’s inequality, Poincaré’s inequality, inequality (60) and assumption (H4),
we infer for θ1 > 0

J4 ≤ θ1Aμ ‖vx‖2 + μ1

4θ1
‖g1 (vt )‖2 + μ2

4θ1
‖g2 (z(x, 1, t))‖2

≤ θ1Aμ

(

2

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

+ A1

2
‖wx‖2

)

+ μ1

4θ1
‖g1 (vt )‖2

+μ2c3
4θ1

(z(x, 1, t), g2 (z(x, 1, t))) , (69)

where Aμ = (μ1 + μ2) L2.

Now, Substituting (66)–(69) into (65) and taking θ = (1−h̄)
2 , we have (64). �

Lemma 6 Let Ψ (t) be the functional given by (56), then, for t ≥ 0,

Ψ ′(t) ≤ −
[(∫ t

0
h(s)ds

)

− θ2

2

]

ρ ‖wt‖2 − ρL4h(0)

2θ2

(
h′ ◦ wxx

)+ A2h̄ (h ◦ wxx )

+ θ4T0 ‖wx‖2 + θ3D ‖wxxt‖2 + θ3
(
1 + h̄

)
EI ‖wxx‖2

+ θ4E A

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

, (70)

where θi , i = 2, 3, 4. are positive constants and

A2 =
(

θ3 + 3

4θ3

)

EI + D

4θ3
+ L2T0 + L2E A A1

4θ4
.

Proof Substituting the first equation in (1) into the derivative of Ψ (t), we obtain

Ψ ′(t) = −ρ

∫ t

0
h(s)ds ‖wt‖22 + K1 + K2 + K3 + K4, (71)
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where
⎧
⎪⎪⎨

⎪⎪⎩

K1 = ρ
(
h′ � w,wt

)
,

K2 = − (h � w, Dwxxxxt + EI wxxxx ) ,

K3 = EI (h � w, h ∗ wxxxx ) ,

K4 = E A
(
h � w,

{[
T0 + (

vx + 1
2w

2
x

)]
wx
}

x

)
.

Let’s estimate these terms, for K1 similarly to (62), we get

K1 ≤ ρθ2

2
‖wt‖22 − ρL4h(0)

2θ2

(
h′ ◦ wxx

)
. (72)

For K2 and K3, using integrating by parts twice, Young’s inequality and Lemma 3,
we obtain

K2 ≤ θ3D ‖wxxt‖2 + θ3EI ‖wxx‖2 + h̄ (EI + D)

4θ3
(h ◦ wxx ) , (73)

K3 ≤ θ3EI h̄ ‖wxx‖2 +
(

θ3 + 1

2θ3

)

EI h̄ (h ◦ wxx ) . (74)

Integrating K4 by parts, applying Young’s inequality, Holder’s inequality and Lemma
3,we get

K4 ≤ θ4T0 ‖wx‖2 + θ4E A

∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

+ L2T0 + L2E A A1

4θ4
h̄ (h ◦ wxx ) . (75)

Combining (71)–(75), we obtain (70). �
Lemma 7 Let χ(t) be the functional given by (55), then, for t ≥ 0

χ ′(t) ≤ −2χ(t) + a2
τ

(vt , g1 (vt )) + a1e−2τ

τ
(z(x, 1, t), g2 (z(x, 1, t))) . (76)

Proof Take derivative of χ(t) with respect to t, using the identity (62) and integrating
by parts, we obtain

χ ′(t) = −1

τ

∫ L

0

[
e−2τ G (z (x, 1, t)) − G (z (x, 0, t))

]
dx

−2
∫ L

0

∫ 1

0
e−2τ pG (z (x, p, t)) dpdx .

In view of the hypotheses (H3) and the above equality, we have (70). �
Theorem 2 For the system dynamics described by (1)–(3), under assumptions (H1)–
(H4), given that (w0, v0, z0) ∈ W × V × Z and (w1, v1) ∈ H2

0 (0, L) × H1
0 (0, L) ,

where
z(x, p, t, s) = vt (x, t − pτ), p ∈ (0, 1) . (77)
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Then, there exist strictly positive constants ω1, ω2, ω3 and ε such that

E(t) ≤ ω1H−1
1 (ω2t + ω3) , ∀t > 0, (78)

where

H1(t) =
∫ 1

t

ds

H2(s)
,

and

H2(t) =
{

t if H is linear,
t H ′(εt) if H is nonlinear.

(79)

Proof Using the results (20), (64), (70) and (76), for all t ≥ t0 > 0, we obtain

L′(t) ≤
[

EI

2
− ρL4h(0)

2θ2
β2

]
(
h′ ◦ wxx

)+
[

EI h̄

4
(
1 − h̄

)β1 + A2h̄β2

]

(h ◦ wxx )

−
[(

1 − h̄
)

4
β1 − θ3

(
1 + h̄

)
β2

]

EI ‖wxx‖2 − [1 − θ3β2] D ‖wxxt‖2

−
[(

h0 − θ2

2

)

β2 − β1

2

]

ρ ‖wt‖2

−
[(

T0
2

− θ1Aμ

A1

2

)

β1 − θ4T0β2

]

‖wx‖2

− [(
E A − 2θ1Aμ

)
β1 − θ4E Aβ2

]
∥
∥
∥
∥vx + 1

2
w2

x

∥
∥
∥
∥

2

−
[
η1 − a2

τ
β3

]
(vt , g1 (vt )) + ρβ1 ‖vt‖2 + μ1

4θ1
β1 ‖g1 (vt )‖2

−
[

η2 − a1e−2τ

τ
β3 − μ2c2

4θ1
β1

]

(z(x, 1, t), g2 (z(x, 1, t))) − 2β3χ(t)

(80)

where h0 = ∫ t0
0 h(t)dt .

Right now, we do select our parameters very carefully. First pick θ2 ≤ h0, after that
take θi , i = 1, 3, 4., β1, β2 and β3 sufficiently small so that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 ≤ 1
2 min

{
T0

Aμ A1
, E A
2Aμ

}
,

θ3 < min
{

β1
β2

(1−h̄)
(1+h̄)

, 1
β2

}
,

θ4 <
β1
4β2

< h0
4 ,

β2 ≤ EI θ2
ρL4h(0)

,

β3 < τ
a2

η1,

a1e−2τ

τ
β3 + μ2c2

4θ1
β1 < η2,

A3 > 0.

(81)
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Thus, (80) becomes

L′(t) ≤ −A3E(t) + A4

(
‖vt‖2 + ‖g1 (vt )‖2 + (h ◦ wxx ) (t)

)
, ∀t ≥ t0, (82)

where A3 and A4 are two positive constants.
To complete the proof, we partition the interval [0, L] into

L> = {0 ≤ x ≤ L : |vt | > ε} , L< = {0 ≤ x ≤ L : |vt | ≤ ε} .

From (H3), we estimate that

∫

L>

(
v2t + g2

1 (vt )
)

dx ≤ (1/c1 + c2)
∫

L>

vt g1 (vt ) dx ≤ −A5E ′(t) (83)

where A5 = (1/c1 + c2) /η1.
For the estimate of the last term in the right hand side of (82) on L<,we distinguish

two cases

Case 1 : H is linear. From the assumption(H3), we deduce that there exists c4, such
that s2 + g2

1 (s) ≤ c4sg1 (s) in [−ε, ε] , and therefore

∫

L<

(
v2t + g2

1 (vt )
)

dx ≤ c4

∫

L<

vt g1 (vt ) dx ≤ −A6E ′(t) (84)

and the assumption (H2) gives

∫ t

0
h(s)

∫

Ω

|wxx (t) − wxx u(t − s)|2dxds ≤ −A6E ′(t). (85)

Combining (82)–(84), we obtain

(L(t) + σ E(t))′ ≤ −A3H2 (E(t)) . (86)

where σ = A4 (A5 + 2A6) .

Case 2: H is nonlinear. First, we deduce from (18) and (20) that

∫ t0

0
h(s) ‖wxx (t) − wxx (t − s)‖2 ds ≤ −1

γ

∫ t0

0
h′(s) ‖wxx (t)−wxx (t−s)‖2 ds

≤ − 2

γ EI
E ′(t). (87)

Next, we define the functions κp and κ by

κp(t) = p
∫ t

t0

h(s)

H−1
0 (−h′(s))

‖wxx (t) − wxx (t − s)‖2ds (88)

123



278 B. Lekdim, A. Khemmoudj

κ(t) = −
∫ t

t0
h′(s) h(s)

H−1
0 (−h′(s))

‖wxx (t) − wxx (t − s)‖2ds, (89)

where 1/p >
8E(0)

EI (1−h̄)

∫ +∞
0

h(s)
H−1
0 (−h′(s))ds and H0 is defined in (14), we

find that κp(t) < 1, for all t ≥ 0.

The properties of the functions H0, D and h gives

h(s)

H−1
0 (−h′(s))

≤ h(s)

H−1
0 (H(h(s)))

= h(s)

D−1(h(s))
≤ κ0, (90)

for some positive constant κ0.
We can easily verify that

κ(t) ≤ −κ0

∫ t

t0
h′(s)‖wxx (t) − wxx (t − s)‖2ds

≤ − 8κ0E(0)

EI (1 − h̄)

∫ t

t0
h′(s)ds

≤ 8κ0E(0)

EI (1 − h̄)
h(t0) ≤ 1

2
min {ε, H(ε), H0(ε)} , ∀t ≥ t0.

We have, by the convexity property of H0 and H0(0) = 0 that

H0(νx) ≤ νH0(x), x ∈ [0, ε], ν ∈ [0, 1]. (91)

By assumption (H2), identity (91) and Jensen’s inequality, we get

κ(t) ≥ 1

κp(t)

∫ t

t0

H0

(
κp(t)H−1

0

(−h′(s)
))

H−1
0 (−h′(s))

h(s)‖wxx (t) − wxx (t − s)‖2ds

≥ H0

(
1

κp(t)

∫ t

t0

κp(t)H−1
0

(−h′(s)
)

H−1
0 (−h′(s))

h(s)‖wxx (t) − wxx (t − s)‖2ds

)

= H0

(∫ t

t0
h(s)‖wxx (t) − wxx (t − s)‖2ds

)

, ∀t ≥ t0,

this is equivalent to

∫ t

t0
h(s)‖wxx (t) − wxx (t − s)‖2ds ≤ H−1

0 (κ(t)), ∀t ≥ t0. (92)

We can assume that ε is small enough such that sg1(s) ≤ 1
2 min {ε, H(ε), H0(ε)} for

all |s| ≤ ε. With (H3) and reversed Jensen’s inequality for concave function and the

123



Existence and general decay of solution for nonlinear… 279

concavity of H−1, we obtain

∫

L<

(
v2t + g2

1 (vt )
)

dx ≤
∫

L<

H−1 (vt g1 (vt )) dx ≤ cH−1 (ϑ(t)) , (93)

where ϑ(t) = 1
L

∫

L< vt g1 (vt ) dx .

The inequalities (82), (83), (87), (92) and (93), gives

(L(t) + A7E(t))′ ≤ −A3E(t) + A4cH−1 (ϑ(t)) + A4H−1
0 (κ(t)), ∀t ≥ t0.

Since H−1
0 (t)=D−1(H−1(t)), D−1(H−1(0) = D−1(0))=0 and H−1(κ(t))≤ε.

Moreover, the function D−1(H−1(t)) is concave, so its graph is below its tangent,
that H−1

0 (κ(t)) ≤ cH−1(κ(t)). Therefore, for all t≥t0,

(L(t) + A7E(t))′ ≤ −A3E(t) + A4cH−1 (ϑ(t)) + A4cH−1(κ(t)),

≤ −A3E(t) + A4cH−1 (ϑ(t) + κ(t)) . (94)

Take into account E ′(t) ≤ 0, H ′(t) > 0, H ′′(t) > 0, and using the inequality (94),
for ε < εE(0), we infer

[
H ′(εE(t)) {L(t) + A7E(t)} + A8E(t)

]′

= εE ′(t)H ′′(εE(t)) {L(t)+A7E(t)} +H ′(εE(t))
{L′(t)+A7E ′(t)

}+A8E ′(t)
≤ −A3E(t)H ′(εE(t))+A4cH ′(εE(t))H−1 (ϑ(t)+κ(t))+A8E ′(t), ∀t≥t0.

(95)

Let H∗ by the convex conjugate of H , given by (25), then the increasing of the functions
(H ′)−1, H and the fact that H(0) = 0, yield

H∗(s) ≤ s
(
H ′)−1

(s). (96)

Applying inequalities (26) and (96) to the second term of the right hand side of (95),
we obtain

H ′(εE(t))H−1 (ϑ(t) + κ(t)) ≤ H∗(H ′(εE(t))) − (ϑ(t) + κ(t))

≤ εE(t)H ′(εE(t)) − A8E ′(t), (97)

combining (95) and (97), we have

[
H ′(εE(t)) {L(t) + A7E(t)} + A8E(t)

]′ ≤ − (A3 − A4cε) E(t)H ′(εE(t))

= −A9H2(E(t)). (98)

Let us define

L̃(t) =
{L(t) + σ E(t) if H is linear,

H ′(εE(t)) {L(t) + A7E(t)} + A8E(t) if H is nonlinear.
(99)
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From (86) and (98), we conclude

L̃(t) ≤ −C̃ H2(E(t)), t ≥ t0.

Since L(t) and E(t) are equivalent and 0 ≤ H ′(εE(t)) ≤ H ′(εE(0)). So, there exist
α̃1 and α̃2 two positive constants such that

α̃1E(t) ≤ L̃(t) ≤ α̃2E(t).

Now we put Lα(t) = αL̃(t) for α ≤ 1/α̃2, using the fact that H2 is increasing, we
obtain

Lα(t) = αL̃(t) ≤ −αC̃ H2(
1

α̃2
L̃(t))

≤ −αC̃ H2(Lα(t)), t ≥ t0.

Taking into consideration that H ′
1 = −1/H2, the above inequalities become

Lα(t)H ′
1(Lα(t)) ≥ αC̃, t ≥ t0,

integrate this differential inequality over (t0, t), we obtain

H1 (Lα(t)) ≥ H1 (Lα (t0)) + αC̃ (t − t0) .

Choosing α small enough such that H1(Lα(t0)) − αC̃t0 > 0. The decay of H−1
1 ,

yields

Lα(t) ≤ H−1
1

(
αC̃t +

(
H1(Lα(t0)) − αC̃t0

))
.

finally, the equivalence of L(t), L̃(t), Lα(t) and E (t) , result

E(t) ≤ ω1H−1
1 (ω2t + ω3) , t ≥ t0.

One can easily find a similar estimate over the interval [0, t0], by using decreasing
of E and H−1

1 . This completes the proof. �
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