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Abstract
By applying the Brouwer fixed point theorem, we prove an existence result of solu-
tions for strongly pseudomonotone quasi-variational inequalities which extends an
analogous result in Kocvara and Outrata (Optim Methods Softw 5:275–295, 1995).
The result is based on a new result concerning continuity property of solutions to a
parametric variational inequality. Examples are given to illustrate our results.
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1 Introduction and preliminaries

Let F be a single-valued mapping from R
n to R

n and let K be a set-valued mapping
from R

n to R
n such that K (x) is a closed convex set in R

n for each x ∈ R
n . We

consider the quasi-variational inequality (in short, QVI): Find x∗ ∈ K (x∗) such that

〈F(x∗), x − x∗〉 ≥ 0 for all x ∈ K (x∗). (1.1)

Here, 〈·, ·〉 denotes the inner product in R
n . When K (x) = K , a nonempty closed

convex subset of Rn , for all x ∈ R
n , the quasi-variational inequality (1.1) reduces to

the classical variational inequality (in short, VIP): Find x∗ ∈ K such that

〈F(x∗), x − x∗〉 ≥ 0 for all x ∈ K . (1.2)
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Quasi-variational inequalities were introduced by Bensoussan and Lions in [2–4],
where some impulse control problems are studied. They have become a powerfulmath-
ematical tool for modelling of various complicated equilibria which appeared in many
areas such as mechanics [9,16,17], traffic [5], statistics [13], biology [10], economics
and finance [18,23]. For more analytical results of quasi-variational inequalities, we
refer the reader to, for examples, [6,19].

It is well-known that the problem (1.1) can be written as the following fixed point
problem

x = PK (x)[x − λF(x)] (1.3)

whereλ is a positive real number and PC [·] is the projection operator on a closed convex
set C in R

n . Thus, we can get sufficient conditions for the existence of solutions of a
quasi-variational inequality by applying a suitable fixed point theorem. Some existence
results in finite dimensional spaces can be found in [7]. Applying the Brouwer fixed
point theorem, the authors in [7] proved the following existence result.

Theorem 1.1 [7] Suppose that there exists a nonempty compact convex setC ⊂ domK
such that

(H1) K (C) ⊂ C,
(H2) F is continuous on C,
(H3) K is continuous on C.

Then the quasi-variational inequality (1.1) has at least one solution.

However, in some applications, e.g., the discretized Coulomb friction model (see,
e.g., [16]), there is no compact set C for which condition (H1) is satisfied. In [16], to
obtain the existence of solutions of the quasi-variational inequality (1.1), the authors
replaced the compactness of C by a weaker condition, namely the closedness and
required, in addition, that the function F is strongly monotone. More precisely, by
using the Brouwer fixed point theorem, the authors in [16] proved the following
existence result.

Theorem 1.2 [16] Let F be continuously differentiable on Rn and be strongly mono-
tone on R

n, i.e., there exists α > 0 such that

〈F(x) − F(y), x − y〉 ≥ α||x − y||2 ∀x, y ∈ R
n .

Here, || · || denotes the norm induced by the inner product 〈·, ·〉 in R
n. Suppose that

there exists a nonempty convex closed set C ⊂ domK such that

(i) K (C) ⊂ C,
(ii)

⋂

x∈C
K (x) 	= ∅,

(iii) for each y ∈ R
n, the mapping x �→ PK (x)[y] is continuous on an open set

containing C.

Then the quasi-variational inequality (1.1) has at least one solution.
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For other existence results of of solutions of the quasi-variational inequality con-
cerning strong monotonicity, we refer the reader to [22] and [20]. Both results need
some contraction property of the projection operator on the set K (·), i.e., they require
the existence of a positive constant � < 1 such that

||PK (x)[z] − PK (y)[z]|| ≤ �||x − y|| ∀x, y, z ∈ R
n . (1.4)

An example for K (·) satisfying (1.4) is a moving set where K (x) = c(x)+ K with K
being a nonempty closed convex subset ofRn and c : Rn → R

n a Lipschitz continuous
mapping with the same modulus �. In [21], the authors extended the existence results
in [20,22] to the case when F is strongly pseudomonotone on R

n , i.e., there exists a
modulus γ > 0 such that for all x, y ∈ R

n

〈F(x), y − x〉 ≥ 0 ⇒ 〈F(y), y − x〉 ≥ γ ||y − x ||2.

Since strongly monotone mappings are also strongly pseudomonotone, but not vice
versa, there are examples that we can apply the existence result in [21] but we cannot
apply any existence results in [16,20,22]. Note that, in general setting, (1.4) is hard to
prove and it is not often satisfied. The following example shows that there are situations
in which we cannot apply above mentioned results.

Example 1.1 We consider the quasi-variational inequality problem (1.1) with F :
R
2 → R

2 defined by:

F(x) =
(
5−||x ||2 + 1

6

)
(x1, 2x2) ∀x = (x1, x2) ∈ R

2,

and K : R2 ⇒ R
2defined by:

K (x) = [−2|x1|, 2|x1|] × [0,∞) ∀x = (x1, x2) ∈ R
2.

Now, assume that x∗ = (x∗
1 , x

∗
2 ) ∈ R

2 is a solution of the quasi-variational inequal-
ity (1.1). Then, (x∗

1 , x
∗
2 ) ∈ [−2|x∗

1 |, 2|x∗
1 |] × [0,∞) and

〈(
5−||x∗||2 + 1

6

)
(x∗

1 , 2x
∗
2 ), (y1 − x∗

1 , y2 − x∗
2 )

〉
≥ 0

for all (y1, y2) ∈ [−2|x∗
1 |, 2|x∗

1 |] × [0,∞) . This is equivalent to (x∗
1 , x

∗
2 ) ∈

[−2|x∗
1 |, 2|x∗

1 |] × [0,∞) and

x∗
1 (y1 − x∗

1 ) + 2x∗
2 (y2 − x∗

2 ) ≥ 0, ∀(y1, y2) ∈ [−2|x∗
1 |, 2|x∗

1 |] × [0,∞).

This implies that x∗
1 = x∗

2 = 0. Thus, (0, 0) is a solution of the quasi-variational
inequality (1.1).

We cannot apply Theorem 1.1 to this example since there is no compact setC ⊂ R
2

such that K (C) ⊂ C . We also cannot apply Theorem 1.2 to this example since the
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mapping F is not strongly monotone. Indeed, taking x = (1, 0) and y = (2, 0), we
have

〈F(x) − F(y), x − y〉 =
〈(

5−1 + 1

6

)
(1, 0) −

(
5−4 + 1

6

)
(2, 0), (1, 0) − (2, 0)

〉

= − 113

3570
< 0.

One can see that F is strongly pseudomonotone on R
n with modulus

1

6
. Indeed, for

x = (x1, x2), y = (y1, y2) ∈ R
2 with 〈F(x), y − x〉 ≥ 0, i.e., 〈(x1, 2x2), (y1 −

x1, 2y2 − 2x2〉 ≥ 0, we have

〈F(y), y − x〉 =
(
5−||y||2 + 1

6

)
〈(y1, 2y2), (y1 − x1, 2y2 − x2)〉

≥
(
5−||y||2 + 1

6

)
(〈(y1, 2y2), (y1 − x1, 2y2 − x2)〉

−〈(x1, 2x2), (y1 − x1, 2y2 − 2x2〉)
=

(
5−||y||2 + 1

6

)
〈(y1 − x1, 2y2 − x2), (y1 − x1, 2y2 − x2)〉

=
(
5−||y||2 + 1

6

)
[(y1 − x1)

2 + 2(y2 − x2)
2]

≥ 1

6

[
(y1 − x1)

2 + (y2 − x2)
2
]

= 1

6
||x − y||2.

Moreover,

∥∥PK ((0,1))(3, 1) − PK ((1,1))(3, 1)
∥∥ = ∥∥P{0}×[0,∞)(3, 1) − P[−2,2]×[0,∞)(3, 1)

∥∥
= ‖(0, 1) − (2, 1)‖ = 2 > 1 = ‖(0, 1) − (1, 1)‖ .

That is, the projection map is not contractive. So, we cannot apply [21, Theorem 3.1]
to this example.

Our aim is to prove an existence result for strongly pseudomonotone quasi-
variational inequalities without requiring (1.4). For this aim, we will extend Theo-
rem 1.2 by replacing the strong monotonicity of F by the strong pseudomonotonicity.
Our result bases on a new result about continuity property of solutions to parametric
variational inequalities.

To conclude this section, we recall the following results which will be used in the
sequel.

Lemma 1.1 (see, e.g., [15]) Let Ω be a nonempty closed convex subset of Rn. Then
for a given z ∈ R

n, u ∈ Ω satisfies u = PΩ [z] if and only if

〈u − z, v − u〉 ≥ 0, ∀v ∈ Ω.
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Theorem 1.3 [15, Theorem 4.2, page 13] Let K ⊂ R
n be closed and convex and

F : K → R
n be continuous. A necessary and sufficient condition that there exists

a solution to VIP (1.2) is that there exists an R > 0 such that ||xR || < R, where
xR ∈ K ∩ B(0, R) satisfying

〈F(xR), y − xR〉 ≥ 0 ∀y ∈ K ∩ B(0, R).

Here, B(0, R) denotes the closed ball of radius R and center 0, the zero vector of Rn.

2 Main results

In this section, by applying the Brouwer fixed point theorem, we derive an existence
result for quasi-variational inequality (1.1) with strongly pseudomonotone mapping
F .With this aim, we first prove a new result concerning continuity property of solution
map to a parametric variational inequality.

2.1 Parametric variational inequalities

Let M ⊂ R
m and Λ ⊂ R

d be two sets of parameters. Let f : Rn × R
m → R

n be a
vector-valued function and K : Λ ⇒ R

n be a set-valued mapping. We consider the
following parametric variational inequality problemwith parameters (μ, λ) ∈ M×Λ:

Find x ∈ K (λ) such that

〈 f (x, μ), y − x〉 ≥ 0 for all y ∈ K (λ). (2.1)

Throughout this subsection, we always require the following assumptions:

(A1) K (λ) is nonempty, closed and convex for each λ ∈ Λ.
(A2) There exists � > 0 such that, for all x1, x2 ∈ K (Λ) and μ1, μ2 ∈ M ,

|| f (x1, μ1) − f (x2, μ2)|| ≤ �(||x1 − x2|| + ||μ1 − μ2||). (2.2)

(A3) There exists α > 0 such that, for all μ ∈ M and for all x, y ∈ K (Λ),

〈 f (x, μ), y − x〉 ≥ 0 ⇒ 〈 f (y, μ), y − x〉 ≥ α||x − y||2.

Under our assumptions, for each (λ, μ) ∈ M × Λ, the parametric variational
inequality problem (2.1) has a unique solution (see [14, Theorem 2.1]). Hence, we
can define a mapping u : M × Λ → R

n assigning to each (λ, μ) ∈ M × Λ the
corresponding unique solution of (2.1).

The main result of this subsection is stated as follows.

Theorem 2.1 Let (λ0, μ0) ∈ M × Λ and x0 = u(λ0, μ0). If the mapping λ �→
PK (λ)[x0 − ρ f (x0, μ0)] is continuous at λ0 for some ρ > 1/α, then u is continuous
at (λ0, μ0).

123



808 L. Van Nguyen

Proof Fix ρ > 1/α and let (λ, μ) ∈ M × Λ. We have

u(λ0, μ0) = PK (λ0)[u(λ0, μ0) − ρ f (u(λ0, μ0), μ0)],

and

u(λ, μ) = PK (λ)[u(λ, μ) − ρ f (u(λ, μ), μ).

Set

y = PK (λ)[u(λ0, μ0) − ρ f (u(λ0, μ0), μ0)].

By Lemma 1.1, one has

〈y − u(λ0, μ0) + ρ f (u(λ0, μ0), μ0), u(λ, μ) − y〉 ≥ 0.

It follows that

〈u(λ0, μ0) − y, u(λ, μ) − y〉 ≤ ρ f (u(λ0, μ0), μ0), u(λ, μ) − y〉
= ρ f (u(λ0, μ0), μ0) − f (y, μ), u(λ, μ) − y〉

−ρ〈 f (y, μ), y − u(λ, μ)〉 (2.3)

Since y ∈ K (λ), we have

f (u(λ, μ), μ), y − u(λ, μ)〉 ≥ 0.

Thus, by (A3), one has

〈 f (y, μ), y − u(λ, μ)〉 ≥ α||y − u(λ, μ)||2. (2.4)

Using (A2), we have from (2.3) and (2.4) that

2〈u(λ0, μ0) − y, u(λ, μ) − y〉
≤ 2ρ�(||u(λ0, μ0) − y|| + ||μ − μ0||).||u(λ, μ) − y||

−2ρα||u(λ, μ) − y||2
≤ ρ2�2(||u(λ0, μ0) − y|| + ||μ − μ0||)2 + ||u(λ, μ) − y||2

−2ρα||u(λ, μ) − y||2
≤ 2ρ2�2||u(λ0, μ0) − y||2 + 2ρ2�2||μ − μ0||2 + ||u(λ, μ) − u(λ0, μ0)||2

+||u(λ0, μ0) − y||2 + 2〈u(λ, μ) − u(λ0, μ0), u(λ0, μ0) − y〉
−2ρα||(u(λ, μ) − u(λ0, μ0)) − (y − u(λ0, μ0))||2

≤ (2ρ2�2 + 1)||u(λ0, μ0) − y||2 + 2ρ2�2||μ − μ0||2
+||u(λ, μ) − u(λ0, μ0)||2 + 2〈u(λ, μ) − u(λ0, μ0), u(λ0, μ0) − y〉
−ρα||u(λ, μ) − u(λ0, μ0)||2 + 2ρα||u(λ0, μ0) − y||2.
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Here, we obtain the last inequality by using the inequality −2||a − b||2 ≤ −||a||2 +
2||b||2. Then,

2〈u(λ0, μ0) − y, u(λ0, μ0) − y〉 ≤ (2ρ2�2 + 2ρα + 1)||u(λ0, μ0) − y||2 + 2ρ2�2||μ − μ0||2
+(1 − ρα)||u(λ, μ) − u(λ0, μ0)||2.

Thus,

||u(λ, μ) − u(λ0, μ0)||2 ≤ 2ρ2�2

ρα − 1
||μ − μ0||2

+2ρ2�2 + 2ρα − 1

ρα − 1
||u(λ0, μ0) − y||2. (2.5)

Since ρα > 1, we have 2ρ2�2 +2ρα −1 > max{1, 2ρ2�2}. It follows from (2.5) that

||u(λ, μ) − u(λ0, μ0)|| ≤ 2ρ2�2 + 2ρα − 1

ρα − 1
[||μ − μ0|| + ||u(λ0, μ0) − y||].

Hence,

||u(λ, μ) − u(λ0, μ0)|| ≤ 2ρ2�2 + 2ρα − 1

ρα − 1
||PK (λ)[x0 − ρ f (x0, μ0)]

−PK (λ0)[x0 − ρ f (x0, μ0)]||
+2ρ2�2 + 2ρα − 1

ρα − 1
||μ − μ0||. (2.6)

Since λ �→ PK (λ)[x0 − ρ f (x0, μ0)] is continuous at λ0, it follows from (2.6) that
u(λ, μ) is continuous at (λ0, μ0). ��
Remark 2.1 It follows from (2.6) that properties of the solution mapping u depend
on the properties of the mapping λ �→ PK (λ)[x0 − ρ f (x0, μ0)]. In fact, if the map-
ping λ �→ PK (λ)[x0 − ρ f (x0, μ0)] is Hölder continuous (respectively, Lipschitz
continuous), then the solution mapping u is also Hölder continuous (respectively, Lip-
schitz continuous). Examples of set-valued mappings K in which λ �→ PK (λ)[x0 −
ρ f (x0, μ0)] is Hölder continuous or Lipschitz continuous can be seen, for instance,
in [25,26]. For examples of set-valued mappings K in which λ �→ PK (λ)[x0 −
ρ f (x0, μ0)] is continuous, we refer the reader, e.g., to [16]. For more results con-
cerning regularity property of solution maps to parametric variational inequalities, we
refer the reader to, e.g., [1,8,12,24–26].

The next result concerns the boundedness of the images of the solution mapping u.

Proposition 2.1 Assume that there exists a nonempty set Ω ⊂ domK ∩ Λ such that

(A4)
⋂

λ∈Ω

K (λ) 	= ∅.
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810 L. Van Nguyen

Then there exists R > 0 such that ||u(μ, λ)|| < R for all λ ∈ Ω and μ ∈ M.

Proof Let μ0 ∈ M and λ0 ∈ Ω . Let v0 ∈ ⋂
λ∈Ω K (λ) and fix H > f (v0, μ0). Set

R = ||v0|| + H

α
.

Let z∗ be the unique solution of the variational inequality: Find z ∈ K (λ0) ∩ B(0, R)

such that

〈 f (z, μ0), y − z〉 ≥ 0 for all y ∈ K (λ0) ∩ B(0, R). (2.7)

Assume that ||z∗|| ≥ R. Since v0 ∈ K (λ0) and

||v0|| = R − H

α
< R,

v0 ∈ K (λ0) ∩ B(0, R). Hence, we have

〈 f (z∗, μ0), v0 − z∗〉 ≥ 0.

By (A3), one has

α||v0 − z∗||2 ≤ 〈 f (v0, μ0), v0 − z∗〉
≤ || f (v0, μ0)||.||v0 − z∗||
< H .||v0 − z∗||.

This implies that

||v0 − z∗|| <
H

α
.

We have

||z∗|| ≤ ||v0|| + ||v0 − z∗|| < ||v0|| + H

α
= R.

This is a contradiction. Thus, the solution z∗ of (2.7) satisfies ||z∗|| < R for some
R > 0. It follows from Theorem 1.3 that z∗ is also a solution of the the parametric
variational inequality problem (2.1) with the pair of parameters (μ0, λ0). Therefore,
||u(μ0, λ0)|| < R. This ends the proof. ��

2.2 Existence result

We are now in a position to state the main result of this paper.
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Theorem 2.2 Let F : Rn → R
n be a mapping and let K : Rn ⇒ R

n be a set-valued
mapping with closed convex values. Suppose that there exists a nonempty convex
closed set C ⊂ domK such that

(i) K (C) ⊂ C,
(ii) F is Lipschitz continuous on C and f is strongly pseudomonotone on C,
(iii)

⋂

x∈C
K (x) 	= ∅,

(iv) for each y ∈ R
n, the mapping x �→ PK (x)[y] is continuous on an open set

containing C.

Then the quasi-variational inequality (1.1) has at least one solution.

Proof We define a mapping S : domK → R
n by assigning to each y ∈ domK the

corresponding unique solution of the following parameter variational inequality: Find
z ∈ K (y) such that

〈F(z), w − z〉 ≥ 0 for all w ∈ K (y).

By Theorem 2.1, S is continuous on C . Moreover, by Proposition 2.1, there exists
R > 0 such that ||S(y)|| < R for all y ∈ C . That is, S maps C ∩ {x ∈ R

n : ||x || ≤ R}
into itself. Hence, by the Brouwer fixed point theorem, S has a fixed point in C ∩{x ∈
R
n : ||x || ≤ R}, which is a solution of (1.1). This ends the proof. ��

Example 2.1 We consider F and K as in Example 1.1. As shown in Example 1.1, the
mapping F is strongly pseudomonotone. One can also see that C = {0} × [0,∞) is
closed convex such that condition (i) and (iii) of Theorem 2.2 are satisfied. It is easy to
see that F is Lipschitz continuous onC . For x = (x1, x2) ∈ R

2 and y = (y1, y2) ∈ R
2,

one can compute that

PK (x)[y] =
⎧
⎨

⎩

(−2|x1|, y2) if y1 ≤ −2|x1|,
(y1, y2) if −2|x1| ≤ y1 ≤ 2|x1|,

(2|x1|, y1) if 2|x1| ≤ y1.

Then the map x �→ PK (x)[y] is continuous for each y ∈ R
2 and so the condition (iv)

of Theorem 2.2 is satisfied. Therefore, we can apply Theorem 2.2 to this example.

Example 2.2 (see, e.g. [16]) Let m be an even integer and consider K : Rm → R
m

which is defined by: for x = (x1, · · · , xm) ∈ R
m ,

K (x) = {v = (v1, . . . , vm) ∈ R
m : |v2i | ≤ α|x2i−1|, v2i−1 ≤ 0, i = 1, 2, . . . ,m/2},

where α > 0 is a constant. This type of set-valued mappings appears in the discretized
Coulomb friction model (see, [11]).

If we set C = {x = (x1, . . . , xm) ∈ R
m : x2i−1 ≤ 0, i = 1, 2, . . . ,m/2}, then

conditions (i), (iii) and (iv) of Theorem 2.2 are satisfied.

To conclude this paper, we present a general class of strongly pseudomonotone
mappings which are not strongly monotone in general.
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812 L. Van Nguyen

Example 2.3 (see, e.g., [14]) Let F : Rn → R
n be defined by

F(x) = h(x)(Qx + q) ∀x ∈ R
n, (2.8)

where Q : Rn → R
n is a linear mapping satisfying

〈Qx, x〉 ≥ γ ||x ||2, ∀x ∈ R
n

for some constant γ > 0, h : Rn → [a,∞) for some constant α > 0 and q ∈ R
n .

Let x, y ∈ R
n be such that 〈F(x), y − x〉 ≥ 0, i.e., 〈h(x)(Qx + q), y − x〉 ≥ 0.

This implies

〈Qx + q, y − x〉 ≥ 0.

Thus,

〈F(y), y − x〉 = 〈h(y)(Qy + q), y − x〉
≥ h(y)[〈Qy + q, y − x〉 − 〈Qx + q, y − x〉]
= h(y)〈Q(y − x), y − x〉
≥ αγ ||y − x ||2.

Hence, F is strongly pseudomonotone with modulus αγ . Note that the mapping F
considered in Example 1.1 is a particular case of the form (2.8). So, in general, a
mapping of the form (2.8) is not strongly monotone.
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