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Abstract
The purpose of this paper is to study the multiplicity of periodic solutions for a class
of non-autonomous second-order damped vibration systems. New results are obtained
by using Fountain theorem. These results improve the related ones in the literature.
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1 Introduction andmain results

Consider the second-order damped vibration system:

{
ü(t) + Au̇(t) + ∇uV (t, u(t)) = 0, ∀ t ∈ R,

u(0) − u(T ) = u̇(0) − u̇(T ) = 0, T > 0,
(1.1)

where A is a skew-symmetric matrix, V (t, u) = −K (t, u) + W (t, u) and K ,W ∈
C2(R × R

n, R) with conditions

K (t + T , u) = K (t, u), W (t + T , u) = W (t, u), ∀(t, u) ∈ R × R
n .

When A ≡ 0, (1.1) is just the following second order non-autonomousHamiltonian
system: {

ü(t) + ∇uV (t, u(t)) = 0, ∀ t ∈ R,

u(0) − u(T ) = u̇(0) − u̇(T ) = 0, T > 0.
(1.2)
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710 K. Khaled

During the last several decades, the existence and multiplicity of periodic solutions for
second-order Hamiltonian systems have been extensively studied via critical point the-
ory, such as [2,7,8,14,15,17,20,22,24–26] and the references therein. In those papers,
V (t, u)was required to satisfy some growth conditions as |u| → +∞, such as asymp-
totically linear, subquadratic, asymptotically quadratic or superquadratic growth. In
[8,20] the authors considered the case that V (t, u) satisfies subquadratic potential
condition. In 2009, when V (t, u) = −K (t, u) + W (t, u), Zhao [27] established the
existence result of system (1.2) with conditions that W (t, u) is asymptotically linear
and K (t, u) satisfies “pinched” condition:

a1|u|2 ≤ K (t, u) ≤ a2|u|2,

where constants a1, a2 > 0.
In 2011, when V (t, u) = 1

2 (L(t)u · u)+W (t, u), where L(t) is a n× n symmetric
matrix, Zhang and Liu [25] considered themultiplicity of periodic solutions for system
1.2 with condition thatW (t, u) is asymptotically quadratic or superquadratic. In 2013,
Gu and An [7] investigated the multiplicity of periodic solutions for system (1.2) with
subquadratic condition. In 2018,Wang andZhang [22] studied the existence of periodic
solutions of system (1.2) with locally asymptotically quadratic condition or locally
superquadratic condition. Motivated by [25,27], in this paper, firstly we generalized
the above results by replacing the ‘pinching’ condition by the following conditions:

(H1) There exist constants d > 0 and L1 > 0 such that K (t, u) ≥ −d|u|2 for all
t ∈ [0, T ] and |u| ≥ L1,

(H2) There exists a constant L2 > 0 such that (∇K (t, u) · u) ≤ 2K (t, u) for all
t ∈ [0, T ] and |u| ≥ L2.

Secondly, if A 
≡ 0 and V (t, u) = −K (t, u) + W (t, u), we discuss the case that
W (t, u) satisfies an asymptotically quadratic condition. By using Fountain theorem,
we study the existence of infinitely many nontrivial odd T -periodic solutions of (1.1).
However, the space in Fountain theorem is not a regular Sobolev space. What’s more,
Long (see [10]) introduced the bi-even condition and one space, which is a closed sub-
space of the commonly used Sobolev space H1

T consisting of odd functions, denoted
by E in this paper. We would like to remind the readers, if V (t, u) only satisfies
V (t,−u) = V (t, u), then the multiplicity result of periodic solutions but not neces-
sarily odd solutions for problem (1.1) can also be obtained via Fountain theorem.

Now, we will use the following assumptions to prove our results.

(H3) lim|u|→+∞[(∇W (t, u) · u) − 2W (t, u)] = +∞ uniformly for t ∈ [0, T ].
(H4) There exist a function b ∈ L1([0, T ], (0,+∞)) and a constant L3 > 0 such
that

0 < W (t, u) ≤ b(t)|u|2, ∀t ∈ [0, T ], |u| ≥ L3.

(H5)V (t, u) is bi-even,whichmeans that it is even in t and u variables respectively.
(H6) ‖A‖ ≤ 1.

Now, we are ready to state the main results of this paper as follows.
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New results on periodic solutions for second order damped… 711

Theorem 1.1 Assume that (H1)−(H6) hold. Then problem (1.1) possesses infinitely
many odd T-periodic solutions {uk} satisfying ‖uk‖∞ → +∞ as k → +∞.

Remark 1.1 Conditions (H3) and (H4) imply thatW (t, u) satisfies the asymptotically
quadratic condition, that is

0 < lim inf|u|→+∞
W (t, u)

|u|2 ≤ lim sup
|u|→+∞

W (t, u)

|u|2 < +∞, a.e.t ∈ [0, T ].

Obviously, if K (t, u) is a quadratic form, then K satisfies (H1) and (H2). So functions
K in Theorem1.1 not only can be all quadratic forms, but alsomay be subquadratic (for

example, K (t, u) = |u|2
ln(10+|u|2) , ∀t ∈ R,∀u ∈ R

n or asymptotically quadratic (for

example, K (t, u) = 1
3 |u|2 + ln(10 + |u|2), ∀t ∈ R,∀u ∈ R

n). The variant fountain
theorem requires that the partial functional is nonnegative, which needs W (t, u) ≥ 0
for all t ∈ [0, T ] and u ∈ R

n . However, the Fountain theorem used in this paper
requires that the functional ϕ is infinitely large quantity in the subspace of E, which
only needsW (t, u) > 0 with |u| large enough. Function V satisfying our assumptions
of Theorem 1.1 do really exist, but may not be covered by [25, Theorem 1.1].

Now, we give an example as an application of this result.

Example 1.1 Set T = π and define K ,G : R × R → R with

K (t, x) = cos2 t .
x2

ln(e + x2)

and

G(t, x) = 1 + cos2 t

2

[
1 − 1

ln(100 + x2)

]
x2.

Choose a function λ ∈ C∞(R+, [0, 1]) such that λ(t) = 1 for t ≤ 1, λ(t) = 0 for
t ≥ 2, and λ′(t) ≤ 0 for t ∈ [1, 2]. Set

W (t, x) = −1

2
λ(|x |)x2 + (1 − λ(|x |))G(t, x), ∀t, x ∈ R.

Then functions K ,W ∈ C1(R × R, R) hold and are π -periodic with respect to the
variable t . Obviously, both K and W satisfy condition (V ). For K (t, x), one has
−|x |2 ≤ 0 ≤ K (t, x) ≤ |x |2 and

∂K (t, x)

∂x
= cos2 t .

[
2x2

ln(e + x2)
− 2x4

(e + x2)ln2(e + x2)

]

= cos2 t .
2x2

ln(e + x2)
= 2K (t, x), ∀t, x ∈ R.
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712 K. Khaled

Hence, K (t, x) satisfies (H1) with d = 1 and (H2) condition. It is evident that W
satisfies (H4) with b(t) ≡ 1 and L3 = 2. Furthermore,

∂W (t, x)

∂x
.x − 2W (t, x) = (1 + cos2 t)x4

(100 + x2)ln2(100 + x2)

≥ x4

(100 + x2)ln2(100 + x2)
→ +∞ as |x | → +∞.

So
∂W (t, x)

∂x
.x − 2W (t, x) = +∞ uniformly for t ∈ R.

Hence W (t, x) satisfies condition (H3). By Theorem 1.1, problem (1.1) possesses
infinitely many odd π -periodic solutions for above K andW . Obviously,W in Exam-
ple 1.1 cannot be covered by conditions of [25, Theorem 1.1] because not only K (t, x)
is not a quadratic form, but also W (t, x) ≤ 0 with |x | ≤ 1.

2 Variational setting and preliminaries

As usually, we denote

H1
T = {

u : [0, T ] → R
n, u is absolutely continuous,

u(0) = u(T ) and u̇ ∈ L2([0, T ], R
n)

}
.

Then H1
T is a Hilbert space with the norm

‖u‖H1
T

=
[∫ T

0
|u(t)|2dt +

∫ T

0
|u̇(t)|2dt

]1/2
, u ∈ H1

T

and the associated inner product

(u · v) =
∫ T

0
(u(t) · v(t))dt +

∫ T

0
(u̇(t) · v̇(t))dt, u, v ∈ H1

T .

Let E be the subspace of H1
T consisting of odd functions. The corresponding norm is

‖u‖ =
(∫ T

0
|u̇(t)|2dt

) 1
2

∀u ∈ E, (2.1)

which is equivalent to the norm ‖u‖H1
T
on E . Note that E is a closed subspace of H1

T ,
so it is a reflective Hilbert space.
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New results on periodic solutions for second order damped… 713

Lemma 2.1 [12] The space HT
1 is compactly embedded in C([0, T ], R

n). In addition,

‖u‖∞ ≤ C∞‖u‖H1
T
, ∀u ∈ H1

T ,

where C∞ is a positive constant.

We consider the functional ϕ: H1
T → R defined by

ϕ(u) =
∫ T

0

[
1

2
|u̇(t)|2 + 1

2
(Au(t) · u̇(t)) + K (t, u(t)) − W (t, u(t))

]
dt . (2.2)

It is well know that ϕ is continuously differentiable on H1
T and by using the skew-

symmetry of A, we have

(ϕ′(u) · v) =
∫ T

0
(u̇(t).v̇(t))dt −

∫ T

0
(Au̇(t) · v(t))dt +

∫ T

0
(∇K (t, u(t)).v(t))dt

−
∫ T

0
∇(W (t, u(t)) · v(t))dt, ∀u, v ∈ H1

T . (2.3)

Furthermore, a point u ∈ H1
T is a T -periodic solution of system (1.1) if and only if u

is a critical point to the functional ϕ.

The following lemmas will be needed in the proof of our results.

Lemma 2.2 [10] For T > 0, suppose V ∈ C1(R × R
n, R), V (t + T , u) = V (t, u)

for all (t, u) ∈ R × R
n, and V is bi-even. Then ϕ ∈ C1(E, R) and that u ∈ E is a

critical point of ϕ restricted to E if and only if it is an odd C2([0, T ], R
n)-solution of

problem (1.1).

So the odd solutions of problem (1.1) correspond to the critical points of the functional
ϕ|E via Lemma 2.2. From now on, for simplicity, we use ϕ for ϕ|E . By a simple
calculation, we obtain that the differential system

{−ü(t) = λu(t), ∀t ∈ [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0.

has the eigenvalues λ j = 4 j2π2

T 2 ( j ∈ N) with λ j → +∞ as j → +∞ and the
corresponding normalized eigenfunctions {e j } (−ë j = λ j e j , and e j has the form

of a j cos(
√

λt) + b j sin(
√

λt), a j , b j ∈ R
n) with

∫ T

0
(e j (t), ek(t))dt = δ jk and

∫ T

0
(ė j (t), ėk(t))dt = λk .δ jk for every j, k ∈ N

∗, we define subspaces

X j = span{e j } ∩ E 
= ∅, Yk =
k⊕
j=1

X j and Zk =
⊕
m≥k

Xm, (2.4)
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714 K. Khaled

then E = ⊕
j∈N∗ X j = Yk⊕Zk+1.For every uk ∈ Zk and c j ∈ R, uk =

∑∞
j=k

c j e j ,

then one has

‖uk‖2L2 =
∞∑
j=k

c2j and ‖u̇k‖2L2 =
∞∑
j=k

c2jλ j . (2.5)

Lemma 2.3 [23, Theorem 3.6] Assume that ϕ ∈ C1(E, R) satisfies ϕ(u) = ϕ(−u)

and the subspace X j , Yk, Zk defined in (2.4). For every k ∈ N
∗, there exists ρk >

rk > 0 such that

(A1) infu∈Zk ,‖u‖=rk ϕ(u) → +∞ as k → +∞.

(A2) maxu∈Yk ,‖u‖=ρk ϕ(u) ≤ 0,
(A3) ϕ satisfies the (PS)c condition for every c > 0.

If k is large enough, and set ck = infh∈�k maxu∈Bk ϕ(h(u)), where Bk := {u ∈
Yk : ‖u‖ ≤ ρk}, �k := {h ∈ C(Bk, E) : h is odd and h|∂Bk = id} then ck ≥
infu∈Zk ,‖u‖=rk ϕ(u), furthermore, ck is an unbounded sequence of critical values of ϕ
.

Remark 2.1 As shown in [1], a deformation lemma can be proved with the weaker (C)
condition which is due to Cerami (see [3]) replacing the usual (PS)c condition, and
it turns out that Lemma 2.3 holds under (C) condition.

Lemma 2.4 Set βk := supu∈Zk ,‖u‖=1 ‖u‖∞ k ∈ N
∗, one has

βk → 0 as k → +∞.

Proof The main idea comes from [11]. The definition of βk implies that 0 ≤ βk+1 ≤
βk, so limk→+∞ βk does really exist. For every k ∈ N

∗, there exists uk ∈ Zk ⊆ E =
Z1 such that ‖uk‖ = 1 and

‖uk‖∞ >
1

2
βk . (2.6)

For the above uk(t) = (u1k(t), u
2
k(t), . . . , u

n
k (t)) ∈ Zk ⊆ E, one has that∫ T

0
uik(t)dt = 0 (i = 1, 2, . . . , n). From the mean value theorem, there exists a

ξi ∈ (0, T ) such that uik(ξi ) = 0 (i = 1, 2, . . . , n). Then one has

|uik(t)|2 = 2
∫ t

ξ

u̇ik(s).u
i
k(s)ds ≤ 2‖u̇ik‖L2‖uik‖L2 , i = 1, 2, . . . , n, ∀ t ∈ [0, T ],
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which implies that

|uk(t)|2 =
n∑

i=1

|uik(t)|2

≤ 2
n∑

i=1

‖u̇ik‖L2‖uik‖L2

≤ 2

(
n∑

i=1

‖u̇ik‖L2

) 1
2
(

n∑
i=1

‖uik‖L2

) 1
2

= 2‖u̇k‖L2‖uk‖L2 . (2.7)

By (2.5), there holds

1 = ‖uk‖2 =
∫ T

0
|u̇k(t)|2dt ≥ λk‖uk‖2L2 , ∀uk ∈ Zk,

which implies that ‖uk‖L2 → 0 as k → +∞. By (2.7), one has ‖uk‖2∞ ≤
2‖u̇k‖L2‖uk‖L2 ≤ 2‖uk‖L2 → 0 as k → +∞. So (2.6) implies that βk → 0 as
k → +∞. ��

Lemma 2.5 [16, Lemma 1] Suppose that� is a Lebesgue measurable subset ofRwith
meas(�) < +∞ (‘meas’ denotes the Lebesgue measure) and { fn(t)} is a sequence
of Lebesgue measurable functions such that fn(t) → +∞ as n → +∞ for a.e.
t ∈ �. Then for every δ > 0, there exists a subset �δ with meas(�\�δ) < δ such that
fn(t) → +∞ as n → ∞ uniformly for all t ∈ �δ .

3 Proof of Theorem 1.1

Before the proof of Theorem 1.1, we need the following lemmas.

Lemma 3.1 [4, Lemma 1] Assume that W (t, x) satisfies (H3), K (t, x) satisfies (H2),

then there exists a constant M > L2 large enough such that

W (t, x) ≥ |x |2
M2 . min|x |=M

W (t, x), if |x | ≥ M and t ∈ [0, T ],

K (t, x) ≤ |x |2
L2
2

.max|x |=L2 K (t, x), if |x | ≥ L2 and t ∈ [0, T ].

Remark 3.1 Lemma 3.1 implies that there exists a function c(t) > 0 such that

W (t, x) ≥ c(t)|x |2, |x | ≥ M . (3.1)
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716 K. Khaled

Condition (H4) and inequality (3.1) imply that

c(t) ≤ W (t, x)

|x |2 ≤ b(t).

Then W (t, x) is an asymptotically quadratic function.

Lemma 3.2 Assume that W (t, x) satisfies (H3) and (H4), K (t, x) satisfies (H1) and
(H2), then the functional ϕ satisfies the (C) condition.

Proof Let {um} ⊂ E be a C-sequence, that is, supm∈N∗{|ϕ(um)|} < +∞ and (1 +
‖um‖)‖ϕ′(um)‖ → 0 as m → +∞. Then there exists a constant L > 0 such that

|ϕ(um)| ≤ L, (1 + ‖um‖)‖ϕ′(um)‖ ≤ L ∀ m ∈ N
∗. (3.2)

We claim that {um} is bounded. Otherwise, there exists a subsequence of {umk } such
that ‖umk‖ → +∞ as k → +∞, andwe still denote {umk } by {um}. Set zm(t) = um (t)

‖um‖ ,

then ‖zm‖ = 1. So there exists a z ∈ E with ‖z‖ ≤ 1 such that zm⇀z in E . By
Lemma2.1, one has zm → z inC([0, T ], R

n) asm → +∞.Weconsider the following
cases z(t) 
≡ 0 and z(t) ≡ 0 respectively.

Case 1: z(t) 
≡ 0.Set� := {t ∈ [0, T ]/|z(t)| > 0}, thenmeas (�) > 0,By lemma2.5
and ‖um‖ → +∞ as m → +∞, there exists a subset �δ0 ⊆ � with meas (�δ0) > 0
and meas (�\�δ0) < δ0 such that

|um(t)| = ‖um‖.|zm(t)| → +∞ uniformly ∀t ∈ �δ0 as m → +∞. (3.3)

It follows from (H3) that there exists a constant M1 > 0 large enough such that

(∇W (t, x).x) − 2W (t, x) ≥ −M1, ∀(t, x) ∈ [0, T ] × R
n . (3.4)

By (H2), there exists a constant M2 > 0 large enough such that

2K (t, x) − (∇K (t, x).x) ≥ −M2, ∀(t, x) ∈ [0, T ] × R
n . (3.5)

By (H3) and (3.3), one has

∫
�δ0

[(∇W (t, um(t)).um(t)) − 2W (t, um(t))] dt → +∞,m → +∞. (3.6)
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According to (2.3), (3.2), (3.4), (3.5) and (3.6), there holds

3L ≥ 2ϕ(um) − (ϕ′(um).um)

=
∫ T

0
[(∇W (t, um(t)).um(t)) − 2W (t, um(t))] dt

+
∫ T

0
[2K (t, um(t)) − (∇K (t, um(t)).um(t))] dt

=
∫

�δ0

[(∇W (t, um(t)).um(t)) − 2W (t, um(t))] dt

+
∫

[0,T ]\�δ0

[(∇W (t, um(t)).um(t)) − 2W (t, um(t))] dt

+
∫ T

0
[2K (t, um(t)) − (∇K (t, um(t)).um(t))] dt

≥
∫

�δ0

[(∇W (t, um(t)).um(t)) − 2W (t, um(t))] dt − M1T − M2T

→ +∞,m → +∞,

which yields a contradiction.

Case 2: z(t) ≡ 0. From (H6), (2.1) and (2.2), one has

∫ T

0
W (t, um(t))dt −

∫ T

0
K (t, um(t))dt

= 1

2
‖um‖2 + 1

2

∫ T

0
(Aum(t).u̇m(t))dt − ϕ(um).

Divided by ‖um‖2 on both sides, together with (3.2), one has

1

2
(1 − ‖A‖) ≤

∫ T

0

W (t, um(t)) − K (t, um(t))dt

‖um‖2 dt ≤ 1

2
(1 + ‖A‖). (3.7)

in the meantime, condition (H1) implies that

K (t, x) ≥ −d|x |2 − M̃,∀(t, x) ∈ [0, T ] × R
n . (3.8)

where M̃ = maxt∈[0,T ]{max|x |≤L1 |K (t, x)|} > 0. By (H4), one has

W (t, x) ≤ b(t)|x |2 + M,∀(t, x) ∈ [0, T ] × R
n, (3.9)

where M = maxt∈[0,T ]{max|x |≤L3 |W (t, x)|} > 0.
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718 K. Khaled

According to (3.8), (3.9) and z(t) ≡ 0, there holds

∫ T

0

W (t, um(t)) − K (t, um(t))

‖um‖2 dt =
∫ T

0

b(t)|um(t)|2 + d|um(t)|2 + M + M̃

‖um‖2 dt

≤ ‖zm‖2∞.

∫ T

0
(b(t) + d)dt + (M + M̃)T

‖um‖2
→ 0,m → +∞.

which contradicts (3.7). Hence (um)m∈N is bounded in E . By Proposition 4.3 in [12]
we can assume that {um}m∈N has a convergent subsequence in E . Hence ϕ satisfies
the C condition. The proof is complete. ��
Lemma 3.3 If W (t, x) satisfies (H3) and (H4), K (t, x) satisfies (H1) and (H2) and
(H6) satisfied, then the functional ϕ satisfies (A1) in Lemma 2.3.

Proof Take rk = β−1
k , then Lemma 2.4 implies that rk → +∞ as k → +∞. By

Lemma 3.1, one has

K (t, x) ≤ M3|x |2 + M4, ∀(t, x) ∈ [0, T ] × R
n, (3.10)

where constants M3 = maxt∈[0,T ]
{
max|x |=L2 |K (t, x)|}

L2
2

> 0, M4 = maxt∈[0,T ]{
max|x |≤L2 |K (t, x)|} > 0.
By Lemma 3.1, for a certain constant σ > max{L2, L3} large enough, one has

W (t, x) ≥ |x |2
σ 2 . min|x |=σ

W (t, x), |x | ≥ σ ∀t ∈ [0, T ]. (3.11)

Hence, by (H4) and (3.11), one has

W (t, x) ≥ B|x |2 − C, ∀(t, x) ∈ [0, T ] × R
n, (3.12)

where constants B = mint∈[0,T ]
{
min|x |=σ W (t, x)

}
σ 2 > 0, C = Bσ 2 + maxt∈[0,T ]{

max|x |≤σ |W (t, x)|} > 0.
From (3.8), (3.9), (3.10) and (3.12), there exists a function b̃ ∈ L1([0, T ], R+) such
that

|K (t, x)| + |W (t, x)| ≤ b̃(t)|x |2 + M0, ∀(t, x) ∈ [0, T ] × R
n, (3.13)

where b̃(t) = b(t) + B +max{M3, d} > 0, M0 = max{M4, M̃} +max{C, M} > 0.
For uk ∈ Zk ⊆ E with ‖uk‖ = rk , set zk(t) = uk (t)‖uk‖ , then ‖zk‖ = 1. By the definition
of βk , one has ‖zk‖∞ ≤ βk , which implies that ‖uk‖∞ ≤ βk‖uk‖ = βk .rk = 1. It
follows from (H6), (2.1) and (3.13) that
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ϕ(uk) = 1

2

∫ T

0
|u̇k(t)|2dt + 1

2

∫ T

0
Auk(t).u̇k(t)dt +

∫ T

0
K (t, uk(t))dt

−
∫ T

0
W (t, uk(t))dt

≥ 1

2
‖uk‖2 − 1

2

∫ T

0
Au̇k(t).uk(t)dt −

∫ T

0
[|K (t, uk(t))| + |W (t, uk(t))|]dt

≥ 1

2
‖uk‖2(1 − ‖A‖) − ‖uk‖2∞.

∫ T

0
b̃(t)dt − M0T

≥ 1

2
(1 − ‖A‖)r2k −

∫ T

0
b̃(t)dt − M0T ,

which implies that infu∈Zk ,‖u‖=rk ϕ(u) → +∞ as k → +∞. ��

Lemma 3.4 If W (t, x) satisfies (H3) and (H4), K (t, x) satisfies (H2) and (H6) satis-
fied, then the functional ϕ satisfies (A2) in Lemma 2.3.

Proof For every k ∈ N
∗ , Yk is a finite dimensional space, so there exists a constant

dk > 0 such that
‖uk‖L2 ≥ dk‖uk‖, ∀uk ∈ Yk . (3.14)

By (3.12), ∀α ∈ (0, 2), one has

W (t, x)

|x |α ≥ B|x |2−α − C |x |−α → +∞ uniformly ∀t ∈ [0, T ] as |x | → +∞.

(3.15)
Then (3.15) implies that there exists a certain constant L4 ≥ σ 2−α(M3 + 2

d2k
} large

enough such that
min|x |=σ

W (t, x) > L4σ
α, ∀t ∈ [0, T ]. (3.16)

By (3.11) and (3.16), there exists a constant M5 > 0 such that

W (t, x) > L4σ
α−2|x |2 − M5, ∀(t, x) ∈ [0, T ] × R

n . (3.17)

where M5 = L4σ
α + maxt∈[0,T ]{max|x |≤σ |W (t, x)|} > 0. For every uk ∈ Yk with

‖uk‖ = ρk(ρk > rk is determined later), by (H6), (3.10), (3.14) and (3.17,) there
holds
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ϕ(uk) = 1

2

∫ T

0
|u̇k(t)|2dt + 1

2

∫ T

0
Auk(t).u̇k(t)dt +

∫ T

0
K (t, uk(t))dt (3.18)

−
∫ T

0
W (t, uk(t))dt

≤ 1

2
‖uk‖2 + 1

2
‖A‖‖uk‖2 + M3‖uk‖2L2 − L4σ

α−2‖uk‖2L2 + M6

≤
[
1

2
(1 + ‖A‖) − (L4σ

α−2 − M3)d
2
k

]
‖uk‖2 + M6

≤ −ρ2
k + M6, (3.19)

where M6 = (M4 + M5)T > 0. Therefore, if ρk > max{rk,√2M6} large enough,
then (3.18) implies that maxu∈Yk ,‖u‖=ρk ϕ(u) < 0. ��
Proof of Theorem 1.1 In view of Lemma 2.2, ϕ ∈ C1(E, R) holds. Condition (H5)

shows that ϕ(−u) = ϕ(u). Lemma 2.3 and Lemmas 3.2–3.4 imply that ϕ possesses a
sequence of critical points {uk} such that

ϕ′(uk) = 0 and ck = ϕ(uk) → +∞ as k → +∞. (3.20)

As is well known, u ∈ E is a weak solution of problem (1.1) which corresponds to the
critical points of the functional ϕ. Hence by Lemma 2.2, u is an odd classical solution
of problem (1.1). Next, we claim that ‖uk‖∞ → +∞ as k → +∞. If not, then there
exists a constant M7 > 0 such that

ϕ′(uk) = 0 and ‖uk‖∞ ≤ M7, ∀k ∈ N
∗. (3.21)

By a simple calculation, K ,W ∈ C1(R × R
n, R) and (3.21), there exists a constant

M8 > 0 independent of k such that

ϕ(uk) − 1

2
(ϕ′(uk), uk) =

∫ T

0

[
K (t, uk(t)) − 1

2
(∇K (t, uk(t)), uk(t))

]
dt

−
∫ T

0

[
W (t, uk(t)) − 1

2
(∇W (t, uk(t)), uk(t))

]
dt

≤ M8, ∀k ∈ N
∗,

which contradicts ϕ(uk) − 1
2 (ϕ

′(uk), uk) = ck → +∞ via (3.20). The proof is
complete. ��
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