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Abstract
Westudy both existence and stability of renormalized solutions for nonlinear parabolic
problems with three lower order terms that have, respectively, growth with respect to
u and to the gradient, whose model

(P)

{
ut − Δpu − div[c(t, x)|u|γ−1u] + b(t, x)|∇u|λ + d(t, x)|u|ι = μ − div(E) in Q,

u(0, x) = u0(x) in Ω, u(t, x) = 0 on (0, T ) × ∂Ω,

where Q := (0, T )×Ω (withΩ is an openbounded subset ofRN (N ≥ 2) and T > 0),
1 < p < N ,Δp is the usual p-Laplace operator, andμ ∈ M(Q) is a (general) measure
with bounded total variation on Q. As a consequence of ourmain results, we prove that

the conditions γ = (N+2)(p−1)
N+p , λ = N (p−1)+p

N+2 , 0 ≤ ι ≤ p− N−p
N , c ∈ Lτ= N+p

p−1 (Q)N ,

b ∈ L N+2,1(Q) and d ∈ Lz′,1(Q) (with z = pN−N−p
ιN ) are necessary and sufficient for

the existence and the stability of solutions for every sufficiently regular u0 ∈ L2(Ω),
E ∈ L p′

(Q)N and irregular μ ∈ M(Q).

Keywords Capacity · Noncoercive Cauchy problems · Parabolic PDEs · Regularity ·
Existence · Singular measure
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Résumé
Résultats de stabilité et d’existence pour une classe d’équations non-linéaires
paraboliques avec trois termes d’ordre inférieur et une donnée mesure utilisant
des espaces de Lorentz. Nous étudions l’existence et la stabilité des solutions renor-
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malisées pour des problèmes paraboliques non-linéaires avec trois termes d’ordre
inférieur qui ont, respectivement, une croissance par rapport à u et au gradient, de
modèle (P), où Ω est un sous-ensemble ouvert borné de R

N (N ≥ 2), T > 0,
1 < p < N , Δp est l’opérateur usuel p-Laplacien, et μ ∈ M(Q) est une mesure
(générale) avec une variation totale dans Q. Comme conséquence de nos résultas, nous
montrons que les conditions γ = (N+2)(p−1)

N+p , λ = N (p−1)+p
N+2 , 0 ≤ ι ≤ p − N−p

N ,

c ∈ Lτ= N+p
p−1 (Q)N , b ∈ L N+2,1(Q) et d ∈ Lz′,1(Q) (avec z = pN−N−p

ιN ) sont néces-
saires et suffisantes pour l’existence et la stabbilité des solutions pour u0 ∈ L2(Ω),
E ∈ L p′

(Q)N suffisament réguliers et μ ∈ M(Q) irrégulière.
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Version française abrégée

Dans le domaine desEDP’s beaucoup de travaux sont focalisés sur le cas des problèmes
elliptiques et paraboliques à données mesures. Les modèles des EDP’s “classiques”
définissent l’importance de la notion de capacité par rapport à la décomposition de
la donnée en utilisant des mesures telles que les mesures “diffuses” ou “singulières”.
Celles-ci déterminent l’importance de la décomposition en fonction de l’apparition
des termes définis dans le problème approché. Cependant, ces méthodes ne perme-
ttent pas de vérifier si les solutions délivrées par le problème sont uniques, ou, si
les nouveaux termes tels que les “termes d’ordre inférieur” sont bien définis. Nous
traitons dans cet article un de ces problèmes à donnée mesure avec trois terms d’ordre
inférieur. L’idée c’est de mettre des approximations adaptées lorsque ces nouveaux
termes apparaissent. Nous devons pour cela déterminer: Quelles écritures de solutions
permettant d’obtenir des meilleures approximations du problème en question pour
retrouver la solution du problème initial, et définir la méthode permettant d’établir,
et d’estimer, le lien entre les solutions contenues dans le problème approché et les
solutions du problème de base. Cette problématique mathématique s’inscrit donc par-
faitement dans la problématique posée dans ce travail avec différentes phases que l’on
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peut retrouver comme la recherche des estimations a priori, l’extraction des conver-
gences et le passage à la limite. Nous citons dans la suite les contributions scientifiques
qui ont été apportées jusqu’à aujourd’hui par différents auteurs ainsi que les points
que nous avons traité. Notons qu’un grand nombre d’articles a déjà été consacré à
l’étude d’existence et de stabilité des solutions des problèmes paraboliques sous des
multiples hypothèses et des différents contextes: pour plus de détails sur des résultats
classiques, voir [1,83,86,94] et les références incluses. Plus récemment, dans [2–4],
nous avons considéré le cas des opérateurs monotones non-linéaires et des termes
d’ordre inférieur (avec une croissance par rapport au gradient); en particulier, dans [2],
nous avons étudié le comportement asymptotique des solutions pour des opérateurs
paraboliques non-linéaires, un terme de croissance naturelle et une mesure positive μ

absolument continue par rapport à la p-capacité parabolique. Ici, nous analysons le cas
d’un problème à trois termes d’ordre inférieur avec des mesures générales, éventuelle-
ment singulières, et sans condition de signe sur les données. Nous nous intéressons à
l’étude d’existence et de stabilité, dans un sens convenable, des solutions généralisées
(renormalisées) pour une classe d’équations non linéaires et non coercives de modèle
(P). Notre résultat principal sera:

Theorem 0.1 Supposant que a(t, x, s, ζ ), K (t, x, s), H(t, x, s, ζ ), G(t, x, s), u0, E
et μ satisfont les hypothèses (1.4)–(1.11). Donc, pour tout p > 1, il existe une solution
renormalisée du problème (P).

1 Introduction

A large number of papers has been devoted to the study of existence/stability of
solutions for parabolic problems under different assumptions and various contexts: for
a review on classical results see [1,83,86,94], and references therein. More recently,
in [2–4], the case of nonlinear monotone operators with nonlinear lower order terms
(having growth with respect to the gradient) have been considered; in particular, in
[2], we deal with nonnegative measures μ absolutely continuous with respect to the
parabolic p-capacity (the so called “diffuse” measures). Here we analyze the case of
three nonlinear lower order terms with general, possibly singular, measure data with
no sign assumption. We are interested in the study of existence and stability, in a
suitable sense, of “generalized” (renormalized) solutions of a class of nonlinear and
“noncoercive” parabolic equations whose model is

{
ut − Δpu − div[c(t, x)|u|γ−1u] + b(t, x)|∇u|λ + d(t, x)|u|ι = μ − div(E) in Q,

u(0, x) = u0(x) in Ω, u(t, x) = 0 on (0, T ) × ∂Ω,
(1.1)

where Q := (0, T ) × Ω (with Ω ⊂ R
N is a bounded regular domain and T > 0),

c(t, x) ∈ Lτ (Q)N with τ = N+p
p−1 , γ = (N+2)(p−1)

N+p , b(t, x) belongs to the Lorentz

space L N+2,1(Q) with λ = N (p−1)+p
N+2 , d(t, x) belongs to the Lorentz space Lz′,1(Q)

with z = pN−N−p
ιN (0 ≤ ι ≤ p − N−p

N ), the initial datum u0 ∈ L2(Ω), E ∈ L p′
(Q)N

and μ is a general, possibly singular, data satisfying some hypothesis that we will
specify later. In the case where b ≡ c ≡ d ≡ 0, this parabolic equation appears
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in the weak theory where it is known as the Boccardo–Gallouët equation [21] for
p > 2− 1

N+1 , see also [18].Amodification of the problemabove is studied byPorzio as
a model for some noncoercive equations, see [88] for nonconstant b (with c ≡ d ≡ 0)
and L1-data. Existence results for problem (1.1) in the whole Q = (0, T )×Ω , where
Ω ⊂ R

N (N ≥ 2), T > 0, with a regular data u0 and μ is a general Radon measure
is well-known, we refer to [96], where equations of the form

ut − Δpu = μ in Q, (1.2)

are studied; we refer also to the paper [98], where problem (1.2) is studied in the
framework of “duality” solutions andwhere some regularity properties of the solutions
are obtained in that case, i.e., u ∈ Lq(0, T ; W 1,q

0 (Ω)) for every q < N−2
N+1 . It is not

difficult to obtain an existence result for problem (1.1) in the case where the data
are bounded: it suffices to use an “approximate” technique with problems having
regular data, and using “compactness” arguments, also known, as “distributional”
approach, to transform the equation into a regularized problem (a weak one if the data
μ ∈ L p′

(Q) and u0 ∈ L2(Ω)) which can then be solved by Leray–Lions’s methods.
In the case where the data is “more general”, or in the case where the data is singular,
this weak/distributional approach can not be done due to the lack of regularity of
the solutions (the weak/distributional formulation is not strong enough to provide
uniqueness as it can be proved by adapting the counterexample of J. Serrin [99], for
stationary problem, to the parabolic case [94]). But, this approach can be replaced
with the use of dependent-solution test functions whose role is again to overcome the
lack of regularity and to deal with the unbounded terms appearing in distributional
formulation, see [85,98] for the linear case. The case where the “Laplace” operator
is replaced by a nonlinear operator like the “p-Laplace” operator has been studied in
[5,34,84], and some references therein, where test functions of the form S(u)ϕ, where
S ∈ W 2,∞(R) is such that S′ has compact support on R, S(0) = 0, and ϕ ∈ C∞

c (Q)

are considered. We first show that there is a natural notion of generalized solution,
of problem (1.1) above, in spite of its nonlinear characters. A major consequence
of this notion is that, if the range of p is greater than 2N+1

N+1 , then the solution is

such that |∇u|p−1 ∈ Lq(Q) for all q < 1 + 1
(N+1)(p−1) (even if its gradient may

not belong to any Lebesgue space); we prove that there exists exactly a generalized
(very weak) solution u of the problem such that the truncation1 function Tk(u) ∈
L∞(0, T ; L1(Ω)) ∩ L p(0, T ; W 1,p

0 (Ω)) for every k > 0, and the energy of the
solution u, where it is “large”, goes to construct the singular (concentrated) part of
the measure μ (with respect to the (b, p)-capacity). Moreover, using a family of real
bounded Lipschitz continuous functions on R, one can justifies, in some sense, that
the absolutely continuous (diffuse) part of μ in the distributional formulation is well-
defined. Finally, a firstmain result is proved, aswegive compactness results (depending
on the data of the problem) to ensure that the solution of problems (1.1) are, in fact,
stable when passing to the limit. We do not consider only the model problem (1.1),

1 One of the principal tools which will be used to define solutions: let Gk (v) = (|v| − k)+sign(v) be the
level-set function, then for any k > 0, the truncation function Tk is defined by Tk (v) = v − Gk (v) =
max{−k,min{k, v}} (see if necessary, the Sect. 2.1 for more details).
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but we prove the existence/stability results for the general form

⎧⎪⎨
⎪⎩

ut − div[a(t, x, u,∇u) − K (t, x, u)] + H(t, x, u,∇u) + G(t, x, u)

= μ − div(E) in (0, T ) × Ω,

u(0, x) = u0(x) in Ω, u(t, x) = 0 on (0, T ) × ∂Ω,

(1.3)

where the vector field a: (0, T ) × Ω × R × R
N �→ R

N is a Carathéodory2 function
such that for every s ∈ R, ζ, ζ ′ ∈ R

N with ζ = ζ ′, the following properties

⎧⎪⎨
⎪⎩

a(t, x, s, ζ )ζ ≥ α|ζ |p, (1.4)

|a(t, x, s, ζ )| ≤ c[a0(t, x) + |s|p−1 + |ζ |p−1], (1.5)[
a(t, x, s, ζ ) − a(t, x, s, ζ ′)

] · (ζ − ζ ′) > 0, (1.6)

holds for two fixed positive constants c, α > 0, and a nonnegative function a0(t, x) ∈
L p′

(Q). Hence the nonlinear parabolic operator is defined on L p(0, T ; W 1,p
0 (Ω)),

and Lu := −div[a(t, x, u,∇u)] maps L p(0, T ; W 1,p
0 (Ω)) into its dual space

L p′
(0, T ; W −1,p′

(Ω)) surjectively, see [67,69]. As the lower order terms are con-
cerned, K (t, x, s): (0, T ) × Ω × R �→ R is a Carathéodory function that satisfy
assumption

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|K (t, x, s)| ≤ c0(t, x)|s|γ + c1(t, x),

c0(t, x) ∈ Lτ (Q)N , c1 ∈ L p′
(Q),

with τ = N + p

p − 1
and γ = N + 2

N + p
(p − 1),

(1.7)

for almost every (t, x) ∈ Q, and for every s ∈ R. Moreover, H : (0, T ) × Ω × R ×
R

N �→ R and G: (0, T ) × Ω × R �→ R are Carathéodory functions satisfying

⎧⎨
⎩

|H(t, x, s, ζ )| ≤ b0(t, x)|ζ |λ + b1(t, x),

λ = N (p − 1) + p

N + 2
, b0 ∈ L N+2,1(Q), b1 ∈ L1(Q),

(1.8)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G(t, x, s)s ≥ 0,

G(t, x, s) ≤ d1(t, x)|s|ι + d2(t, x),

0 ≤ ι ≤ p − N − p

N
, di ∈ Lz′,1(Q), d2(t, x) ∈ L1(Q),

with z = pN − N − p

N

1

ι
and

1

z
+ 1

z′ = 1,

(1.9)

2 a(·, ·, s, ζ ) is measurable on Q for every (s, ζ ) in R×R
N , and a(t, x, ·, ·) is continuous on R×R

N for
a.e. (t, x) in Q.
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for almost every (t, x) ∈ Q and for every ζ ∈ R
N . Finally, μ is a (general) measure

inMb(Q) decomposed as

μ = μd,p + μ+
c,p − μ−

c,p, (1.10)

according to the Radon–Nikodym and to the Banach decompositions, and

E ∈ L p′
(Q)N , u0 ∈ L1(Ω). (1.11)

It is worth pointing that problem (1.3) has twomain features: firstly; since the standard
subjectivity theorem for Leray–Lions operators can not be applied, we should reason
by means of the approximate theory introduced in [51,72,84,95], by using truncations
of solutions in order to get a pseudo-monotone and coercive differential operator
in L p(0, T ; W 1,p

0 (Ω)), then establish some a priori estimates on u, Tk(u) and ∇u.
Thus, a technical result on the a.e. convergence of gradients leads to pass to the limit.
Secondly, the right-hand side μ of problem (1.3), which contains a measure term, is
not an element of the dual space L p′

(0, T ; W −1,p′
(Ω)), therefore the solution can not

be expected to belong to the energy space L p(0, T ; W 1,p
0 (Ω)), so it is necessary to

change the functional setting in order to prove existence/stability results; to overcome
this problem, a concept of “generalized” solution should be considered in this specific
class. Now, we have to specify what we mean by “generalized solution”; let us recall
that for equations with singular datum (say L1(Q), or more in general, measures),
several notions of solutions have been introduced. A notion of “renormalized” solution
whenμ is a diffusemeasurewas introduced in [54], and in the same paper the existence
and uniqueness of such a solution are proved (when b ≡ c ≡ 0). In [53], a similar
notion of “entropy” solution is also defined and proved to be equivalent to that of
renormalized solution. A new definition of “renormalized-entropy” solution which, in
contrast with the previous ones, is closer to the one used for conservation laws in [17]
and to the one existing in the elliptic case in [50], is established in [90,91]. The case
of general measure in established in a similar way in [84,89]. The main idea in such
formulations is to move the attention from the solution u to its truncations Tk(u) and to
use a “truncated” version of the equation. This is advantageous both in order to obtain
a priori estimates and because requiring Tk(u) to belong to the energy space allows to
get informations about the solution. Observe that the above problem does not admit, in
general, a solution in the sense of distribution since we can not expect to have the fields
a(t, x, u,∇u), K (t, x, u) in L1

loc(Q)N and H(t, x, u,∇u) in L1
loc(Q). Indeed the last

assumptions are in fact crucial in order to obtain renormalized solution that allow a
priori estimates to hold true. In the present paper, we shall consider the same test
functions to deal with questions of regularity, existence and stability of “generalized”
solutions of problems of the form (1.3). The first point of the paper is devoted to the
case b ≡ d ≡ 0 by developing technical a priori estimates for u and its gradients
in appropriate “Lorentz”3 spaces, which appear in the generalized formulation, and
which simply the proof for the general case (b ≡ 0). In this first case, we will state all
necessary assumptions which seemed to be important to obtain existence of a solution.

3 We refer to Sect. 2.4 for more details on Lorentz spaces and their properties.
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More precisely, we will show that the solution u and its gradients ∇u satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u
N (p−1)+p

N+p ∈ L
N+p

N ,∞(Q), |∇u| N (p−1)+p
N+2 ∈ L

N+2
N+1 ,∞(Q), ∀p > 1,∥∥∥∥|u| N (p−1)+p

N+p

∥∥∥∥
L

N+p
N ,∞

(Q)

≤ C(N , p)

[
M + |Q| N p

N+2 L
N (p−1)+p
(N+2)p

]
,

∥∥∥|∇u| N (p−1)+p
N+2

∥∥∥
L

N+2
N+1 ,∞

(Q)
≤ C(N , p)

[
M + |Q| N

(N+2)p

]
L

N (p−1)+p
(N+2)p ,

(1.12)

where M, L are constants to be defined, see [44,46]. The result (1.12) resembles
the corresponding one for elliptic equations with Radon measure term, proved by
authors in [28], and has in difference with it the presence of the time derivative of u
in the parabolic equation and which applies a modification in the “control” of u with
respect to p. More precisely, these main estimates coming from using “Gagliardo–

Nirenberg’s” inequality, lead to a control of |u| N (p−1)+p
N+p with respect to the lower order

terms and to the boundedness of the right-hand side. Moreover, as in the elliptic case,
no regularity/sign-condition on the datum μ are assumed, only μ ∈ M(Q), space
of Radon measures, is required. However, the proof of the parabolic result is more
complicated since one has to estimate the term with time derivative of u. Then, we
proceed in performing a precise analysis in what happens in the pioneering works
[5,84] (see also [89] for a different approach); particularly, we do not assume that
the right-hand side μ admits a derivative part (with respect to the time variable). The
first difficulty is to obtain some a priori estimates for |∇u|λ (where u is the solution

of problem (1.3), this is done by proving uniform estimates of |u| N (p−1)+p
N+p , see [88],

which allow to obtain an estimate of u in L∞(0, T ; L1(Ω)), and an estimate of the
truncate functions Tk(u) in L∞(0, T ; L2(Ω)) ∩ L p(0, T ; W 1,p

0 (Ω)), of the type

sup
t∈[0,T ]

∫
Ω

|Tk(u)(t)|2dx +
∫

Q
|∇Tk(u)|pdxdt ≤ Mk + L, ∀k > 0, (1.13)

for some positive constants M and L . We will show using the strict monotone char-
acter of the vector filed “a”, a “generalized” stability result (this main feature of
this “generalized” result is due to the term −div[c(t, x)|u|γ−1u], which, in general,
does not belong to the dual space L p′

(0, T ; W −1,p′
(Ω))). Since p ≤ N , we have

L p′
(Q)N ⊂ L

N+2
N+1 ,∞(Q)N , which implies that −div[c(t, x)|u|γ−1u] does not in gen-

eral belong to L p′
(Q)N , which can be proved by using the same arguments of [84], but

actually the given proof is slightly, and is inspired by the works [61,72,73], by using
a direct correspondence between solutions of problem (1.1), and solutions of “trun-
cation” problems with measure data, that is, by considering the following truncation
nonlinear problems

⎧⎪⎨
⎪⎩

Tk(u)t − div[a(t, x, Tk(u),∇Tk(u)) − K (t, x, Tk(u))] + H(t, x, Tk(u),∇Tk(u))

+ G(t, x, Tk(u)) = μ − div(E) in Q := (0, T ) × Ω,

Tk(u(0, x)) = Tk(u0)(x) in Ω, Tk(u(t, x)) = 0 on (0, T ) × ∂Ω,

(1.14)
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where a: (0, T )×Ω ×R×R
N �→ R

N , K : (0, T )×Ω ×R �→ R
N , H : (0, T )×Ω ×

R×R
N �→ R and G: (0, T ) × Ω ×R �→ R are Carathéodory4 functions, satisfying,

respectively, the assumptions (1.4)–(1.9). Here Tk(u0) ∈ L1(Ω), E ∈ L p′
(Q)N and

μ is a, possibly singular, measure data with respect to the parabolic capacity (this
coincides exactly with the stability result of [5] when the terms −div[K (t, x, u)] and
H(t, x, u,∇u) and G(t, x, u) does not appear). Recall that the stability result is some-
times rather called “weak-stability” in the theory of renormalized solutions introduced
byDiperna and Lions [48,49], this terminology is sometimes used to prove global exis-
tence and weak stability for some large-data Cauchy problems, it consists in proving
that the sequence of solutions which satisfy only the physically natural a priori bounds
converge weakly in L1 to a solution where we are able to deduce a global existence
result of the solution, and which allows to overcome the lack of strong a priori esti-
mates (in the context of renormalized solutions: we shall prove that sequences of
classical solutions of the Cauchy problem with uniform a priori bounds obtained from
the standard physical identities associated with the equation converge weakly in L1

to a renormalized solution of the problem in order to deduce an existence of a global
renormalized solution), this new approach is different and is based on general tech-
niques giving the possibility of writing the equation in a form provided certain bounds
are satisfied. Roughly speaking, the weak-stability results in L1-weak reveal several
unexpected forms of weak L1-continuity for approximate sequences of solutions in
normalized sense. These facts are reminiscent of various results in the weak topology
arising in the basic work of Ball in elasticity, see [14,15], Murat and Tartar in the
theory of compensated compactness [77,78,101,102] (a general question in this area:
Is the weak limit of a sequence of solutions again a solution? In general, nonlinear
maps are not continuous in the weak topology and the answer is negative, but in the
case of some problems, like Boltzmann equations, the special structure of the opera-
tors leads to a positive result in the form of the weak-stability theorem). In particular,
the weak limit of a sequence of classical solutions is a renormalized (or, equivalently,
mild) solution and the set of renormalized solutions is closed in the weak topology
(the weak L1 limit of approximate solutions generated by mass normalization is a
renormalized solution); finally, we mention that the constructed global solutions sat-
isfy the entropy inequality (this fact has implication for various asymptotic problems
such as the hydrodynamic limit and the large-time behavior), we refer the interested
reader to [48] for a complete account on weak-stability/global-existence results for
Boltzmann equations. Nevertheless, we use a method which is slightly different, and
more easy, than the one used in [61]. Observe that, the term “singular” means that it
is, possibly, concentrated on a set with zero capacity (where by “capacity” we mean
the parabolic capacity introduced by Pierre [82], and developed in [54]). More pre-
cisely, under appropriate assumptions on the lower order term K , on the data u0,
F and μ, and applying a “specific” approximation on the decomposition of μ, we
prove that u satisfies a stability result (Theorem 3.1) with H ≡ G ≡ E ≡ 0. We
also show, (Theorem 3.2), that problem (1.3) admits exactly a “generalized” solution
under appropriate assumptions on H ≡ 0, G ≡ 0 and E ≡ 0. We could summarize

4 I.e., it is continuous with respect to s and ζ for almost every (t, x) ∈ Q, and measurable with respect to
(t, x) for every s ∈ R and ζ ∈ R

N .
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these stability/existence results by saying that there exists a correspondence between
solutions of problem (1.3) and sets of the cylinder Q = (0, T )×Ω where the measure
is concentrated with respect to the parabolic capacity. Therefore, problem (1.3) admits
a solution without any smallness on the coefficients b and/or c (which is different from
analogous assumptions for elliptic equation, see [28,61]). The idea behind the result
is very simple: if one makes formally an approximate problem, then one can derive
a priori estimates on the solutions and their gradients following the ideas contained
in [88] (see also [26,28]). Of course, these estimates are formally calculated in each
cylinder Qti = [ti−1, ti ] × Ω , where ([ti−1, ti ])i∈N is a partition of the entire inter-
val [0, T ], but they will be justified rigorously, using some technical lemmas and a
passage to the limit, in order to get estimates on the entire cylinder Q. The stability
result (Theorem 3.1) can also be reads as: every “generalized” solution of approxi-
mate problems, with H ≡ G ≡ F ≡ 0, corresponds, via a “Kernel” regularization,
to μn (a regular measure in M(Q) which converges to μ in the narrow5 topology
of measures) converges almost everywhere (a.e.) to the solution u of the correspond-
ing problem with measure μ, this function u is such that: u ∈ L∞(0, T ; L1(Ω))

with Tk(u) ∈ L∞(0, T ; L2(Ω)) ∩ L p(0, T ; W 1,p
0 (Ω)), and where all the gradients

satisfy ∇un converges to ∇u a.e. in Q, and Tk(un) converges strongly to Tk(u) in
L p(0, T ; W 1,p

0 (Ω)), for all k > 0 and for every n ∈ N. It is interesting to point out
that, we also get many “asymptotic behavior” results satisfied by the solution with
respect to the nonnegative parts of the singular term of the measure data and with
respect to lower order terms. More precisely, if u is a “generalized” solution, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→+∞

1

n

∫
{n<u<2n}

a(t, x, u,∇u) · ∇uϕdxdt =
∫

Q
ϕdμ+

c ,

lim
n→+∞

1

n

∫
{−2n<u<−n}

a(t, x, u,∇u) · ∇uϕdxdt =
∫

Q
ϕdμ−

c ,

lim sup
n→+∞

1

n

∫
{n<|u|<2n}

|K (t, x, u)| |∇u| dxdt = 0,

lim sup
n→+∞

1

n

∫
{n<|u|<2n}

|H(t, x, u,∇u)| |u| dxdt = 0,

(1.15)

where ϕ is a positive function in C1(Q) with ϕ ≥ 0 and μ±
c are the two (nonnegative)

singular parts of μ, we refer to Sect. 4 for more details. Recall that the stationary
(elliptic) casewas studied by authors in [55,98]when p = 2, γ = λ = 1, and in [28,29,
41]with only the term b(x)|∇u|λ, and [19,20,30]with only the term−div[c(t, x)|u|γ ].
A similar connection between the stationary solution and solutions of linear/nonlinear
problems with two lower order terms and measure data is proved in [40,42,43,59,
61,62]. Therefore, similar problems are expected to occur in the evolution case, see
for example [25] where a lower order term of the type div(φ(u)) appears, with φ

is continuous in R
N , in [31] when p = 2, b = 0 and c(t, x) ∈ L2(Q)N using

the framework of “entropy” solutions, in [44] when b = 0, μ ∈ L1(Q) and u0 ∈
5 Also called “weak” convergence where test functions are taken in the set C0

b (Q) of all bounded and
continuous functions in Q and where the total mass is conserved (see Definition 2.1 for more details).
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L1(R), and in [46] when μ is a diffuse measure (μ ∈ Md,p(Q)) in the framework
of “renormalized” solutions. However, these parabolic works aren’t proved when one
deals with general, possibly singular, measure, as stated in [28], which is the main
result of the present paper. Another interesting result is contained in (Theorem 3.2)
where one can apply the same stability method to ensure the existence of a generalized
solution of (1.1) for more general lower order and forcing terms: an explicit example is
given when considering the datum asμ+div(E), with E ∈ L p′

(Q)N andμ ∈ M(Q).
Our main result reads as follows:

Theorem 1.1 Assume that a(t, x, s, ζ ), K (t, x, s), H(t, x, s, ζ ), G(t, x, s), u0, E and
μ satisfy assumptions (1.4)–(1.11). Then, for every p > 1, there exists a renormalized
solution u of problem (P).

The paper is organized as follows. In Sect. 2.1, we give some notations andwe recall
somewell-known results as they are used to define our main results. The definition and
some properties of the functional Sobolev spaces are given in Sect. 2.2. In Sect. 2.3,
we define the parabolic (b, p)-capacity, we give its properties and its relation to
measure spaces, compared with the well-known Bessel (b, p)-capacity defined on
R

N . In Sect. 2.4, we use Lebesgue spaces to characterize Lorentz spaces, and we give
necessary and sufficient conditions for embedding theorems to hold. In Sect. 3.1, we
introduce themain assumptions, we specify what wewean by “generalized” solutions,
and we characterize the statements of the main results. In Sect. 3.2, using the above
mentioned measure spaces, we define an approximation of data with “Kernel type
mollifers”, we also show that each of these approximations generate a priori estimates
(several other properties on the solution are also given). In Sect. 4, we investigate and
prove existence/stability and regularity results of generalized solutions to the parabolic
boundary value problems (1.1). The case b ≡ d ≡ 0 is considered in Sect. 4.1 where
we assume, for simplicity, that μ is general and E ≡ 0. Under these hypotheses,
we prove the “stability” of a distributional solution [Step 1], the asymptotic behaviour
results are obtained in [Steps 2–3], with a slightly different version of [84, Theorem 5],
which lead to a limit-solution using a “near/far from” approach [Step 4–5]. Existence
of a solution in connection with three lower order terms is proved in Sect. 4.2 where a
more general datum (E ≡ 0) is considered. It is worth to point out that the uniqueness
view-point opens a “large” quantity of questions when a general measure datum is
considered.

2 Preliminaries

Throughout this paper, Ω will be a bounded open subset of RN , N ≥ 2, with smooth
boundary, and p and p′ will be two real numbers with p > 1 and 1

p + 1
p′ = 1. In what

follows, |ξ | and ξ ·ξ ′, will denote respectively, the Euclidean norm of a vector ξ ∈ R
N

and the scalar product between ξ and ξ ′ ∈ R
N . In the first section, we give some

notations/preliminary tools and we introduce some functional spaces. In particular,
we recall several useful properties of parabolic capacities in connection with measure
spaces, parabolic “Lorentz” spaces and “Kernel” regularization.
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2.1 Notations and tools

We set by R
N the N -euclidean (simply R if N = 1, while R

+ = (0,+∞)) on
which the standard Lebesgue measure is concentrated, as defined on the σ -algebra of
Lebesgue measurable sets. Given Ω ⊆ R

N be an open set, with boundary ∂Ω , and
Q = (0, T ) × Ω whose boundary (0, T ) × ∂Ω . We denote by Cc(Q) the space of
continuous functions on Q with compact support in Q, and C∞

c (Q) (also denoted by
D(Q)) will designate the space of test functions on Q, that is, the space of infinitely
continuously differentiable functions in Q with compact support in Q, and D′(Q)

the space of continuous linear functionals from C∞
c (Q) into R. Considering Cc(Q)

with the topology of locally uniform convergence, we denote by M(Q) the space
of Radon measures whose elements μ are identified with the associated real valued
additive set functions, defined on the σ -algebra of Borelian subsets of Q, and which
are finite on compact subsets (μ± denotes the positive measures, mutually orthogonal,
of the Hahn decomposition of μ, that is, μ = μ+ − μ−). By Mb(Q), we mean the
subspace of measures in M(Q) whose total variation |μ| = μ+ + μ− is finite on
Q, that is, |μ|(Q) < +∞ with respect to the measure | · |. For p ∈ [1,∞) and
for a function u ∈ L p(Q), we denote ‖u‖p

L p(Q) = ∫
Q |u|pdxdt , and for measurable

functions u, v: Q �→ R, we set

{
u+ := max{u, 0}, u− := max{−u, 0},
u ∨ v = max{u, v}, u ∧ v = min{u, v}. (2.1)

We define, for k > 0, the truncation function Tk(s) = (−k) ∨ [k ∧ s]; we also
consider its auxiliary function Gk(s) = s − Tk(s) = (|s| − k)+sign(s). Following
[10], we introduce T 1,p

0 (Q) as the set of all measurable functions u: Q �→ R such that

Tk(u) ∈ L p(0, T ; W 1,p
0 (Ω)) for all k > 0, we point out that T 1,p

0 (Q) ∩ L∞(Q) =
L p(0, T ; W 1,p

0 (Ω)) ∩ L∞(Q). The following lemma, see [10, Lemma 2.1], which is
of analytic nature will be useful in defining the “gradient” for functions, that may not
belong to Sobolev spaces, enjoying some properties, and is important in deriving a
priori estimates of weak solutions.

Lemma 2.1 Let u ∈ T 1,p
0 (Q). Then, there exists a unique measurable functionv: Q �→

R
N such that

∇Tk(u) = vχ{|u|<k} almost everywhere (abbreviated a.e.,) in Q, for every k > 0.

(2.2)

We will define the gradient of u as the function v, and we will denote it by v = ∇u. If
u belongs to L∞(0, T ; W 1,1

0 (Ω)), this gradient coincides with the usual gradient in
distributional sense.

In what follows we will indicate by ω(·) a generalized sequence that converges to
zero as (·) goes to its limit. Moreover, we will denote C(·) several (possibly different)
constants which depend on the parameter (·) but not on the sequence indices. We will
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set

Θk(s) = T1(s − Tk(s)), hn(s) = 1 − |Θn(s)|, Sn(s) =
∫ s

0
hn(τ )dτ, ∀s ∈ R,

(2.3)

and in particular, wewill exploit their useful properties: Note that, hn(s) converges to 1
as n tends to infinity and has compact support; so that, Sn(s) is a sequence of W 2,∞(R)

having a derivative with compact support, and converging, as n tends to infinity, to
the identity function I (s) = s. Let us recall a useful lemma we will apply during the
proof of the main results (it is a well-known tool about the strong convergence for
monotone operators).

Lemma 2.2 Let a(t, x, s, ζ ) satisfy Leray–Lions assumptions [i.e., (1.4)–(1.6)], and
suppose that wn converges weakly to w in L p(0, T ; W 1,p

0 (Ω)). Moreover, if

lim
n→+∞

∫
Q
[a(t, x, wn,∇wn) − a(t, x, wn,∇w)] · ∇(wn − w) = 0, (2.4)

then

wn → w strongly in L p(0, T ; W 1,p
0 (Ω)) and a.e. in Q. (2.5)

Proof See [27, Lemma 5] (see also [86, Lemma 2.4]). ��

2.2 Some properties of functional parabolic spaces

Given a real Banach space V0, and two numbers a, b in R; the space C∞
c ([a, b]; V0)

will be the restrictions to [a, b] of functions in C∞
c (R; V0) (the space of functions

in C∞(R; V0) having compact support), and C([a, b]; V0) the space of continuous
functions from [a, b] into V0. Then, for 1 ≤ p < +∞, L p(a, b; V0) is defined as the
space of measurable functions u: [a, b] �→ V0 such that

‖u‖L p(a,b;V0) =
(∫ b

a
‖u‖p

V0
dt

) 1
p

< +∞, (2.6)

while L∞(a, b; V0) is the space of measurable functions such that

‖u‖L∞(a,b;V0) := sup-ess
[a,b]

‖u‖V0 < +∞. (2.7)

Of course both spaces are meant to be quotiented, as usual, with respect to the a.e.
equivalence, we denote by W the functional space

W = {
u ∈ L p(0, T ; V ); ut ∈ L p(0, T ; V ′)

}
, (2.8)
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being V = W 1,p
0 (Ω)∩ L2(Ω) endowed with its natural norm ‖ · ‖

W 1,p
0 (Ω)

+‖·‖L2(Ω)

and V ′ its dual space. As usual, this functional space W is endowed with the norm

‖u‖W = ‖u‖L p(0,T ;V ) + ‖ut‖L p′
(0,T ;V ′). (2.9)

Let us consider

Ŵ =
{

u ∈ L p(0, T ; W 1,p
0 (Ω)) ∩ L∞(0, T ; L2(Ω)); ut ∈ L p′

(0, T ; W−1,p′
(Ω))

}
.

(2.10)

It is well-known, since W −1,p′
(Ω) ↪→ V ′, we have Ŵ is continuously embedded in

W, and it is the natural space that appears in the study of the parabolic problem (1.1)
with time-dependent measure data, but it is not lost in in working withW instead of Ŵ
(observe that Ŵ ⊂ W) since the sets of null-capacity with regards toW coincide with
the sets of null capacity coming from Ŵ, see [54, Remark 2.18] (see also [56] fore
more details). Moreover, since V ↪→ L2(Ω) ↪→ V ′, we notice thatW is continuously
embedded in C([0, T ]; L2(Ω)), see [47], which means that there exists C > 0 such
that ‖u‖L∞(0,T ;L2(Ω)) ≤ C‖u‖W, for all u ∈ W. For further properties of these spaces,
we refer to the monographs [6,7] and to the papers [54,82,83] (see also references
therein). Given two measures μ and ν, the measure μ is said to be “singular with
respect to ν” if there exists a Borel set E such that μ = μE and ν(E) = 0, where the
“restriction” μE of μ to E is defined by

(μE )(A) := μ(E ∩ A) for every Borel set A ⊆ Q (abbreviated, μ � E), (2.11)

withμ∅ = 0. For anyμ ∈ Mb(Q) and any Borel set E ⊆ Q, we denote byMs(Q) the
set of measures which are “singular with respect to the Lebesgue measure”, namely

Ms(Q) := {
μ ∈ M(Q)| ∃ a Borel set E ⊆ Q such that (s.t) |E | = 0 and μ = μ � E

}
.

(2.12)

Similarly, we denote by Mac(Q) the set of measures “absolutely continuous with
respect to the Lebesgue measure”, namely

Mac(Q) := {μ ∈ M(Q)| μ(E) = 0 for any Borel set E ⊆ Q s.t |E | = 0} .(2.13)

Recall that Ms(Q) ∩ Mac(Q) = {0}. Moreover, by the Lebesgue decomposition and
the “Radon–Nikodym” theorem, see [63], for any μ ∈ Mb(Q):

(I1) there exists a unique couple (μac, μs) ∈ Mac(Q) × Ms(Q) such that

μ := μac + μs; (2.14)
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(I2) there exists a unique μr ∈ L1(Q) (called the “density” of the measure μac) such
that

μac(E) =
∫

E
μr (t, x)dxdt, for any Borel set E ⊆ Q. (2.15)

It is worth observing that the following relations hold

μs = μ+
s − μ−

s , [μs]± = [μ±]s; (2.16)

thus, we will use the notation

[μ]±s := [μs]± = [μ±]s . (2.17)

Further relevant subsets ofMb(Q) (besideMac(Q) andMs(Q)) arise, if we replace the
Lebesgue measure of Borel sets with their parabolic “capacity”. This is the content
of the next part where we characterize “good” measures, in the sense that, a “not
good” measure is singular (or more exactly, it is “concentrated with respect to the
Choquet-capacity”).

2.3 Parabolic capacity and relatedmeasure spaces

Throughout this part, we introduce the parabolic capacity with respect to Q, and we
state some of its properties. First, we give the definition of the so-called “Choquet
capacity”: Let T be a topological space, and let P(T ) be the power set of T . A
mapping C :P(T ) �→ [0,+∞) is called a Choquet capacity on T if the following
properties are satisfied:

(C0) C(∅) = 0,
(C1) A ⊂ B ⊂ T implies C(A) ≤ C(B),
(C2) (An)n ⊂ T an increasing sequence implies limn→∞C(An) = C(∪∞

n=1An),
(C3) (Kn)n ⊂ T a decreasing sequence, Kn compact, implies limn→∞C(Kn) =

C(∩∞
n=1Kn).

Fore more details on the Choquet capacity, we refer the reader to [35] (see also [52,
A.II.1]). Let capb,p denotes the classical “Bessel” capacity, it is defined for open sets
U ⊆ R

N+1 by

capb,p(U ) = inf {‖u‖W: u ∈ W s.t. u ≥ 1 a.e. on U } . (2.18)

For an arbitrary set A ⊂ R
N+1,

capb,p(A) = inf
{
capb,p(U ): U is an open set in RN+1 containing A

}
. (2.19)

A set P ⊂ R
N+1 is called “polar” if capb,p(P) = 0, and a function u ∈ W is said

to be “quasi-continued” (abbreviated, q.c.) if for every ε > 0, there exists an open

123



Stability and existence results for a class of nonlinear… 65

set U ⊆ R
N+1 such that capb,p(U ) < ε and � uRN+1\U is continuous. It is well-

known, see [7, Section 2.2] and [54, Section 2], that capb,p is a Choquet capacity on
R

N+1, and for every u ∈ W there exists a unique (up to a polar set) q.c. function
ũ:RN+1 �→ R such that ũ = u a.e. on R

N+1. Moreover, if K ⊆ R
N+1 is a compact

set, then capb,p(K ) can also be defined by

capb,p(K ) = inf
{
‖u‖W: u ∈ W ∩ Cc(R

N+1) s.t. u ≥ 1 on K
}

. (2.20)

Since capb,p is a Choquet capacity on RN+1, we have for every Borel set B ⊂ R
N+1

capb,p(B) = sup
{
capb,p(K ): K ⊆ B ⊆ R

N+1 compact
}

. (2.21)

For more details on the classical Bessel capacity and its connection to measures, we
refer to the monographs [7,75] and references therein. Note that, one can also define
the “relative” capacity for relatively open sets U ⊂ Q with respect to the relative
topology of Q (for further applications of this type of capacity we refer the reader
to [23] and references therein). Next, we give several useful properties of parabolic
capacity.

Theorem 2.1 Let B be a Borel subset of Q. Then, one has capb,p(B) = 0 if and only
if capp(E) = 0, where

capp(B) = inf
{‖u‖W: u ∈ C∞

c ([0, T ] × Ω) s.t. u ≥ χU
}
. (2.22)

The alternative definition given in property (2.22) follows directly from the definition
of C∞

c ([0, T ] × Ω) (space of restrictions to Q of such functions in R × R
N with

compact support in R × Ω) and the fact that C∞
c ([0, T ] × Ω) is dense in W (the

inverse implication holds since capp satisfies the sub-additivity property, see [54,
Proposition 2.14]). The following lemmas are useful in order to estimate the capacity
on the level sets of the solution u.

Lemma 2.3 Let u ∈ W be a capb,p-q.c. function, then for every k > 0

capb,p({|u| > k}) ≤ C

k
max

{
‖u‖

p
p′
W

, ‖u‖
p′
p

W

}
. (2.23)

Proof See [54, Proposition 2.19]. ��
The following result shows that functions inW has a quasi-continuous representative
(q.c.r).

Lemma 2.4 For every u ∈ W, there exists a unique (up to a polar set) q.c. function
ũ: Q �→ R such that ũ = u a.e. in Q.

Proof See [54, Lemma 2.20]. ��
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Lemma 2.5 Let (un) be a sequence of q.c. functions in W which converges to a q.c.
function u ∈ W. Then, there exists a subsequence which converges q.e. to u on Q.

Proof See [54, Lemma 2.1]. ��
As mentioned above, we would like to characterize measures in Mb(Q) in terms
of capacity (in this case, we will denote Mb,p(Q) (instead of Mb(Q)) to refer that
measures are definedwith respect to (b, p)-capacities (instead of Lebesguemeasures).
For this reason, we denote by Md,p(Q), for p ∈ [1,∞), the set of measures on Q
which are “diffuse with respect to the (b, p)-capacity”, namely

Md,p(Q) :=
{
μ ∈ M(Q)| μ(E) = 0 for every Borel set E ⊆ Q s.t. capb,p(E) = 0

}
.

(2.24)

Similarly, we denote byMc,p(Q) the set of measures on Q which are “concentrated
with respect to the (b, p)-capacity”, namely

Mc,p(Q) := {
μ ∈ M(Q)| ∃ a Borel set E ⊆ Q s.t. capb,p(E) = 0 and μ = μE

}
.

(2.25)

Clearly, Md,p(Q) ∩ Mc,p(Q) = {0} and Md,p1(Q) ⊆ Md,p2(Q) if p1 < p2. Recall
that every subset E ⊆ Q such thatMc,p(E) = 0, p ∈ [1,∞), is Lebesguemeasurable
and there holds |E | = 0, see [39, Proposition 7.3]. This plainly implies

Mac(Q) ⊆ Md,p(Q) and Mc,p(Q) ⊆ Ms(Q), ∀p ∈ [1,∞). (2.26)

It is known that a measure μ ∈ Mb,p(Q) belongs to Md,p(Q) if and only if μ ∈
L1(Q)+ L p′

(0, T ; W −1,p′
(Ω)), where L p′

(0, T ; W −1,p′
(Ω)) denotes the dual space

of L p(0, T ; W 1,p
0 (Ω)), see [22], and we say that a Radon measure μ belongs to

L p′
(0, T ; W −1,p′

(Ω)) if there exists F ∈ L p′
(0, T ; W −1,p′

(Ω)) such that

〈F, ϕ〉
L p′

(0,T ;W−1,p′
(Ω)),L p(0,T ;W 1,p

0 (Ω))
=
∫

Q
ϕdμ, ∀ϕ ∈ C∞

c (Q). (2.27)

In this case, we also say that F is a Radon measure by identifying F with μ, see [39,
Subsection 1.13] for further details. Thus, one can extend the duality symbol 〈·, ·〉 to
any μ ∈ Md,p(Q) and ϕ ∈ W∩ L∞(Q) (recall that, if μ ∈ Md,p(Q), every function
v ∈ W ∩ L∞(Q) also belongs to L∞(Q, μ)) and it results

〈μ, v〉 ≤
∣∣∣∣
∫

Q
vdμ

∣∣∣∣ ≤ ‖v‖L∞(Q,μ)|μ(Q)|. (2.28)

As in (2.14), there exists a unique couple (μd,p, μc,p) of (mutually singular) measures
such that μd,p ∈ Md,p(Q) and μc,p ∈ Mc,p(Q), and there holds

μ := μd,p + μc,p (2.29)
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(the measures μd,p and μc,p will be called, respectively, “the diffuse” and “the
concentrated” parts ofμ “with respect to the (b, p)-capacity”). Combining the decom-
positions (2.14) and (2.29), it can be seen that for every μ ∈ Mb(Q),

μc,p = [μs]c,p, μd,p = μac + [μs]d,p. (2.30)

Moreover, there also holds

[μ±]d,p = [μd,p]± := [μ]+d,p; [μ±
s ]d,p = [[μs]d,p

]± := [μs]±d,p. (2.31)

Finally, from (2.29)–(2.31), we obtain the decomposition

μ = μac + [μs]d,p + μc,p. (2.32)

Remark 2.1 In connection with the first inclusion in (2.26), observe that if N = 1, then
M+

c,p(Q) = ∅ for every p ∈ [1,∞). In fact, for singletons E = {(t, x)}, (t, x) ∈ Q,
there holds

capb,p ({(t, x))}) ≥ 0 if either p > N or p = N = 1, (2.33)

see [57]. Therefore, by monotonicity there holds capb,p(E) > 0 for every nonempty
Borel set E ⊆ Q; hence the claim follows, and (2.32) implies, in the case N = 1, that

μ := μac + [μd,p]. (2.34)

Proposition 2.1 Let Ω be a bounded open subset of RN . Assume that ρε is a sequence
of L1(Q) functions converging to ρ weakly in L1(Q) and assume that σε is a sequence
of L∞(Q) functions which is bounded in L∞(Q) and converges to σ a.e. in Q. Then

lim
ε→0

∫
Q

ρεσεdxdt =
∫

Q
ρσdxdt . (2.35)

The natural convergence in Mb(Q) is defined by the rule that μn converges to μ if
limn→∞

∫
Q ϕdμn = ∫

Q ϕdμ, for all ϕ ∈ Cc(Q). Technically, this is the weak-*
convergence (it is also refereed to as “vague” convergence). The problem is that the
limit measure can be “defective”, i.e., may have less masses than the limit of the
masses in the convergent family (some masses can go to infinity or to the boundary).
This is avoided by “weak convergence” (also called “narrow convergence”) where test
functions are taken in C0

b (Q), the set of all bounded and continuous functions on Q,
and which is stricter than vague convergence and the total mass is conserved in the
limit.
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Definition 2.1 We say that a sequence {μn} converges “in the narrow topology” to a
measure μ inMb,p(Q) if

lim
n→∞

∫
Q

ϕdμn =
∫

Q
ϕdμ, ∀ϕ ∈ C0

b (Q). (2.36)

The following result holds if one can consider nonnegative Radonmeasures with finite
and fixed total mass.

Proposition 2.2 We recall that, if μn is a nonnegative measure in Mb,p(Q), then {μn}
converges in the narrow topology to a measure μ if and only if μn(Q) converges to
μ(Q) and (2.36) holds for every ϕ ∈ C∞

0 (Q). It follows that if μn is a nonnegative
measure, μn converges in the narrow topology to μ if and only if (2.36) holds for any
ϕ ∈ C∞(Q).

To conclude, the next part contains some well-known results on the characterizations
of Lorentz spaces, we refer the reader to [64,65,70,80] and references therein for more
details.

2.4 Lorentz spaces and embedding theorems

Recently, there is a great deal with the topic of Lorentz spaces and their regularities to
solve various PDEs, see [9,11–13,76,104], by using decreasing rearrangements, see
[8,37,66]. The Lorentz spaces can be considered as two-parameter scale of spaces, and
which refined, in some sense, Lebesgue spaces to “more” general spaces. They are
extensions of Lebesgue spaces where the classical theory still valid. This “specific”
kind of spaces is introduced when dealing with the interpolation theory: recall that the
averaging operator (T f )(s) = 1

s

∫ s
0 f (τ )dτ (defined in L1([0, 1]) for 0 < s < 1) is

proved as a bounded linear functional on L p into itself (for 1 < p ≤ ∞) by using the
Riesz–Thorin interpolation theorem, see [33, Corollary 2.3], and Hardy-inequality.
But, this interpolation result can’t be applied in order to prove the boundedeness in L1

(it suffices to consider the decreasing function f (s) = s−1[log(s)]−2 near the origin as
a counter-example). A quite different technique, called “Marcinkiewicz interpolation
Theorem”, see [74], formulated in a larger class of two parameter family of spaces L p,q

is the desired interpolation to accomplish the L1-boundedness. To be more precise, let
M be the cone of μ-measurable functions on R whose values lie in [0,∞], and M0
be the class of functions inM that are finite μ-a.e., this class of two parameter family
of spaces (called Lorentz spaces) can be derived by using decreasing rearrangements
as follows:

Definition 2.2 LetM0(Q, μ) be the totally σ -finite measure space, and suppose 0 <

p, q ≤ ∞. The Lorentz space L p,q = L p,q(Q, μ) consists of all u ∈ M0(Q, μ) for
which the quantity

‖u‖p,q =

⎧⎪⎨
⎪⎩
{∫∞

0 [τ 1
p u�(τ )]q dτ

τ

} 1
q

if 0 < q < ∞,

sup
0<τ<∞

{
τ

1
p u�(τ )

}
if q = ∞,

(2.37)
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Fig. 1 Example of a decreasing rearrangement u�(s)

Fig. 2 Decreasing rearrangements

is finite, where the function u� is the decreasing rearrangement of u.

Some comments about this definition are in order to be given: note that the con-
struction of a decreasing right-continuous function u� on the interval (0,∞), i.e.,
“equi-measurable”, is analogous to rearranging the terms of a finite sequence in
decreasing order [in the sense that: two nonnegative functions f and g will be “rear-
rangements” of each other (or, in a more precise terminology, will be asked to be
“equi-measurable”) if their distribution functions coincide]; this notion, which is
clearly symmetric, also allows for equi-measurability of functions defined in differ-
ent measure spaces. Moreover, the concept of measure-preserving transformation for
nonnegative measurable functions u, v (that is to say, v is a “rearrangement” of u if
v = u ◦ σ for some measure-preserving transformation σ , which coincides with the
notion of rearrangement for finite sequences of nonnegative numbers [(bi )

n
i=1 is a rear-

rangement of (ai ) if bi = aσ(i), for some permutation σ of the numbers 1, 2, . . . , n]
but in more general measure spaces. This concept, while valid, is not broad enough for
our purpose since the symmetry fails (v may be rearrangement of u in this sense with-
out u being a rearrangement of v), then we shall adopt here the first broader definition.
Recall that for u ∈ M0(Q, μ), the decreasing rearrangement of u is the function u�

defined on [0,∞) by

u�(s) = inf {λ:μu(λ) ≤ s} , ∀s ≥ 0, (2.38)

with the convention that inf (∅) = ∞. Thus, if μu(λ) > s for all λ ≥ 0, then
u�(s) = ∞, see Figs. 1, 2 and 3.

Notice also that if μu is continuous and strictly deceasing, then u� is simply the
inverse ofμu on the appropriate interval. In fact, for general u, if we first form the dis-
tribution function μu and then form the distribution function mμu of μ f (with respect
to Lebesgue measure m on [0,∞)), we obtain precisely the decreasing rearrangement
u�. This is an immediate consequence of the identities

123



70 M. Abdellaoui

Fig. 3 Decreasing/increasing rearrangements

u�(s) = sup {λ:μu(λ) > s} = mμu (s) ∀s ≥ 0, (2.39)

which follow from (2.38), the fact that μu is decreasing and the definition of the
distribution function. In addition, for every u, v inM0(Q, μ), we have the following
“Hardy–Littlewood inequality”:∫

Q
|uv|dμ ≤

∫ ∞

0
u�(τ )v�(τ )dτ, (2.40)

which reduces, when v is the characteristic function, to

1

μ(E)

∫
E

|u|dμ ≤ 1

s

∫ s

0
u�(τ )dτ, ∀u ∈ M0(Q, μ). (2.41)

Notice that, the average of |u| (over any set of measure s) is dominated by the cor-
responding average of u� (over the interval (0, s)), which is also maximal among all
averages of u� (over sets of measure s). For this reason, the function u�� defined by

u��(s) = 1

s

∫ s

0
u�(τ )dτ, ∀s > 0. (2.42)

is called “the maximal function” of u�. It is clear that the Lorentz space L p,p(Q),
0 < p ≤ ∞, coincides with the Lebesgue space L p(Q), and

‖u‖p,p = ‖u‖p ∀u ∈ L p(Q). (2.43)

Note that also the space L∞,q , for finite q, is trivial in the sense that it contains only the
zero-function, and for any fixed p, the Lorentz space L p,q increases as the secondary
exponent q increases.

Proposition 2.3 Suppose that 1 ≤ p ≤ ∞, and 1 ≤ q ≤ r ≤ ∞. Then

‖u‖p,r ≤ C‖u‖p,q ∀u ∈ M0(Q, μ), (2.44)

where C is a constant depending only on p, q, s, and r. In particular, L p,q ↪→ L p,r ,
Lr ,s ↪→ L p,q on finite measure spaces, and l p,q ↪→ lr ,s on discrete measure spaces.

Proof See [33, Proposition 4.2]. ��
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TheLorentz space L p,q is reduced to theLebesgue spaces L1 or L∞, respectively,when
p = q = 1 or p = q = ∞. If 1 ≤ q ≤ p < ∞ or p = q = ∞, the (L p,q , ‖·‖p,q) is a
rearrangement-invariant Banach space, but the functional u �→ ‖u‖p,q is not always
a norm even when p, q ≥ 1. Although the restriction q ≤ p is necessary, ‖ · ‖p,q can
be replaced, in the case p > 1, with an equivalent functional which is a norm for all
q ≥ 1. The trick is simple, it suffices to replace u� with u�� in the definition (2.37) of
‖u‖p,q .

Definition 2.3 Suppose that 1 < p ≤ ∞ and 0 < q ≤ ∞. If u ∈ M0(Q, μ), let

‖u‖(p,q) =

⎧⎪⎨
⎪⎩
{∫∞

0 [τ 1
p u∗∗(τ )]q dτ

τ

}1/q
if 0 < q < ∞,

sup
0<τ<∞

{
τ 1/p f ∗∗(τ )

}
if q = ∞,

(2.45)

where u�� is the maximal function of u� defined in (2.42).

It is worth noting that if 1 ≤ p < ∞, the space L p,1 is a Lorentz space, equipped with
the norm ‖ · ‖p,1 defined by

‖u‖p,1 =
∫ ∞

0
τ

1
p u�(τ )

dτ

τ
. (2.46)

On the other hand, if 1 < p ≤ ∞, the space L p,∞ is also a Lorentz space, equipped
with the “modified” norm ‖ · ‖(p,∞) defined by

‖ f ‖(p,∞) = sup
τ>0

τ 1/p f ��(τ ). (2.47)

In particular, if 1 < p < ∞, L p,1 and L p,∞, when suitably normed, are respectively
the smallest and the largest of all rearrangement-invariant spaces having the same
fundamental function as L p, and the associate space of L p,q(Q, μ), up to equivalence
of norms, is the Lorentz space L p′,q ′

(Q, μ) where 1
p + 1

p′ = 1
q + 1

q ′ = 1. To con-
clude, these spaces play a particularly important role in the weak type interpolation
theory (“Marcinkiewcz interpolation”) and the details of these facts require various
and hard analytic tools like theory of Fourier multipliers, Sobolev embedding and
Marcinkiewicz interpolation theorems, etc (this is why we restrict ourselves to some
classical properties). Let us now turn to settle the tools we need, for 1 < p < ∞,
1 < q < ∞ and for 1 < r < ∞, the parabolic Lorentz spaces L p,q(Q) and Lr ,∞(Q)

are the spaces of Lebesgue measurable functions such that

⎧⎪⎪⎨
⎪⎪⎩

‖ f ‖L p,q (Q) =
(∫ |Q|

0
[u�(τ )r

1
p ]q dτ

τ
)
1
q

)
< +∞, (2.48)

‖ f ‖Lr ,∞(Q) = r [meas
r>0

{(t, x) ∈ Q: | f (t, x)| > r}] 1r < +∞. (2.49)

In general (2.48)–(2.49) does not define a norm in Lorentz spaces, but one can define
a “modified” norm [see (2.46)–(2.47)]. Parabolic Lorentz spaces can be considered as
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“intermediate spaces” between the parabolic Lebesgue spaces, in the sense that, for
every 1 < s < r < ∞ we have

Lr ,1(Q) ⊂ Lr ,r (Q) = Lr (Q) ⊂ Lr ,∞(Q) ⊂ Ls,1(Q). (2.50)

The space Lr ,∞(Q) is the dual space of Lr ′,1(Q), where 1
r + 1

r ′ = 1, and we have the
generalized Hölder’s inequality

⎧⎪⎨
⎪⎩

∀ f ∈ Lr ,∞(Q), ∀g ∈ Lr ′,1(Q),∫
Q

| f g|dxdt ≤ ‖ f ‖Lr ,∞(Q)‖g‖Lr ′,1(Q)
.

(2.51)

More generally, if 1 < p < ∞ and 1 ≤ q < ∞, we get

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀ f ∈ L p1,q1(Q), ∀g ∈ L p2,q2(Q),

‖ f g‖L p,q (Q) ≤ ‖ f ‖L p1,q1 (Q)‖g‖L p2,q2 (Q)

1

p
= 1

p1
+ 1

p2
,

1

q
= 1

q1
+ 1

q2
.

(2.52)

Recall that different classes of functional spaces are natural in the study of symmetriza-
tion, for instance the “Marcinkiewicz spaces”. The Marcinkiewicz space Mp(RN+1),
1 < p < ∞, is defined as the set of functions u ∈ L1

loc(R
N+1) such that

∫
K

|u(t, x)|dxdt ≤ C |K |(p−1)/p, (2.53)

for all subsets K of finite measure, see [16]. The minimal C is (2.53) gives a norm in
this space, i.e.,

‖u‖Mp(RN+1) = sup

{
meas(K )−(p−1)/p

∫
K

|u|dxdt : K ⊂ R
N+1, meas(K ) > 0

}
.

(2.54)

Since functions in L p(RN+1) satisfy inequality (2.53) with C = ‖ f ‖L p (by Hölder’s
inequality), we conclude that L p(RN+1) ⊂ Mp(RN+1) and ‖ f ‖Mp ≤ ‖ f ‖L p . The
Marcinkiewicz space Mp(RN+1) (also called weak L p-space) is a particular case of
Lorentz space (more precisely, it is the space L p,∞(RN+1)). We recall that for every
0 < s < ∞, a Marcinkiewicz space Ms(Q) (or a weak Lebesgue space) is the space of
measurable functions v: Q �→ R such that there exists C > 0, with

meas {(t, x) ∈ Q: |v(t, x)| ≥ k} ≤ C

ks
, ∀k > 0. (2.55)
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The space Ms(Q) turns out to be a Banach space with respect to the norm

‖v‖Ms (Q) = inf

{
C > 0:meas{(t, x) ∈ Q: |v(t, x)| ≥ k} ≤ C

ks
holds,∀k > 0

}
.

(2.56)

and, for s > 1, we have the following continuous embedding (since Ω is bounded)

Ls(Q) ↪→ Ms(Q) ↪→ Ls−ε(Q), ∀ε ∈ (0, s − 1]. (2.57)

Finally, let us define, for every p > 1, the space S p (needed to construct the conver-
gence of “cut-off ” functions)

S p =
{

u ∈ L p(0, T ; W 1,p
0 (Ω)); ut ∈ L1(Q) + L p′

(0, T ; W −1,p′
(Ω))

}
, (2.58)

endowed with its natural norm ‖u‖S p=‖u‖
L p(0,T ;W 1,p

0 (Ω))
+

‖ut‖L p′
(0,T ;W−1,p′

(Ω))+L1(Q)
, and satisfying the following trace result.

Theorem 2.2 Let p > 1, we have the following continuous injection

S p ↪→ C(0, T ; L1(Ω)). (2.59)

Proof [87, Theorem 1.1]. ��
The two following embedding theorems will play a central role in our work: the first
one is an “Aubin–Simon” type result that we state in a form general enough to our
purpose, while the second one is a well-known “Gagliardo–Nirenberg embedding”
theorem.

Theorem 2.3 Let vn be a bounded sequence in Lq(0, T ; W 1,q
0 (Ω)) such that (vn)t is

bounded in L1(Q)+Ls′
(0, T ; W −1,s′

(Ω)) with q, s > 1, then vn is relatively strongly
compact in L1(Q), that is, up to subsequences, vn strongly converges in L1(Q) to some
function v ∈ L1(Q).

Proof [100, Corollary 4]. ��
Theorem 2.4 (Gagliardo–Nirenberg inequality) Let v be a function in W 1,q

0 (Ω) ∩
Lρ(Ω) with q ≥ 1 and ρ ≥ 1. Then, there exists a positive constant C, depending on
N, q and ρ, such that

‖v‖Lγ (Q) ≤ C‖∇v‖θ
Lq (Q)N ‖v‖1−θ

Lρ(Q), (2.60)

for every θ and γ satisfying

0 ≤ θ ≤ 1, 1 ≤ γ ≤ +∞,
1

γ
= θ

(
1

q
− 1

N

)
+ 1 − θ

ρ
. (2.61)
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Proof See [79, Lecture II]. ��
The following embedding results are consequences of the previous theorem. We will
use these results in the next sections but we give here the statements for completeness.

Corollary 2.1 (i) Letv ∈ Lq(0, T ; W 1,q
0 (Ω))∩L∞(0, T ; Lρ(Ω)), with q ≥ 1,ρ ≥ 1.

Then v ∈ Lσ (Q) with σ = q N+ρ
N and

∫
Q

|v|σ dxdt ≤ C‖v‖
ρq
N

L∞(0,T ;Lρ(Ω))

∫
Q

|∇v|qdxdt . (2.62)

(ii) Let Ω ⊂ R
N be a bounded open subset of RN (N ≥ 2), T > 0, 1 < p < N, and

let w ∈ L∞(0, T ; L p(Ω)) ∩ L p(0, T ; W 1,p
0 (Ω)). Then, there exists a positive

constant C depending only on N and p such that

[(∫ T

0

∫
Ω

|w|σ dxdt

)μ
σ

] p
μ

≤ C

(
sup

t∈[0,T ]

∫
Ω

|w|pdx +
∫

Q
|∇w|pdxdt

)
,

(2.63)

for all μ and σ satisfying

p ≤ σ ≤ p�, p ≤ μ ≤ ∞,
N

pσ
+ 1

μ
= N

p2
. (2.64)

Proof See [45, Proposition 3.1]. ��
The next result is a useful result in the sense that it allows to handle functions which
do not have time derivatives belonging to the energy space L p(0, T ; W 1,p

0 (Ω)); in
fact, it consists in a generalized “integration by parts” formula where its proof can
also be found in [38,53].

Lemma 2.6 Let Ω be a bounded open subset of RN , N ≥ 2, and let φ:R �→ R

be a continuous piecewise C1-function such that φ(0) = 0 and φ′ has compact
support; let us define Φ(s) = ∫ s

0 φ(τ)dτ . If v ∈ L p(0, T ; W 1,p
0 (Ω)) is such that

vt ∈ L p′
(0, T ; W −1,p′

(Ω)) + L1(Q) and if ψ ∈ C∞(Q), then we have

∫ T

0
〈vt , φ(v)ψ〉dt =

∫
Ω

Φ(v(T ))ψ(T )dx −
∫

Ω

Φ(v(0))ψ(0)dx

−
∫

Q
ψtΦ(v)dxdt . (2.65)

Proof See [86, Lemma 6.10]. ��
We observe that vt ∈ L p′

(0, T ; W −1,p′
(Ω)) + L1(Q), which implies that there exist

η1 ∈ L p′
(0, T ; W −1,p′

(Ω)) and η2 ∈ L1(Q) such that ut = η1 + η2. Even if η1
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and η2 are not uniquely determined, the integration by parts formula turns out to
be independent of the representation of vt ; moreover, according with the notation
introduced before, 〈·, ·〉will also indicate the duality between L p′

(0, T ; W −1,p′
(Ω))+

L1(Q) and L p(0, T ; W 1,p
0 (Ω)) ∩ L∞(Q).

3 Definitions of solutions, intermediary lemmas andmains results

3.1 Definitions of generalized solutions

Initial value problems for quasilinear/nonlinear parabolic equations having Radon
measures as right-hand side has been widely investigated looking for solutions which
for positive times take values in some functional spaces. Their studies are motivated
by some engineering problems, see [36,58,60,68] for applications in electromagnetic
induction heating, modeling of wells in porous media flow, and the k−ε model of tur-
bulence. In contrast, it is the purpose of this section to define and investigate solutions
that for positive times take values in more general spaces when the data is considered
in the space of Radon measures. We call such solutions “generalized weak solutions”,
in contrast to weak/distributional solutions previously considered in the literature.
Following [28,61], we state the definition of renormalized solution for problem (1.3)
were we give in the general case.

Definition 3.1 Assume (1.4)–(1.11), let μ ∈ M(Q), and u0 ∈ L1(Ω). A measurable
function u is a renormalied solution of problem (1.3) if, there exists a decompo-
sition (μd,p, μc,p) of μ such that u: Q �→ R is measurable on Q and Tk(u) ∈
L p(0, T ; W 1,p

0 (Ω))∩ L∞(0, T ; L2(Ω)) for every k > 0, |u|p−1 ∈ L
p(N+1)−N

N (p−1) ,∞
(Q),

|∇u|p−1 ∈ L
p(N+1)−N
(N+1)(p−1) ,∞(Q), and for every S ∈ W 2,∞(R) (S(0) = 0) such that S′

has compact support on R, we have

−
∫

Ω

S(u0)ϕ(0)dx −
∫ T

0
〈ϕt , S(u)〉dt +

∫
Q

S′(u)a(t, x, u,∇u) · ∇ϕdxdt

+
∫

Q
S′′(u)a(t, x, u,∇u) · ∇uϕdxdt +

∫
Q

K (t, x, u) · ∇ϕS′(u)dxdt

+
∫

Q
K (t, x, u) · ∇uS′′(u)ϕdxdt +

∫
Q

H(t, x, u,∇u)S′(u)ϕdxdt

+
∫

Q
G(t, x, u)S′(u)ϕdxdt =

∫
Q

S′(u)ϕdμd

+
∫

Q
E · ∇ϕS′(u)dxdt +

∫
Q

E · ∇uS′′(u)ϕdxdt, (3.1)

for every ϕ ∈ L p(0, T ; W 1,p
0 (Ω)) ∩ L∞(Q), ϕt ∈ L p′

(0, T ; W −1,p′
(Ω)), with

ϕ(T , x) = 0, such that S′(u)ϕ ∈ L p(0, T ; W 1,p
0 (Ω)). Moreover,
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⎧⎪⎪⎨
⎪⎪⎩

lim
n→+∞

1

n

∫
{n<|u|<2n}

|K (t, x, u)| |∇u| dxdt = 0,

lim
n→+∞

1

n

∫
{n<|u|<2n}

|H(t, x, u,∇u)| |∇u| dxdt = 0,
(3.2)

and, for every ψ ∈ C(Q), we have

⎧⎪⎪⎨
⎪⎪⎩

lim
n→+∞

1

n

∫
{n≤u<2n}

a(t, x, u,∇u) · ∇uψdxdt =
∫

Q
ψdμ+

c,p,

lim
n→+∞

1

n

∫
{−2n<u≤n}

a(t, x, u,∇u) · ∇uψdxdt =
∫

Q
ψdμ−

c,p,

(3.3)

where μ+
c,p and μ−

c,p are, respectively, the positive and the negative forms of the
singular part μc,p of μ.

Remark 3.1 Notice that the distributional meaning of each term in (3.1) is well defined
thanks to the fact that Tk(u) belongs to L p(0, T ; W 1,p

0 (Ω)) for every k > 0 and since
S′ has compact support. Indeed, by taking M such that Supp(S′) ⊂] − M, M[, since
S′(u) = S′′(u) = 0 as soon as |u| ≥ M , we can replace, in (3.1), ∇u by ∇TM (u) ∈
L p(Q)N (recall that a(t, x, 0, 0) = 0). Moreover, according to Lemma 2.1,∇u is well
defined. We also have, for all S as above S(u) = S(TM (u)) ∈ L p(0, T ; W 1,p

0 (Ω)).
Furthermore, since S(u)t ∈ L p′

(0, T ; W −1,p′
(Ω)) + L1(Q), we can use as test func-

tion in (3.1) not only functions inC∞
c (Q) but also in L p(0, T ; W 1,p

0 (Ω))∩L∞(Q). By
our regularity assumptions, S(u)t belongs to the space L p′

(0, T ; W −1,p′
(Ω))+L1(Q)

which implies that S(u) belongs to C(0, T ; L1(Ω)), see [87, Theorem 1.1], thus, ini-
tial condition is achieved in a weak sense, that is, S(u)(0) = S(u0) in L1(Ω) for every
S. Finally, observe also that assumptions on S and u0 imply that

S(u)(0) = S(u0) in L1(Ω). (3.4)

Remark 3.2 Wewant to stress that, thanks to our definition and the choice of S, we have
S(u) ∈ L p(0, T ; W 1,p

0 (Ω)) ∩ L∞(Q) and S(u)t ∈ L p′
(0, T ; W −1,p′

(Ω)) + L1(Q);
thiswould prove that S(u) has aC p-q.c.r. Observe also that (3.1) implies that equation

S(u)t − div[a(t, x, u,∇u)S′(u)] + S′′(u)a(t, x, u,∇u) · ∇u

+ div[K (t, x, u)S′(u)] − S′′(u)K (t, x, u) · ∇u + H(t, x, u,∇u)S′(u)

+G(t, x, u)S′(u)

= S′(u) f + G · S′′(u)∇u − div(GS′(u)) − div[E S′(u)] + S′′(u)E · ∇u, (3.5)

holds. Observe that by Definition 3.1, and since Tk(u) is a renormalized truncated
solution for problem (1.3), there exists a sequence (νn) in M(Q) such that Tk(u)t −
div[a(t, x, Tk(u),∇Tk(u))+K (t, x, Tk(u)]+H(t, x, Tk(u),∇Tk(u))+G(t, x, Tk(u))

is a finite measure, and moreover
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Tk(u)t − div[a(t, x, Tk(u),∇Tk(u)) + K (t, x, Tk(u)]
+ H(t, x, Tk(u),∇Tk(u)) + G(t, x, Tk(u)) = μ + νk inM(Q). (3.6)

It is important to note that if we consider the case that μc,p ≡ 0, which recovers
the problem (1.3) to a classical one, one can define the following notion of “entropy”
solution which is equivalent, in this case, to the Definition 3.1, see [53] for more
details. To this end, we define

E =
{
ϕ ∈ L p(0, T ; W 1,p

0 (Ω)) ∩ L∞(Q) s.t. ϕt ∈ L p′
(0, T ; W−1,p′

(Ω)) + L1(Q)
}

.

(3.7)

According to [87], one has E ⊂ C([0, T ]; L1(Ω)).

Definition 3.2 Under hypothesis (1.4)–(1.11), and forμ ∈ Md,p(Q) and u0 ∈ L2(Ω).
A function u is an “entropy” solution of problem (1.3) if the following conditions hold:

(i) u is a.e. finite such that Tk(u) ∈ L p(0, T ; W 1,p
0 (Ω)) for every k > 0 (abbrevi-

ated, u ∈ T 1,p
0 (Q)).

(ii) H(t, x, u,∇u) ∈ L1(Q), G(t, x, u) ∈ L1(Q).
(iii) For all ϕ ∈ E, and for all k > 0, we have

t ∈ [0, T ] �→
∫

Ω

Θk(u − ϕ)(t, x)dx is (a.e. equal to) a continuous function,

(3.8)

(iv) For every ϕ ∈ E, it holds

∫ T

0
〈ut , Tk(u − ϕ)〉dt +

∫
Q
[a(t, x, u,∇u) + K (t, x, u)] · ∇Tk(u − ϕ)dxdt

+
∫

Q
H(t, x, u,∇u)Tk(u − ϕ)dxdt +

∫
Q

G(t, x, u)Tk(u − ϕ)dxdt

≤ 〈μ − div(E), Tk(u − ϕ)〉 , ∀k > 0. (3.9)

Sinceμ = f −div(F) is diffuse: every terms in (3.9) iswell defined (remark that the set
T 1,p
0 (Q) is the minimal requirement to give a meaning to the entropy or renormalized

formulations). In fact, the right-hand side is well-defined since f belongs to L1(Q)

and Tk(u −ϕ) is in L∞(Q), and G belongs to L p′
(Q)N while Tk(u −ϕ) is inW. The

left-hand side is also well-defined since the integral is only on the set {|u − ϕ| ≤ k},
and in this set |u| ≤ k + ‖ϕ‖ := M , it is equal to write

∫
Q
[a(t, x, u,∇u) + K (t, x, u)] · ∇Tk(u − ϕ)dxdt

=
∫

{|u−ϕ|≤k}
[a(t, x, u,∇u) + K (t, x, u)] · ∇(u − ϕ)dxdt
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=
∫

{|u−ϕ|≤k}
[a(t, x, TM (u),∇TM (u)) + K (t, x, TM (u))] · ∇(TM (u) − ϕ)dxdt,

(3.10)

which is finite by the growth assumption (1.5) on “a”. Now, if μ is general, this
definition of entropy solution is not suitable to tackle singular terms, since

∫
Q Tk(u −

ϕ)dμ may not be well defined when μ is a Radon measure. However, this notion of
entropy solution can be extended for the new concept of “measure-valued” solution
for μ ∈ M(Q), see [81,92,93,103] (and also [97]), but this notion of solution is still
in progress and need further works to apply it. Actually, the renormalized solution
have some what more regularity, this is the content of the following proposition where
the proof is a particular consequence of a more general result stated in [46, Lemma
1.1], see also [44, Lemma 2.2]; thus it is omitted, where we will assume that Tk(u) ∈
L∞(0, T ; L2(Ω)) ∩ L p(0, T ; W 1,p

0 (Ω)), for all k > 0, and where a crucial role is
played by Lorentz spaces.

Proposition 3.1 Let u be any measurable solution of (1.3) such that Tk(u) ∈
L∞(0, T ; L2(Ω) ∩ L p(0, T ; W 1,p

0 (Ω)) for every k > 0, and suppose that

sup
t∈[0,T ]

∫
Ω

|Tk(u)(t)|2dx +
∫

Q
|∇Tk(u)|pdxdt ≤ Mk + L, (3.11)

where M and L are two positive constants. Then u
N (p−1)+p

N+p ∈ L
N+p

N ,∞(Q) and

|∇u| N (p−1)+p
N+2 ∈ L

N+2
N+1 ,∞(Q) such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∥∥∥∥|u| N (p−1)+p
N+p

∥∥∥∥
L

N+p
N ,∞

(Q)

≤ C(N , p)

[
M + |Q| N p

N+2 L
N (p−1)+p
(N+2)p

]
, (3.12)

∥∥∥|∇u| N (p−1)+p
N+2

∥∥∥
L

N+2
N+1 ,∞

(Q)
≤ C(N , p)

[
M + |Q| N

(N+2)p L
N (p−1)+p
(N+2)p

]
, (3.13)

where C(N , p) is a constant which depends on p and N.

Proof See [46, Lemma A.1 (Appendix)]. ��
We are now in position to show that u satisfies some other useful estimates.

Lemma 3.1 Let u ∈ L
p(N+1)−N

N (p−1) ,∞
(Q), p > 1, and |∇u| ∈ L

p(N+1)−N
(N+1)(p−1) ,∞(Q). Then u

belongs to the Lebesgue space Lm(Q) with m <
p(N+1)−N

N (p−1) and ∇u belongs to the

Lebesgue space Ls(Q) with s <
p(N+1)−N
(N+1)(p−1) .

Proof The proofs are similar to those of [10,84] (see also [32]). ��

3.2 Approximate problems and a priori estimates

As indicated before, the main tool, in order to prove the stability/existence of renor-
malized solution (Theorems 3.1, 3.2) relies on approximating our problems with more
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regular ones in bounded domains and in proving the existence/stability of a solution
via a priori estimates and strong convergence of truncatures in L p(0, T ; W 1,p

0 (Ω)).
In this part we consider a family of approximating problems to be used in the prof of
the main result. Let us first define a technical notion of parabolic “mollifiers”.

Definition 3.3 A “mollifier” is a function ρε ∈ C∞
c (RN+1) such that

supp ρε = B(0, ε) =
[{

(t, x) ∈ R
N+1: ‖(t, x)‖ < ε

}]
,

ρε ≥ 0 and
∫
RN+1

ρε(t, x)dxdt = 1.
(3.14)

So the mollifier ρε is a positive test function, with support that decreases as ε ↓ 0, but
the volume under the graph is preserved. As ε ↓ 0, these functions are concentrated
at the origin (i.e., approximate the Dirac functional). The mollifiers and the operation
of convolution � provide the best tools to approximate initial/source data by smooth
C∞

c -functions.

Proposition 3.2 Let μ ∈ M(Q) and ρn is a mollifier. Let us fix θ ∈ C∞
c (Q) and set

μ̃ = θμ. We extend μ̃ to all RN+1 by setting it equal to zero outside Q, and then
define μ̃n = ρn�μ̃, i.e.,

μ̃n(t, x) :=
∫
RN+1

ρn(t − s, x − z)dμ̃(s, z) =
∫

Q
ρn(t − s, x − z)dμ̃(s, z).

(3.15)

Then, μ̃n = ρn�μ̃ ∈ C∞
c (Q), and

{
μ̃n = ρn�μ̃ → μ̃ strongly in L p′

(0, T ; W −1,p′
(Ω)),

‖μ̃n‖L1(Q) = ‖ρn�μ̃‖L1(Q) ≤ ‖μ̃n‖M(Q) = ‖ρn�μ̃‖M(Q) ≤ ‖μ‖M(Q).
(3.16)

Proof See [54, Lemma 2.25]. ��

It is worth observing that the class in which we study problem (1.3) is “natural”, since
the solution in the main result is obtained as a limit of a family (uε) of solutions of
the regularized problems

⎧⎪⎨
⎪⎩

(uε)t − div [a(t, x, uε,∇uε) + K (t, x, uε)] + H(t, x, uε,∇uε) + G(t, x, uε)

= με − div(E) in (0, T ) × Ω,

uε(t, x) = 0 on ]0, T [×∂Ω, uε(0, x) = uε
0(x) in Ω.

(3.17)
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As far as the lower order terms are concentrated, we assume that Kε(t, x, u, s),
Hε(t, x, s, ζ ) and Gε(t, x, s) are Carathéodory6 functions such that

Kε(t, x, s) = K (t, x, T1
ε
(s)); Hε(t, x, s, ζ ) = T1

ε
(H(t, x, s, ζ ))

and Gε(t, x, s) = T1
ε
(G(t, x, s)),

(3.18)

satisfying the standard growth conditions:

⎧⎨
⎩

|Kε(t, x, s)| ≤ |K (t, x, s)| ≤ c0(t, x)|s|γ + c1(t, x), (3.19)

|Hε(t, x, s, ζ )| ≤ |H(t, x, s, ζ )| ≤ b0(t, x)|ζ |λ + b1(t, x), (3.20)

|Gε(t, x, s)| ≤ |G(t, x, s)| ≤ d1(t, x)|s|ι + d2(t, x), (3.21)

the boundedness assumptions with respect to ε:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|Kε(t, x, s)| ≤ c0(t, x)
1

εγ
+ c1(t, x), (3.22)

|Hε(t, x, s, ζ )| ≤ 1

ε
, (3.23)

|Gε(t, x, s)| ≤ 1

ε
, (3.24)

and the sign-condition:

Gε(t, x, s)s ≥ 0. (3.25)

Recall that the first three assumptions are in fact crucial in order to obtain a priori
estimates; indeed the boundedness-conditions on the lower order terms are in fact
a consequence of their definitions. Finally, we suppose that the sequences {uε

0} ⊆
C∞(Ω) and {με} ⊆ C∞(Q) are sequences satisfying

{
με⇀

∗μ inM(Q): ‖με‖L1(Q) ≤ ‖μ‖M(Q),

uε
0 → u0 in L1(Ω): ‖uε

0‖L1(Ω) ≤ ‖u0‖L1(Ω),
(3.26)

for any ε > 0. For instance, the sequence {με} can be defined by “convolution”, i.e.,

με(t, x) := μ̃�ρε(t, x), (t, x) ∈ R
N+1, (3.27)

where μ̃ ∈ M(RN+1) denotes the trivial extension of μ to R
N+1 and {ρε} is a

sequence of parabolic mollifiers. We notice that it is easy to exhibits a “trivial” mea-
sure approximation proceeding as follows: since μ := μd,p + μc,p, we can construct

6 On the regularized functions Kε , Hε and Gε we assume, besides continuity with respect to s ∈ R and
ζ ∈ R

N for a.e. (t, x) ∈ (0, T ) × Ω and measurability with respect to (t, x) ∈ (0, T ) × Ω for every fixed
s ∈ R and ζ ∈ R

N , the same assumptions (1.7)–(1.9).
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μ̃ ∈ M(RN+1) by setting μ̃ := μ̃d,p + μ̃c,p, where

μ̃d,p(t, x) =
{

μd,p if (t, x) ∈ Q,

0 otherwise,
(3.28)

and

μ̃c,p(B) := μc,p(B ∩ Q) for any Borel set B ⊆ R
N+1. (3.29)

Observe that by definition

μ̃ = μ̃ � Q, μ̃(B) = μ(B) for every Borel set B ⊆ Q. (3.30)

Hence, if ϕ ∈ Cc(Q) and ϕ̃ ∈ Cc(R
N+1), which denotes its trivial extension toRN+1,

there holds 〈μ̃, ϕ̃〉RN+1 = 〈μ, ϕ〉Q . Now, consider the sequence {μ̃ε} ⊂ C∞
c (RN+1)

where μ̃ε := μ̃�ρε with (ρε) ⊂ C∞
c (RN+1) being a regularizing sequence, one can

also define

μ̃ε
d,p := μ̃d,p�ρε, μ̃ε

c,p := μ̃c,p�ρε, (3.31)

with ρε is defined as above. To be more specific, one can choose

ρε(t, x) = 1

εN
∫
RN+1 ρ(t, x)dxdt

ρ

(
t

ε
,

x

ε

)
, ∀(t, x) ∈ R

N+1, (3.32)

where ρ ∈ C∞
c (RN+1), ρ(t, x) = ρ(t, |x |) is a standard mollifier. Next, sinceμd,p =

f − div(F), one can choose any sequence of functions { fε} ⊆ C∞
c (Q) and {Fε} ⊆

C∞
c (Q) such that fε strongly converges to f in L1(Q) and Fε strongly converges to F

in L p′
(Q)N . Finally, one can set uε

0 := ũε
0ηε in RN where {ηε} ⊆ C∞

c (RN ) such that
ηε ∈ C∞

c (Ωn+1), 0 ≤ ηε ≤ 1, ηε = 1 in Ωn ; here Ωn is open, Ωn ⊂ Ωn+1 ⊂ Ω for
every n ∈ N, and∪∞

n=1Ωn = Ω , observe that {uε
0} ⊂ C∞

c (Ω) and 0 ≤ uε
0(x) ≤ ũε

0(x)

in RN . By standard convolution arguments, it is easily seen that

{ ‖με‖L1(Q) � ‖μ̃ε‖L1(RN+1) � ‖μ̃‖M(RN+1) = ‖μ‖M(Q),

‖uε
0‖L2(Ω) � ‖ũε

0‖L2(RN ) � ‖ũ0‖L2(RN ) = ‖u0‖L2(Ω).
(3.33)

Moreover, for any ϕ ∈ Cb(Q), with extension ϕ̃ ∈ Cb(R
N+1), there holds

lim
ε→0

∫
Q

μεϕdxdt = lim
ε→0

∫
RN+1

μ̃εϕ̃dxdt = 〈μ̃ε, ϕ̃〉RN+1 = 〈μ, ϕ〉Q . (3.34)

We notice explicitly that, if μc,p = 0, the solution constructed in the main result, is
different from the trivial solution constructed here and hence, in general, the solution
is not unique, this is not surprising being such a notion of solution is weaker than the
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notion of distributional solution for which, see [95,99], the results do not hold; one can
solve the problem of uniqueness, when μ ∈ Md,p, by introducing the notion of “weak
renormalized-entropy” solution, see [84,89], which, by definition, coincides with the
“trivial” solution definedhere, and coincides, forμc,p ≡ 0,with the classical “entropy”
solution introduced in [96], see also [53]. By classical results, see for instance [69,71],
there exists a (weak) solution uε ∈ C∞(Q), ε > 0, of problem (3.17). Now, to let
ε → 0 in (3.17) we need a priori estimates for approximate sequences (uε) and (∇uε).
The next estimates, which are well-known in the literature, immediately follows, from
Proposition 3.1, by taking test functions depending on Tk and by using assumptions
(3.19)–(3.25) and (3.26), it is the main tool in order to establish fundamental a priori
estimates for the solutions and their gradients.

Lemma 3.2 Let uε be defined as before, and assume that there exists M, L > 0 such
that

sup
t∈[0,T ]

∫
Ω

|Tk(uε)|2dx +
∫

Q
|∇Tk(uε)|pdxdt ≤ Mk + L, (3.35)

for every k > 0. Then, there exists C(N , M, p) > 0 (the constants M and L to be
defined) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
k1 meas

{
|uε |

N (p−1)+p
N+p > k1

}] p+N
N ≤ C

[
M + Lk

− N+p
N (p−1)+p

1

]
, ∀k1 > 0,

k2
[
meas

{
|∇uε |

N (p−1)+p
N+2 > k2

}] N+1
N+2 ≤ C

[
M + L

N+1
N+2 k

− N
N (p−1)+p

2

]
, ∀k2 > 0.

(3.36)

Proof (i) We can improve this kind of estimate by using a suitable Gagliardo–

Nirenberg type inequality (Theorem2.4)which asserts that, ifw ∈ L p(0, T ; W 1,p
0 (Ω))

∩ L∞(0, T ; L2(Ω)), with p > 1, then w ∈ Lσ (Q) with σ = p N+2
N and

∫
Q

|w|σ dxdt ≤ C‖w‖
2p
N

L∞(0,T ;L2(Ω))

∫
Q

|∇w|pdxdt . (3.37)

Indeed, in this way we obtain

∫
Q

|Tk(uε)| p(N+2)
N dxdt ≤ C‖Tk(uε)‖

2p
N

L∞(0,T ;L2(Ω))

∫
Q

|∇Tk(uε)|pdxdt

≤ C

[
Sup

t∈[0,T ]

∫
Ω

|Tk(uε)|2dx

] p
N ∫

Ω

|∇Tk(uε)|pdxdt

≤ C[Mk + L] p
N +1, (3.38)
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and so, we can write

k
p(N+2)

N meas {|uε | > k} ≤
∫

{|u|≥k}
|Tk(uε)| p(N+2)

N dxdt ≤
∫

Q
|Tk(uε)| p(N+2)

N dxdt

≤ C[Mk + L] p
N +1 (3.39)

Then, taking, for every k > 0, k = k
N+p

N (p−1)+p
1 , we get

meas

{
|uε |

N (p−1)+p
N+p > k1

}
≤ C

[
Mk

N+p
N (p−1)+p
1 + L

] p
N +1

k
− p(N+2)

N × N+p
N (p−1)+p

1

≤ C

[
Mk

N+p
N (p−1)+p
1 + L

] p
N +1

× [k− p(N+2)
N (p−1)+p

1 ] p
N +1

≤ C

[
Mk−1

1 + Lk
− p(N+2)

N (p−1)+p
1

] p
N +1

≤ C

[
k−1
1 (M + Lk

− N+p
N (p−1)+p

1 )

] p+N
N

, (3.40)

then, we deduce that

[
k1meas

{
|uε |

N (p−1)+p
N+p > k1

}] p+N
N ≤ C

[
M + Lk

− N+p
N (p−1)+p

1

]
, ∀k1 > 0.

(3.41)

(ii) We are interested about a similar estimate on the gradients of functions uε . First
of all, observe that

meas {|∇uε | = λ} ≤ meas {|∇uε | = λ; |uε | ≤ k} + meas {|∇uε | = λ; |uε | > k}
(3.42)

with regard to the first term in the right-hand side, we have

meas {|∇uε | = λ; |uε | ≤ k} ≤ 1

λp

∫
{|∇uε |≥λ; |uε |≤k}

|∇u|pdxdt

≤ 1

λp

∫
{|uε |≤k}

|∇uε |pdxdt = 1

λp

∫
Q

|∇Tk(uε)|pdxdt

≤ Mk + L

λp
. (3.43)
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Then, taking λ = k
N+2

N (p−1)+p
2 , we get

k
p(N+2)

N (p−1)+p
2 meas

{
|∇uε |

N (p−1)+p
N+2 > k2; |uε | < k

}
≤ Mk + L, (3.44)

while for the last term, thanks to (i), one can write

meas {|∇uε | ≥ λ; |uε | > k} ≤ meas {|uε | ≥ k} ≤ C[k M + L] p
N +1

kσ
, (3.45)

with σ = p(N+2)
N . So finally, we obtain

meas
{
|∇uε |

N (p−1)+p
N+2 ≥ k2

}
≤ C[k M + L] p

N +1

kσ
+ Mk + L

k
p(N+2)

N (p−1)+p
2

, (3.46)

and we obtain a better estimate taking the minimum over k2 of the right-hand side, the
minimum is achieved for the value

k∗
2 =

[
L

|Q|
] N (p−1)+p

N+2

(3.47)

that is,

meas
{
|∇uε |

N (p−1)+p
N+2 > k2

}
≤ C

⎡
⎣M + L

N+1
N+2

k
N

N (p−1)+p
2

⎤
⎦

N+2
N+1

k
N+2
N+1
2 , (3.48)

we also have the estimate (see [46, Lemma A.1, Step 4])

k2
[
meas{|∇uε |

N (p−1)+p
N+2 > k2}

] N+1
N+2 ≤ C

[
M + |Q| N

(N+2)p Lγ
]

(3.49)

with γ = N (p−1)+p
(N+2)p . Then, we obtain that uε (resp. |uε |p−1) is uniformly bounded in

the Marcinkiewicz space M
p(N+1)−N

N (Q) (resp. M
p(N+1)−N

N (p−1) ), and |∇uε | (resp. |∇uε |p−1)

is equibounded in Mp− N
N+1 (Q) (resp. M

p− N
N+1

p−1 = M
p(N+1)−N
(N+1)(p−1) ). ��

As a first step, we get a function u such that Tk(u) ∈ L∞(0, T ; L2(Ω)) ∩
L p(0, T ; W 1,p

0 (Ω)) which is the limit, up to subsequences, of (uε) in suitable topol-
ogy.

Proposition 3.3 Let με ∈ M(Q), (uε
0) ∈ L2(Ω) with sup |με(Q)| < ∞ and

‖uε
0‖L2(Ω) < ∞. Let (uε) be a sequence of renormalized solutions of (3.17). Then,
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there exists M, L > 0 such that

sup
t∈[0,T ]

∫
Ω

|Tk(uε)|2dx +
∫

Q
|∇Tk(uε)|pdxdt ≤ Mk + L, (3.50)

for every ε and for every k > 0. Moreover, there exists a subsequence still denoted by
un and a measurable function u such that the following convergence results hold:

(i) uε converges to u a.e. in Q;
(ii) u belongs to L∞(0, T ; L2(Ω)) and for every k > 0, the sequence Tk(uε) con-

verges to Tk(u) ∈ L p(0, T ; W 1,p
0 (Ω)) in the weak topology of L p(0, T ; W 1,p

0 (Ω));
(iii) ∇uε converges to ∇u a.e. in Q;
(iv) a(t, x, uε,∇uε) converges to a(t, x, u,∇u) in the weak topology of L p′

(Q)N

for every k > 0.

Proof Let us begin by proving Proposition 3.3 under assumptions (1.4)–(1.6), (3.19)–
(3.24) and condition (3.26). Observe that from now on, such a condition (3.50) will

be used only to obtain a priori estimates for |uε |
N (p−1)+p

N+p and |∇uε |
N (p−1)+p

N+2 in the
“correct” Lorentz spaces. In the first step below we prove a priori estimates on uε and
Tk(uε), while the second step for the corresponding convergence results.

Step 1. A priori estimates In this step we prove the estimate (3.50) on the truncation
functions Tk(uε) given in Sect. 2.1. It is performed throughout a multiplication by
admissible test function. Define the function Ψ :R �→ R by Ψ (s) = ∫ s

0 Tk(τ )dτ , for
all s ∈ R. Observe that Ψ satisfies the following property

1

2
|Tk(s)|2 ≤ 1

2
Tk(s)s ≤ Ψk(s) ≤ k|s|, ∀s ∈ R. (3.51)

Observe also that Tk(s) is a Lipschitz function such that Tk(0) = 0. Therefore, since
uε ∈ W, the function Tk(uε) belongs toW∩ L∞(Q). This allows us to use Tk(uε) as
test function in (3.17). Then, we get

∫ T

0
〈(uε)t , Tk(uε)〉dt +

∫
Q

a(t, x, uε,∇uε) · ∇Tk(uε)dxdt

+
∫

Q
Kε(t, x, uε) · ∇Tk(uε)dxdt +

∫
Q

Hε(t, x, uε,∇uε)Tk(uε)dxdt

+
∫

Q
Gε(t, x, uε)Tk(uε)dxdt =

∫
Q

fεTk(uε)dxdt

+
∫

Q
(Fε + E) · ∇Tk(uε)dxdt +

∫
Q

Tk(uε)dμ⊕
c,ε −

∫
Q

Tk(uε)dμ�
c,ε,

(3.52)

where μ⊕
c,ε and μ�

c,ε approximate μ+
c,p and μ−

c,p in the sense of (3.27). Now, we
evaluate the various integrals in (3.52): by the definition of Ψ (s), property (3.51) and
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the integration by parts method, we have

∫ T

0
〈(uε)t , Tk(uε)〉dt =

∫
Ω

Ψk(uε(t))dx −
∫

Ω

Ψk(u
ε
0)dx

≥ 1

2

∫
Ω

uε(t)Tk(uε(t))dx − k
∫

Ω

|uε
0(x)|dx, (3.53)

for almost every t ∈ [0, T ]. Now, by the ellipticity condition (1.4), we obtain

∫
Q

a(t, x, uε,∇uε) · ∇Tk(uε)dxdt ≥ α

∫
Q

|∇Tk(uε)|pdxdt . (3.54)

Let us estimate | ∫Q Kε(t, x, uε) · ∇Tk(uε)|: by the growth condition (3.20) on Kε ,
Hölder and Gagliardo–Nirenberg inequalities together with Young’s inequality, we
get

∣∣∣∣
∫

Q
Kε(t, x, uε) · ∇Tk(uε)dxdt

∣∣∣∣
≤
∫

Q
c0(t, x)|uε |γ |∇Tk(uε)|dxdt +

∫
Q

c1(t, x)|∇Tk(uε)|dxdt

≤
[∫

Q
cp′
0 (t, x)|Tk(uε)|γ p′

] 1
p′ [∫

Q
|∇Tk(uε)|pdxdt

] 1
p

+ 3
p′
p

p′α
p′
p

‖c1‖p′
L p′

(Q)
+ α

3p

∫
Q

|∇Tk(uε)|pdxdt

≤
[∫

Q
cτ
0(t, x)dxdt

] 1
τ
[∫ T

0
|Tk(uε)| (N+2)p

N

] N (p−1)
p(N+1)

[∫
Q

|∇Tk(uε)|pdxdt

] 1
p

+ α

3p

∫
Q

|∇Tk(uε)|pdxdt + 3
p′
p

p′α
p′
p

‖c1‖p′
L p′

(Q)

≤ C‖c0‖Lτ (Q)

[
1

τ
sup

τ∈[0,T ]

∫
Ω

|Tk(uε(t))|2dx + N + 1

N + p

∫
Q

|∇Tk(uε)|pdxdt

]

+ α

3p

∫
Q

|∇Tk(uε)|pdxdt + 3
p′
p

p′α
p′
p

‖c1‖p′
L p′

(Q)
. (3.55)

Let us estimate | ∫Q Hε(t, x, uε,∇uε)Tk(uε)dxdt |: by definition of Tk(s), the growth
assumption (3.21) on Hε and the generalized Hölder’s inequality (2.51), we have
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∣∣∣∣
∫

Q
Hε(t, x, uε,∇uε)Tk(uε)dxdt

∣∣∣∣
≤
∫

Q
b0|∇uε |λTk(uε)dxdt +

∫
Q

b1Tk(uε)dxdt

≤ k

[∫
Q

b0|∇uε |λdxdt +
∫

Q
b1dxdt

]

≤ k

[
‖b0‖L N+2,1(Q) ‖|∇uε |‖

L
N+2
N+1 ,∞

(Q)
+ ‖b1‖L1(Q)

]
. (3.56)

Moreover, by the sign condition (3.25) on Gε , we get

∫
Q

Gε(t, x, uε)Tk(uε) ≥ 0. (3.57)

Finally, we have

∫
Q
[Fε + E] · ∇Tk(uε)dxdt ≤ 2α

3p

∫
Q

|∇Tk(uε)|pdxdt

+ 3
p′
p

p′α
p′
p

[
‖F‖p′

L p′
(Q)

+ ‖E‖p′
L p′

(Q)

]
, (3.58)

and, by the boundedness of Tk(s), we also get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Q

fεTk(uε)dxdt ≤ k‖ fε‖L1(Q), (3.59)∣∣∣∣
∫

Q
Tk(uε)dμ+

c,n

∣∣∣∣ ≤ kμ+
c,n(Q), (3.60)∣∣∣∣

∫
Q

Tk(uε)dμ−
c,n

∣∣∣∣ ≤ kμ−
c,n(Q). (3.61)

Combining (3.52)–(3.61), we get [by observing that |Tk(uε)|2 ≤ uε(t)Tk(uε(t))]

[ 1
1 − 1

τ
C‖c0‖Lτ (Q)

]
sup

t∈[0,T ]
∫
Ω

|Tk(uε)(t)|2dx

+
[

α
p′ − C N+1

N+p ‖c0‖Lτ (Q)

] ∫
Q |∇Tk(uε)|pdxdt

≤ k

[
‖b0‖L N+2,1(Q)

∥∥|∇uε |λ
∥∥

L
N+2
N+1 (Q)

+ M0

]
+ L, (3.62)
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where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M0 = ‖b1‖L1(Q) + sup
n∈N

‖ fε‖L1(Q) + sup
ε>0

‖uε
0‖L1(Ω) + sup

n∈N
[μ⊕

c,ε(Q) + μ�
c,ε(Q)],

L = 3
p′
p

p′α
p′
p

[
‖c1‖p′

L p′
(Q)

+ ‖F‖p′
L p′

(Q)
+ ‖E‖p′

L p′
(Q)

]
.

(3.63)

Define

M = ‖b0‖L N+2,1(Q)

∥∥|∇uε |λ
∥∥

L
N+2
N+1 (Q)

+ M0. (3.64)

Observe that if T = T1 be such that

⎧⎪⎪⎨
⎪⎪⎩

C1 = 1

2
− 1

τ
C‖c0‖Lτ ([0,T1]×Ω) > 0,

C2 = α

p′ − C
N + 1

N + 2
‖c0‖Lτ ([0,T1]×Ω) > 0,

(3.65)

it implies that

sup
t∈[0,T ]

∫
Ω

|Tk(uε)(t)|2dx +
∫

Q
|∇Tk(uε)|pdxdt ≤ [min(C1, C2)]

−1 [Mk + L] .

(3.66)

On the other hand, by Proposition 3.1, we get

∥∥|∇uε |λ
∥∥

L
N+2
N+1 ,∞

(Q)

=
∥∥∥|∇uε |p−1

∥∥∥ λ
p−1

L
(N+1)p−N
N+1)(p−1) ,∞

(Q)

≤ C

[
M0 + ∥∥|∇uε |λ

∥∥
L

N+2
N+1 ,∞

(Q)

]
‖b0‖L N+2,1(Q) + |Q| N

(N+2)p L
N (p−1)+p
(N+2)p (3.67)

which implies, by defining C3 = 1 − ‖b0‖L N+2,1(Q)

‖b0‖L N+2,1(Q)
, the estimate of |∇uε |p−1 in

L
p(N+1)−N
(N+1)(p−1) ,∞(Q), or more precisely

∥∥|∇uε |λ
∥∥

L
N+2
N+1 ,∞

(Q)
≤ C, (3.68)

we repeat the same argument to get the estimate of |uε |p−1 in L
p(N+1)−N

N (p−1) ,∞
(Q): we

have
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∥∥∥∥|uε |
N (p−1)+p

N+p

∥∥∥∥
L

N+p
N ,∞

(Q)

≤ C

[
M0 + ∥∥|∇uε |λ

∥∥
L

N+2
N+1 ,∞

(Q)
‖b‖L N+2,1(Q) + |Q| N p

N+2 L
N (p−1)+p
(N+2)p

]
, (3.69)

and using (3.68), we obtain (this estimate is useful to prove that M is bounded)

∥∥∥∥|uε |
N (p−1)+p

N+p

∥∥∥∥
L

N+p
N ,∞

(Q)

≤ C . (3.70)

As a consequenceof (3.66) and (3.70),weobtain the estimates ofuε in L∞(0, T ; L1(Ω))

and Tk(uε) in L p(0, T ; W 1,p
0 (Ω)), that is

{ ‖uε‖L∞(0,T ;L1(Ω)) ≤ C,∫
Q |∇Tk(uε)|pdxdt ≤ Ck.

(3.71)

Up to a subsequence, we are going to prove that uε converges7 a.e. in Q towards a
measurable function u. Lemma 3.2 gives the usual estimates for parabolic problem
(3.17) with general measure data, that is to say, uε is bounded in Lq(0, T ; W 1,q

0 (Ω))

for every q < p − N
N+1 , and in L∞(0, T ; L1(Ω)), then we can deduce that

lim
k→+∞meas {(t, x) ∈ Q: |uε | > k} = 0 uniformly with respect to u. (3.72)

From (3.71), we have Tk(uε) is bounded in L p(0, T ; W 1,p
0 (Ω)) for every k > 0. Now,

if we multiply8 the approximating equation by S′(uε), where S is a non-deceasing
W 2,∞(R)-function, we obtain

S(uε)t − div(a(t, x, uε ,∇uε))S′(uε) + a(t, x, uε ,∇uε) · ∇uε S′′(uε)

− div(Kε(t, x, uε)S′(uε)) + Kε(t, x, uε) · ∇uε S′′(uε) + Hε(t, x, uε ,∇uε)S′(uε)

= S′(uε) fε + S′′(uε)[Fε + E] · ∇uε − div(Fε + E)S′(uε)) + (μ⊕
c,s − μ�

c,s)S′(uε), (3.73)

in the sense of distributions. This implies, thanks to the last equality and the fact that
S′ has compact support, that Tk(uε) is bounded in L p(0, T ; W 1,p

0 (Ω)) while its time
derivative S(uε)t is bounded in L p′

(0, T ; W −1,p′
(Ω)) + L1(Q).

Step 2. Convergence results In particular, we have found out that there exists a mea-

surable function u in L∞(0, T ; L1(Ω))∩ Lq(0, T ; W 1,q
0 (Ω)) for every q < p − N

N+1

such that Tk(u) belongs to L p(0, T ; W 1,p
0 (Ω)) for every k > 0, and for a subsequence,

7 Arguing as in [84].
8 We borrow the argument from [5].
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not relabeled, see [5, Proposition 5.2] for more details,

Tk(uε)⇀Tk(u) weakly in L p(0, T ; W 1,p
0 (Ω)), strongly in L p(Q) and a.e. in Q,

(3.74)

we deduce that

uε → u a.e. in Q, (3.75)

where the estimate (3.71) also imply that u ∈ L∞(0, T ; L1(Ω)), and in addition

∫
Q

∇uεχ{|uε |≤k} ≤ Ck, ∀k > 0, (3.76)

that is (ii) holds. One can prove using the ideas of [5, Proposition 5.2 (Step 3)] that
∇uε is a Cauchy sequence in measure, which yields that

∇uε → ∇u a.e. in Q, (3.77)

and then, by (1.5) and Lemma 3.2, a(t, x, uε,∇uε) is bounded in Lq(0, T ; W 1,q
0 (Ω))

for every q < p − N
N+1 . Moreover, by (i) and (iii), aε(t, x, uε,∇uε) converges to

a(t, x, u,∇u) in the strong topology of Lq(0, T ; W 1,q
0 (Ω)), 1 ≤ q < p − N

N+1 .

Finally, by (ii) and (2.2), the sequence a(t, x, uε,∇Tk(uε)) is bounded in L p′
(Q),

which easily implies that it converges to a(t, x, u,∇Tk(u)) in the weak topology of
L p′

(Q). Let us observe that, thanks to the assumption (1.4) on “a” andVitali’s theorem,
we easily deduce that a(t, x, uε,∇uε) is strongly compact in L1(Q). ��

Actually, in the sequel wewill prove that the renormalized solutions and their gradients
satisfy somewhat more regularity and energy estimates. Let us first show the following
interesting properties.

Proposition 3.4 Let u be a renormalized solution of problem (1.3). Then, for every
k > 0, we have

⎧⎪⎪⎨
⎪⎪⎩

lim
n→∞

1

n

∫
Q

|K (t, x, u)||∇Tn(u)|dxdt = 0, (3.78)

lim
n→∞

1

n

∫
Q

|H(t, x, u,∇u)||Tn(u)|dxdt = 0, (3.79)

Proof Obviously, we can prove it without loss of generality for n ∈ N. First of all,
observe that thanks to (1.4), (3.3) and Proposition 3.3 (ii), using coercivity condition
one can easily show that there exists a positive constant M such that
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sup
t∈[0,T ]

∫
Ω

|un(t)|dx +
∫ t

0

∫
Ω

|∇Tn(u)|pdxdt ≤ Mn + L, ∀k > 0, ∀t ∈ [0, T ].
(3.80)

Therefore, arguing as in [46, Lemma A.1], this leads to a control of |un| N (p−1)+p
N+p with

respect to M and L , which implies that |∇un| N (p−1)+p
N+2 ∈ L

N+2
N+1 ,∞(Q), while from

Hölder and Gagliardo inequalities we have H(t, x, u,∇u) ∈ L1(Q), we can improve
this result by using the Lebesgue dominated convergence theorem and the fact that
u is a.e. finite. Indeed, in this way we get (3.79). We are interested about a similar
asymptotic behavior result on K ; let us emphasize that assumption (1.7) leads to

∫
Q

|K (t, x, u)||∇Tn(u)|dxdt ≤
∫

Q
c0(t, x)|u|γ |∇Tn(u)|dxdt

+
∫

Q
c1(t, x)|∇Tε(u)|dxdt, (3.81)

we can improve this estimate by using the Gagliardo–Nirenberg result, and so we can
write

∫
Q

c0(t, x)|Tε(u)|γ |∇Tε(u)|dxdt

≤
(∫

Q
cr
0(t, x)dxdt

) 1
r
(∫

Q
|Tn(u)| (N+2)ρ

N dxdt

) N (p−1)
p(N+p)

(∫
Q

|∇Tn(u)|pdxdt

) 1
p

≤ n
1
r C‖c0‖Lr (Q)‖u‖

1
r
L∞(0,T ;Lr (Q))

(∫
Q

|∇u|pdxdt

) N+1
N+p

, (3.82)

while 1 − 1
r = N+1

N−p . So, finally, the energy condition (3.3), with assumption (1.4),
imply that

⎧⎪⎪⎨
⎪⎪⎩

lim
n→+∞

1

n

∫
Q

c0(t, x)|Tn(u)|γ |∇Tn(u)|dxdt = 0,

lim
n→+∞

1

n

∫
Q

c1(t, x)|∇Tn(u)|dxdt = 0,
(3.83)

and so we get the desired asymptotic behaviour result for the function K . ��
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3.3 Main results and comments

We explicitly note that the stability result in [5, Theorem 3.8] can be adapted to our
case, but the focus in this study is on a new method.

Stability result Int this part, we consider a nonlinear parabolic problem which can be
formally written as

{
ut − div [aε(t, x, u,∇u) + Kε(t, x, u)] = με in Q := (0, T ) × Ω,

u0(t, x) = u0(x) in Ω, u(t, x) = 0 on (0, T ) × ∂Ω,
(3.84)

where ε belongs to a sequence of positive numbers that converges to zero and the
function aε : (0, T )×Ω ×R×R

N �→ R
N is a Carathéodory9 function which satisfies

assumptions (1.4)–(1.6). Assume that there exists a function a0: (0, T ) × Ω × R ×
R

N �→ R
N satisfying hypotheses (1.4)–(1.6), and such that

lim
ε→0

aε(t, x, sε, ζε) = a0(t, x, s, ζ ), (3.85)

for every (sε, ζε) ∈ R × R
N converging to (s, ζ ) and for a.e. (t, x) ∈ Q. Moreover,

Kε : (0, T ) × Ω × R �→ R
N is a Carathéodory function which satisfies the growth

condition (3.20), i.e.,

Kε(t, x, s) ≤ c0(t, x)|s|γ + c1(t, x), (3.86)

for almost every (t, x) ∈ Q, and for every s ∈ R, where c0 and c1 satisfy conditions
of (3.20). Denote by K : (0, T ) × Ω × R �→ R

N a Carathéodory function such that

lim
ε→0

Kε(t, x, sε) = K (t, x, s), (3.87)

for every sequence sε ∈ R such that sε tends to s a.e. Finally, we assume that με has
a splitting ( fε, Fε, λ

⊕
ε , λ�

ε ) converging to μ in the sense that, for every ε > 0, the
measure με can be decomposed as

με = fε − div(Fε) + λ⊕
ε − λ�

ε , (3.88)

where the following convergences hold true:

(i) ( fε) is a sequence of C∞
c (Q)-functions converging to f weakly in L1(Q);

(ii) (Fε) is a is a sequence ofC∞
c (Q)N -functions converging to F strongly in L p′

(Q)N ;
(iii) (λ⊕

ε ) is a sequence of nonnegative measures inMb(Q) such that

9 I.e., it is continuous with respect to s and ζ for a.e. (t, x) ∈ Q, and measurable with respect to (t, x) for
every s ∈ R and ζ ∈ R

N .
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λ⊕
ε = λ

1,⊕
ε,d − div(λ2,⊕ε,d ) + λ⊕

ε,c

with λ
1,⊕
ε,d ∈ L1(Q), λ

2,⊕
ε,d ∈ L p′

(Q)N and λ⊕
ε,c ∈ M+

c (Q), (3.89)

that converges to μ+
c in the narrow topology of measures;

(iv) (λ�
ε ) is a sequence of nonnegative measures inMb(Q) such that

λ�
ε = λ

1,�
ε,d − div(λ2,�ε,d ) + λ�

ε,c

with λ
1,�
ε,d ∈ L1(Q), λ

2,�
ε,d ∈ L p′

(Q)N and λ�
ε,c ∈ M−

c (Q), (3.90)

that converges to μ+
c in the narrow topology of measures.

Moreover, let uε
0 ∈ C∞

0 (Ω) that approaches u0 in the sense of (3.26). Recall that these
approximations can be easily obtained via the standard convolution arguments stated
in Sect. 3.2.

Remark 3.3 If we decompose the measures με , λ⊕
ε and λ�

ε respectively as με =
με,d + με,c, λ⊕

ε = μ⊕
ε,d + μ⊕

ε,c (λ
⊕
ε,d = λ

1,⊕
ε,d − div(λ2,⊕ε,d )), λ�

ε = λ�
ε,d + λ�

ε,c (λ
�
ε,d =

λ
1,�
ε,d −div(λ2,�ε,d )), with με,d , λ

⊕
ε,d , λ

�
ε,d inMd(Q), and με,c, λ⊕

ε,c, λ
�
ε,c inMc(Q), then

clearly λ⊕
ε,d , λ

�
ε,d , λ

⊕
ε,c, λ

�
ε,c are nonnegative, με,d = fε − div(Fε) + λ⊕

ε,d − λ�
ε,d and

με,c = λ⊕
ε,c − λ�

ε,c. In particular, we have

0 ≤ μ+
ε,c ≤ λ⊕

ε,c, 0 ≤ μ−
ε,c ≤ λ�

ε,c. (3.91)

Our first main result reads as follows.

Theorem 3.1 Let (aε), a be functions satisfying (1.4)–(1.6) and (3.85), and (με) be a
sequence of measures in Mb(Q) having a splitting ( fε, Fε, λ

⊕
ε , λ�

ε ) converging to μ.
Assume that uε is a renormalized solution of

{
(uε)t − div [aε(t, x, uε,∇uε) + Kε(t, x, uε)] = με in Q := (0, T ) × Ω,

uε(0, x) = uε
0(x) in Ω, uε(t, x) = 0 on (0, T ) × ∂Ω.

(3.92)

Then, up to a subsequence still denoted by ε, uε converges a.e. to u renormlized
solution of problem

{
ut − div [a0(t, x, u,∇u) + K (t, x, u)] = μ in Q := (0, T ) × Ω,

u(0, x) = u0(x) in Ω, u(t, x) = 0 on (0, T ) × ∂Ω.
(3.93)

Moreover

Tk(uε) → Tk(u) strongly in L p(0, T ; W 1,p
0 (Ω)), ∀k > 0. (3.94)

Remark 3.4 Note that:
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(i) The stability result given by Theorem 3.1 is an extension of the stability result
proved in [5, Theorem 3.8] (see also [89, Theorem 2] for a different proof).
Indeed our result coincides exactly with the stability result of [84] where the
term−div(K (t, x, u)) does not appear. Nevertheless the method we use to prove
Theorem 3.1 is slightly different and more simplest.

(ii) By the growth assumption (3.86) and the convergence assumption (3.87) on Kε ,
we deduce

|K (t, x, s)| ≤ c0(t, x)|s|γ + c1(t, x), (3.95)

for a.e. (t, x) ∈ Q and for every s ∈ R.
(iii) If we replace the right-hand side by a more general datum μ − div(E), with

E ∈ L p′
(Q)N , Theorem 3.1 holds true under the same assumptions. Indeed

Kε(t, x, s) (resp. K (t, x, s)) can be replaced by Kε(t, x, s) − E(t, x) (resp.
K (t, x, s)− E) which satisfy conditions (3.86)–(3.87) (with c1 replaced by c1 +
|E |).

(iv) The proof of Theorem 3.1 heavily needs conditions (3.85)–(3.88) [for example,
(3.86)–(3.87) are crucial to obtain (4.24)–(4.25)]. Remark that the same assump-
tions are needed if one follows the proof of [84].

(v) We could prove Theorem 3.1 under the assumptions u0 ∈ L1(Ω) and μ ∈
Md(Q). Therefore, we have μ+

c = μ−
c = 0, which imply

lim
n→∞lim

ε→0

1

n

∫
{n<|uε |<2n}

aε(t, x, uε,∇uε) · ∇uεdxdt = 0. (3.96)

Furthermore, we can state a result which concerns right-hand sidesμ+div(E), which
belong to Mb(Q) + L p′

(0, T ; W −1,p′
(Ω)) (E ∈ L p′

(Q)N ), by using similar argu-
ments to those used in [50,72]. Our second main result of the present paper is the
following existence result which is a generalization of the existence result of [46].

Theorem 3.2 Under assumptions (1.4)–(1.11), there exists a renormalized solution u
of problem (1.3).

Remark 3.5 The stationary version of such existence result is studied under three con-
ditions:

1. γ = λ = p − 1 with c0 ∈ L
N

p−1 ,r
(Ω), r < +∞ and ‖b0‖L N ,1(Ω) is small enough.

2. γ = p − 1, λ < p − 1 with c0 ∈ L
N

p−1 ,r
(Ω) and r < +∞.

3. γ < p − 1, λ < p − 1 with c0 ∈ L
N

p−1 ,∞
(Ω).

It is worth observing that the class in which the stationary problem is studied is
“natural”, since

(i) If 1 < p ≤ 2, we have

inf

{
(N + 2)(p − 1)

N + p
,

N (p − 1) + p

N + 2

}
≥ p − 1. (3.97)
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(ii) If p ≥ 2, we have

sup

{
(N + 2(p − 1))

N + p
,

N (p − 1) + p

N + 2

}
≤ p − 1, (3.98)

then |u|p−1 belongs to L
N

N−p ,∞
(Ω) and |∇u|p−1 belongs to L

N
N−p ,∞

(Ω), and
therefore the a priori estimate is depending on M , i.e.,

∥∥∥|u|p−1
∥∥∥

Lq (Q)
≤ C M, ∀q <

N

N − p
, (3.99)

which in our parabolic case is equivalent to the control of |u| N (p−1)+p
N+p with respect

to M and L , which means that in the evolution case smallness conditions on b
and c when γ = δ = p − 1 seems to be unnecessary to obtain the existence of a
solution.

(iii) Actually, in the last case,we can improve a little bit the complexity of the right-hand
side; indeed we are able to take a derivative part g ∈ L p(0, T ; W 1,p

0 (Ω)∩ L2(Ω))

in the decomposition of μ where the proof relies on a change of unknown w =
u − g, see [53,54].

4 Proofs of stability/existence results (Theorems 3.1, 3.2)

4.1 Proof of stability result (Theorem 3.1)

As before, the main tool, in order to prove the existence of a renormalized solution
relies on approximating our problem with a more regular one [i.e., (3.84)] in bounded
domains and in proving the existence of a solution via a priori estimates and strong
convergence of truncations in L p(0, T ; W 1,p

0 (Ω)). In what follows we will indicate
by εn a generic sequence that converges to zero as n goes to infinity.We need to define,
for any δ > 0, the two “cut-off ” functions ψ+

δ and ψ−
δ belonging to C∞

0 (Q) in order
to localize some integrals near the support of μc ∈ Mc(Q). This is possible by virtue
of the following lemmas provided in [84, Lemma 5], and introduced in [51].

Lemma 4.1 Let μc be a measure inMc(Q), and let μ+
c , μ−

c be respectively the positive
and the negative parts of μc. Then for every δ > 0, there exist two functions ψ+

δ , ψ−
δ

in C1
0(Q), such that the following assertions hold true:

(i) 0 ≤ ψ+
δ ≤ 1 and 0 ≤ ψ−

δ ≤ 1 on Q;

(ii) lim
δ→0

ψ+
δ = lim

δ→0
ψ−

δ = 0 strongly in L p(0, T ; W 1,p
0 (Ω)) and weakly* in L∞(Q);

(iii) lim
δ→0

(ψ+
δ )t = lim

δ→0
(ψ−

δ )t = 0 strongly in L p′
(0, T ; W −1,p′

(Ω)) + L1(Q);

(iv)
∫

Q ψ−
δ dμ+

s ≤ δ and
∫

Q ψ+
δ dμ−

s ≤ δ;

(v)
∫

Q(1 − ψ+
δ ψ+

η )dμ+
s ≤ δ + η and

∫
Q(1 − ψ−

δ ψ−
η )dμ−

s ≤ δ + η for all η > 0.
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Lemma 4.2 Let μc be a measure in Mc(Ω), decomposed as μc = μ+
c −μ−

c , with μ+
s

and μ−
c are concentrated on two disjoint subsets E+ and E− of zero (b, p)-capacity.

Then, for every δ > 0, there exist two compact sets K +
δ ⊆ E+ and K −

δ ⊆ E− such
that

μ+
c (E+\K +

δ ) ≤ δ, μ−
c (E−\K −

δ ) ≤ δ, (4.1)

and there exist ψ+
δ , ψ−

δ ∈ C1
0(Q), such that

ψ+
δ , ψ−

δ ≡ 1 respectively on K +
δ , K −

δ , (4.2)

0 ≤ ψ+
δ , ψ−

δ ≤ 1, (4.3)

supp(ψ+
δ ) ∩ supp(ψ−

δ ) ≡ ∅. (4.4)

Moreover

‖ψ+
δ ‖S ≤ δ, ‖ψ−

δ ‖S ≤ δ, (4.5)

and, in particular, there exists a decomposition of (ψ+
δ )t and a decomposition of (ψ−

δ )t

such that

‖(ψ+
δ )1t ‖L p′

(0,T ;W−1,p′
(Ω))

≤ δ

3
, ‖(ψ+

δ )2t ‖L1(Q) ≤ δ

3
, (4.6)

‖(ψ−
δ )1t ‖L p′

(0,T ;W−1,p′
(Ω))

≤ δ

3
, ‖(ψ−

δ )2t ‖L1(Q) ≤ δ

3
, (4.7)

and both ψ+
δ and ψ−

δ converge to zero *weakly in L∞(Q), in L1(Q), and up to
subsequences, a.e. as δ vanishes. Moreover, if λ⊕

ε and λ�
ε are as in (3.89)–(3.90) we

have

∫
Q

ψ−
δ dλ⊕

ε = ω(ε, δ),

∫
Q

ψ−
δ dμ+

c ≤ δ, (4.8)∫
Q

ψ+
δ dλ�

ε = ω(ε, δ),

∫
Q

ψ+
δ dμ−

c ≤ δ, (4.9)∫
Q
(1 − ψ+

δ ψ+
η )dλ⊕

ε = ω(ε, δ, η),

∫
Q
(1 − ψ+

δ ψ+
η )dμ+

c ≤ δ + η, (4.10)∫
Q
(1 − ψ−

δ ψ−
η )dλ�

ε = ω(ε, δ, η),

∫
Q
(1 − ψ−

δ ψ−
η )dμ−

c ≤ δ + η. (4.11)

Proof See [84, Lemma 5]. ��

Remark 4.1 If λ⊕
ε and λ�

ε satisfy (3.89)–(3.90), and ψ−
δ and ψ+

δ are the functions
defined in Lemma 4.1, as an easy consequence of the narrow convergence we obtain
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lim
δ→0

lim
ε→0

∫
Q

ψ−
δ dλ⊕

ε = 0, lim
δ→0

lim
ε→0

∫
Q

ψ+
δ dλ�

ε = 0, (4.12)

lim
η→0

lim
δ→0

lim
ε→0

∫
Q
(1 − ψ+

δ ψ+
η )dλ⊕

ε = 0, lim
η→0

lim
δ→0

lim
ε→0

∫
Q
(1 − ψ−

δ ψ−
η )dλ�

ε = 0.

(4.13)

Proof of Theorem 3.1 At this point, uε is a renormalized solution of (3.92) and u is
a measurable function u such that Tk(u) ∈ L2(0, T ; L2(Ω)) ∩ L p(0, T ; W 1,p

0 (Ω))

where the convergences of Proposition 3.3 hold. We have to prove that u is a renor-
malized solution to (3.93). By proposition 3.3 (ii), the first condition of Definition 3.1
is satisfied while by (3.71) and Lemma 3.2, we obtain that u satisfies the second con-
dition of Definition 3.1. Hence, it is enough to prove (3.1)-(3.3). Let S ∈ W 2,∞(R)

and ϕ ∈ C1
0([0, T ] × Ω), we choose S′(uε)ϕ as test function in the equation solved

by uε , obtaining

−
∫

Ω

S(uε
0)ϕ(0)dx −

∫ T

0
〈ut

ε, S(uε)〉dt +
∫

Q
S′(uε)aε(t, x, uε,∇ε) · ∇ϕdxdt

+
∫

Q
S′′(uε)aε(t, x, uε,∇uε) · ∇uεϕdxdt +

∫
Q

S′′(uε)Kε(t, x, uε) · ∇uεϕdxdt

+
∫

Q
S′(uε)Kε(t, x, uε) · ∇ϕdxdt =

∫
Q

fε S′(uε)ϕdxdt

+
∫

Q
Fε · ∇uε S′′(uε)ϕdxdt

+
∫

Q
S′(uε)Fε · ∇ϕdxdt +

∫
Q

S′(uε)ϕdλ⊕
ε,d −

∫
Q

S′(uε)ϕdλ�
ε,d , (4.14)

for every ϕ ∈ W ∩ L∞(Q), for all S ∈ W 2,∞(R) with compact support in R, which
are such that S′(uε)ϕ ∈ W. It suffices to follow the lines of the long and not easy
proof [51, Section 5-8] for the elliptic case, [83, Section 7] and [5, Section 6] for
the parabolic case. The assumptions on aε and the choice of Bn(uε)Tk(uε), for every
k > 0, as test function in (3.92) where Bn is defined by (see Fig. 4)

Bn(s) =

⎧⎪⎨
⎪⎩
0 if |s| > 2n,
2n−|s|

n if n < |s| ≤ 2n,

1 if |s| ≤ n.

(4.15)

Therefore, using similar calculations to those of Proposition 3.3, we get

‖Tk(uε)‖L∞(0,T ;L2(Ω)) + ‖∇Tk(uε)‖p
L p(Q)N ≤ M̃k + L̃, ∀k > 0, (4.16)
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Fig. 4 The function Bn(s)

for some M̃ > 0 and L̃ > 0. This implies by, Proposition 3.1, the following a priori
estimates for the renormalized solutions: uε

⎧⎪⎪⎨
⎪⎪⎩

∥∥∥|uε |p−1
∥∥∥

L
p(N+1)−N

N (p−1) ,∞
(Q)

≤ C,∥∥∥|∇uε |p−1
∥∥∥

L
p(N+1)−N
(N+1)(p−1) ,∞

(Q)

≤ C,
(4.17)

some constant C independent of ε but depending on the data of the problem. Estimate
(4.16) and the growth assumption on Kε , since the operator is strictly monotone, allow
us to use standard techniques of [5,24,84] which imply that there exists a measurable
function u: Q �→ R, finite a.e. in Q and such that, up to a subsequence still denoted
by ε,

⎧⎪⎨
⎪⎩

Tk(uε)⇀Tk(u) weakly in L p(0, T ; W 1,p
0 (Ω)), ∀k > 0, , (4.18)

uε → u a.e. in Q, (4.19)

∇uε → ∇u a.e. in Q, (4.20)

as ε tends to zero.

Step 1. The function u is a solution of (3.93) in the sense of distributions By assump-
tion (3.87) and (4.19), it follows that Kε(t, x, uε) converges to K (t, x, u) a.e. in Q.
Moreover, the growth assumption (3.95) on Kε and the estimate (4.17) on |uε |p−1

imply that |Kε(t, x, uε)| is bounded in L
p(N+1)−N
(N+1)(p−1) ,∞(Q). Thanks to the a.e. conver-

gence of uε in Q and to the Lebesgue theorem, we get

Kε(t, x, uε) → K (t, x, u) strongly in L p′
(Q), ∀p > 1. (4.21)

Proceeding in a similar way, by using (1.5), (4.17) and (4.19)–(4.20), we get

aε(t, x, uε,∇uε) → a0(t, x, u,∇u) strongly in L p′
(Q)N , ∀p > 1. (4.22)
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Moreover, since uε is also a solution of (3.6) in distributional sense, this gives

∫ T

0
〈(uε)t , ϕ〉dt +

∫
Q

aε(t, x, uε,∇uε) · ∇ϕdxdt

+
∫

Q
Kε(t, x, uε) · ∇ϕdxdt =

∫
Q

ϕdμε, (4.23)

for all ϕ ∈ C∞
0 (Q). So, using the convergence results (4.21)–(4.22), we can pass to

the limit in (4.23) obtaining that u is a solution of (3.93) in the distributional sense
(for the convergence of the first and last terms, we refer to [5]).

Step 2. Asymptotic behaviour results onKε Our next purpose is to prove that

⎧⎪⎪⎨
⎪⎪⎩

lim
n→+∞lim sup

ε→0

1

n

∫
{n<|uε |<2n}

|Kε(t, x, uε)| |∇uε | dxdt = 0, (4.24)

lim
n→+∞

1

n

∫
{n<|u|<2n}

|K (t, x, u)| |∇u| dxdt = 0. (4.25)

Using the Gagliardo–Nirenberg inequality and the growth condition (3.85) on Kε , we
get

1

n

∫
{n<|uε |<2n}

|Kε(t, x, uε)||∇uε |dxdt

≤ 1

n

∫
{n<|uε |<2n}

c0|uε |γ |∇uε |dxdt +
∫

{n<|uε |<2n}
c1|∇uε |dxdt

≤ 1

n

∫
{n<|uε |<2n}

c0|T2n(uε)|γ |∇T2n(uε)|dxdt +
∫

{n<|uε |<2n}
c1|∇T2n(uε)|dxdt

+ 1

n
1
p′

‖c1‖L p′
(Q)

1

n
1
p

‖∇T2n(uε)‖L p(Q)N

≤ C‖c0‖Lτ ({n<|uε |<2n}) + C
1

n
1
p′

‖c1‖L p′
(Q)

. (4.26)

On the other hand, since ‖c0‖Lτ ({n<|uε |<2n) tends to zero when firstly ε goes to zero
and then n goes to infinity, we use Fatou’s lemma to obtain (4.24). While, since uε

converges to u a.e. and u is finite a.e. in Q, we get (4.25).

Step 3. Asymptotic behaviour results onμc Now, we are able to prove that

lim sup
n→∞

lim sup
ε→0

1

n

∫
{n<uε<2n}

aε(t, x, uε,∇uε) · ∇uεϕdxdt ≤
∫

Q
ϕdμ+

c ,

(4.27)

lim sup
n→∞

lim sup
ε→0

1

n

∫
{−2n<uε<−n}

aε(t, x, uε,∇uε) · ∇uεϕdxdt ≤
∫

Q
ϕdμ−

c ,

(4.28)
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for every nonnegative ϕ ∈ C1(Q) by using a technical argument slightly different
from [84, Lemma 6] and [5, Lemma 6.6 (ii)]. To this aim, we define, for n ≥ 1, the
functions sn :R �→ R and hη:R �→ R, by

sn(s) = T2n(s) − Tn(s)

n
, hη(s) = 1 − |sη(s)|. (4.29)

Choosing hη(uε)sn(u+
ε )ϕ (ϕ ∈ C1(Q) nonnegative) as test function in (4.14), by using

the notations of (2.1), and letting η tends to infinity, we get

∫ T

0
〈(uε)t , sn(u+)ϕ〉dt (A)

+
∫

Q
aε(t, x, uε,∇uε) · ∇ϕsn(u+

ε )dxdt (B)

+ 1

n

∫
{n<uε<2n}

aε(t, x, uε,∇uε) · ∇uεϕdxdt (C)

+
∫

Q
Kε(t, x, uε) · ∇ϕsn(u+

ε )dxdt (D)

+ 1

n

∫
{n<uε<2n}

Kε(t, x, uε) · ∇uεϕdxdt (E)

=
∫

Q
fεsn(u

+
ε )ϕdxdt (F)

+
∫

Q
Fε · ∇ϕsn(u+

ε )dxdt (G)

+ 1

n

∫
{n<uε<2n}

Fε · ∇uεϕdxdt (H)

+
∫

Q
sn(u

+
ε )ϕdλ⊕

ε,d (I )

+
∫

Q
ϕdμ+

ε,c (J )

−
∫

Q
sn(u+

ε )ϕdλ�
ε,d (K ) (4.30)

for every nonnegative ϕ ∈ C1(Q). It remains to pass to the limit in (4.30), first as ε

tends to zero and then as n goes to infinity, since sn(u+
ε ) is bounded by 1, we get

sn(u
+
ε ) → sn(u

+) a.e. and weakly* in L∞(Q). (4.31)

Hence, by (4.21)–(4.22) and Lebesgue convergence theorem, we can pass to the limit
in (B) and (D) using the fact that a(t, x, u,∇u) and K (t, x, u) belong to L p′

(Q)N

for p > 1, sn(u+
ε ) is bounded by 1 and tends to zero a.e. in Q, and the fact that
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ϕ ∈ C1(Q), we get

lim
n→∞lim

ε→0
(B) = lim

n→∞ lim
ε→0

∫
Q

aε(t, x, uε,∇uε) · ∇ϕsn(u+
ε )dxdt

= lim
n→∞

∫
Q

a0(t, x, u,∇u) · ∇ϕsn(u+)dxdt

= 0, (4.32)

and

lim
n→∞lim

ε→0
(D) = lim

n→∞ lim
ε→0

∫
Q

Kε(t, x, uε) · ∇ϕsn(u+
ε )dxdt

= lim
n→∞

∫
Q

sn(u+)K (t, x, u) · ∇ϕdxdt

= 0. (4.33)

By (4.24), as n, ε tend to their limits, we obtain

lim
n→∞lim

ε→0
(E) = lim

n→∞lim
ε→0

1

n

∫
{n<|uε |<2n}

|Kε(t, x, uε)||∇uε |ϕdxdt = 0. (4.34)

On the other hand, by properties (3.88) (i)–(ii) and in virtue of the a.e. convergence
of sn(u+

ε ) to sn(u+), |sn(u+
ε )| ≤ 1 a.e. in Q and Proposition 2.1, we obtain

lim
n→∞lim

ε→0
(F) = lim

n→∞ lim
ε→0

∫
Q

fεsn(u+
ε )ϕdxdt

= lim
n→∞

∫
Q

fεsn(u+)ϕdxdt = 0, (4.35)

and

lim
n→∞lim

ε→0
(G) = lim

n→∞lim
ε→0

∫
Q

Fε · ∇ϕsn(u+
ε )dxdt

= lim
n→∞

∫
Q

F · ∇ϕsn(u+)dxdt = 0. (4.36)

Indeed, by Hölder’s inequality, we write

1

n

∣∣∣∣
∫

{n<uε<2n}
Fε · ∇uεdxdt

∣∣∣∣
≤ ‖ϕ‖L∞(Q)

1

n
1
p′

‖Fε‖L p′
(Q)N

(
1

n

∫
{n<uε<2n}

|∇uε |p
) 1

p

, (4.37)
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so, using (4.16), we get

lim
n→∞lim

ε→0
(H) = lim

n→∞lim
ε→0

1

n

∫
{n<uε<2n}

Fε · ∇uεϕdxdt = 0. (4.38)

Recalling that μ⊕
ε,d , λ⊕

ε,c, λ
�
ε,d and ϕ are nonnegative and using (3.91) (observe that

0 ≤ sn(u+
ε ) ≤ 1), we get

⎧⎪⎪⎨
⎪⎪⎩

(I ) + (J ) =
∫

Q
sn(u

+
ε )ϕdλ⊕

ε,d +
∫

Q
ϕdμ+

c,ε ≤
∫

Q
ϕdλ⊕

ε,d +
∫

Q
ϕdλ⊕

ε,c,

(K ) = −
∫

Q
sn(u+

ε )ϕdλ�
ε,d ≤

∫
Q

ϕdλ⊕
ε .

(4.39)

Collecting together (4.30)–(4.39), we conclude for every nonnegative ϕ ∈ C1(Q),
that

1

n

∫
{n<uε<2n}

aε(t, x, uε,∇uε)ϕdxdt ≤
∫

Q
ϕdλ⊕

ε + ω(ε, n). (4.40)

Since λ⊕
ε converges to μ+

c in the narrow topology of measures, we obtain (4.27). The
second asymptotic estimate (4.28) is obtained by using a similar argument with test
functions hη(uε)sn(u−

ε )ϕ for any ϕ ∈ C1(Q) nonnegative.

Step 4. The function u is a renormalized solution of (3.93) Since μc = μ+
c − μ−

c is

a concentrated measure, for every δ > 0, there exist two compacts sets K ±
δ ⊆ E±

and two sequences of C∞
c (Q)-functions {ψ±

δ } with properties of Lemmas 4.1 and
4.2. Now, consider a function S ∈ W 2,∞ such that S′ has compact support on R

(S(0) = 0), and choose Bn(uε)S′(u)ϕ(1−ψ+
δ −ψ−

δ ) as test function in (4.14) where
ϕ ∈ W ∩ L∞(Q), S′(u)ϕ ∈ W and Bn is defined in (4.15), we can write

∫ T

0
〈(uε)t , Bn(uε)S′(u)ϕ(1 − ψ+

δ − ψ−
δ )〉dt (Aε

δ )

+
∫

Q
B′(uε)S′′(u)ϕ(1 − ψ+

δ − ψ−
δ )[aε(t, x, uε , ∇uε) + Kε(t, x, uε)] · ∇uεdxdt (Bε

δ )

+
∫

Q
[aε(t, x, uε , ∇uε) + Kε(t, x, uε)] · ∇ϕS′′(u)Bn(uε)ϕ(1 − ψ+

δ − ψ−
δ )dxdt (Cε

δ )

+
∫

Q
[aε(t, x, uε , ∇uε) + Kε(t, x, uε)]S′(u)Bn(uε)(1 − ψ+

δ − ψ−
δ )dxdt (Dε

δ )

+
∫

Q
[aε(t, x, uε , ∇uε) + Kε(t, x, uε)] · ∇(1 − ψ+

δ − ψ−
δ )S′(u)Bn(uε)ϕdxdt (Eε

δ )

=
∫

Q
fε Bn(uε)S′(u)ϕ(1 − ψ+

δ − ψ−
δ )dxdt (Fε

δ )

+
∫

Q
Fε · ∇[Bn(uε)S′(u)ϕ(1 − ψ+

δ − ψ−
δ )]dxdt (Gε

δ )
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+
∫

Q
Bn(uε)S′(u)ϕ(1 − ψ+

δ − ψ−
δ )dλ⊕

ε,d (Hε
δ )

+
∫

Q
Bn(uε)S′(u)ϕ(1 − ψ+

δ − ψ−
δ )dλ�

ε,d . (4.41)

Now, we want to pass to the limit (as ε tends to zero, n goes to infinity and δ tends to
zero). It is easy to deal with the first integral (Aδ) using an integration by parts formula
and the fact that ϕ(T , x) = 0. Since (uε

0) converges to u0 in L1(Ω), S(uε) converges

to S(u) strongly in L p(0, T ; W 1,p
0 (Ω)) and weakly* in L∞(Q), it follows that

∫
Ω

ϕ(0)S(u0)dx −
∫

Q
ϕt S(u)dt = (Aε

δ) + ω(n, δ). (4.42)

Moreover, from (4.24), we have

∣∣∣∣
∫

Q
B ′

n(uε)S′(u)ϕ(1 − ψ+
δ − ψ−

δ )Kε(t, x, uε) · ∇uεdxdt

∣∣∣∣ = ω(ε, n). (4.43)

Hence, by (4.27) and the fact that aε(t, x, uε,∇uε) · ∇uε(1− ψ+
δ − ψ−

δ ) is positive,
we deduce

0 ≤ lim sup
n→+∞

lim sup
ε→0

1

n

∫
{n<|uε |<2n}

aε(t, x, uε,∇uε)|S′(u)ϕ|(1 − ψ+
δ − ψ−

δ )dxdt

≤ ‖S′‖L∞(R)‖ϕ‖L∞(Q)

[∫
Q
(1 − ψ+

δ − ψ−
δ )dμ+

c +
∫

Q
(1 − ψ+

δ − ψ−
δ )dμ−

c

]
.

(4.44)

we can use properties (4.8)–(4.11) to conclude that

1

n

∫
{n<|uε |<2n}

aε(t, x, uε,∇uε) · ∇uε |S′(u)ϕ|(1 − ψ+
δ − ψ−

δ )dxdt = ω(ε, n, δ).

(4.45)

Since, as the sequence T2n(uε) converges weakly to T2n(u) in L p(0, T ; W 1,p
0 (Ω)),

we have aε(t, x, T2n(uε),∇T2n(uε)) converges to a0(t, x, T2n(u),∇T2n(u)) weakly
in L p′

(Q)N , and recall that Bn(uε) is bounded by 1 and converges a.e. to Bn(u), we
get

∫
Q

[a0(t, x, u,∇u) + K (t, x, u)]S′′(u)Bn(u)ϕ(1 − ψ+
δ − ψ−

δ )dxdt = (Bε
δ ) + ω(ε).

(4.46)

Now, we can use properties of the function S to replace the first integral in (4.46) by
a0(t, x, TM (u),∇TM (u)) ∈ L p′

(Q)N , and applying convergence properties of ψ±
δ to
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obtain

∫
Q

S′(u)[a0(t, x, u,∇u) + K (t, x, u)] · ∇ϕdxdt = (Bε
δ ) + ω(ε, n, δ). (4.47)

In a similar way

∫
Q
[a0(t, x, u,∇u) + K (t, x, u)] · ∇ϕdxdt = (Cε

δ ) + ω(ε, n, δ), (4.48)

and

∫
Q
[aε(t, x, uε,∇uε) + Kε(t, x, uε)] · ∇(1 − ψ+

δ − ψ−
δ )S′(u)Bn(uε)dxdt

= ω(ε, n, δ). (4.49)

Furthermore Proposition 2.1, the a.e. convergence of uε to u, property (4.5) on ψ±
δ

and the definition of S′(uε), imply

∫
Q

S′(u) f ϕdxdt = (Fε
δ ) + ω(ε, n, δ). (4.50)

In a similar way

∫
Q

F · ∇[S′(u)ϕ]dxdt = (Gε
δ) + ω(ε, n, δ). (4.51)

Using the fact that λ⊕
ε,d is nonnegative, we have

|(H ε
δ )| ≤ ‖S′‖L∞(R)‖ϕ‖L∞(Q)

∫
Q
(1 − ψ+

δ − ψ−
δ )dμ⊕

d,ε . (4.52)

Therefore, by (4.8)–(4.11) and the fact that 0 ≤ λ⊕
ε,d ≤ λ⊕

ε , we get

|(H ε
δ )| = ω(ε, n, δ). (4.53)

Similarly

|(I ε
δ )| = ω(ε, n, δ). (4.54)

So that, we can pass to the limit in each term of (4.41) to obtain that u satisfies (3.1) of
Definition 3.1. To conclude the proof of our main result, it remains to check condition
(3.3) of Definition 3.1. Since a0(t, x, u,∇u) ·∇u is positive and using Proposition 2.2,
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we get that condition (3.3) holds for ϕ ∈ C∞(Q). On the other hand (4.27), the a.e.
convergence of uε to u and Fatou’s Lemma imply

⎧⎪⎪⎨
⎪⎪⎩
lim sup
n→+∞

1

n

∫
{n<u<2n}

a0(t, x, u,∇u) · ∇uϕdxdt ≤
∫

Q
ϕdμ+

c ,

lim sup
n→+∞

1

n

∫
{−2n<u<−n}

a0(t, x, u,∇u) · ∇uϕdxdt ≤
∫

Q
ϕdμ−

c ,

(4.55)

for every ϕ ∈ C1(Q) nonnegative. Moreover, since u satisfies (3.92) in the sense of
distributions, one can use Bn(u)ψ , with ψ ∈ C∞

0 (Q) and Bn is defined in (4.15), as
test function in (4.35) and let n tends yo infinity, to get

lim
n→∞

∫
Q

B ′
n(u)a0(t, x, u,∇u) · ∇uψdxdt

= −
∫

Q
ψdμ+

s +
∫

Q
ψdμ−

s , ∀ψ ∈ C∞
0 (Q). (4.56)

Now, let ϕ ∈ C1(Q) be nonnegative, we have 0 ≤ ϕ(1 − ψ−
δ )ψ+

δ ≤ ϕ (since
0 ≤ ψ±

δ ≤ 1) and ϕ(1 − ψ−
δ )ψ+

δ ∈ C∞
0 (Q) (since ψ±

δ ∈ C∞
0 (Q)). Since B ′

n can
be splitted as B ′

n(s) = 1
n (−χ{n<s<2n} + χ{−2n<s<−n}) a.e. in R, and using (4.56), we

obtain

lim inf
n→∞

1

n

∫
{n<u<2n}

a0(t, x, u,∇u) · ∇uϕdxdt

≥ lim inf
n→∞

1

n

∫
{n<u<2n}

a0(t, x, u,∇u) · ∇uϕ(1 − ψ−
δ )ψ+

δ dxdt

≥ lim
n→∞

[
−
∫

Q
B ′

n(u)a0(t, x, u,∇u) · ∇uϕ(1 − ψ−
δ )ψ+

δ

]
dxdt

=
∫

Q
ϕ(1 − ψ−

δ )ψ+
δ dμ+

c −
∫

Q
ϕ(1 − ψ−

δ )ψ+
δ dμ−

c . (4.57)

It is easy to pass to the limit, as s tends to zero, using (4.8)–(4.11), to obtain

lim inf
n→∞

1

n

∫
{n<u<2n}

a0(t, x, u,∇u) · ∇uϕdxdt ≥
∫

Q
ϕdμ+

s , (4.58)

for every nonnegative ϕ ∈ C1(Q). Then (4.55) implies that condition (3.3) of Defini-
tion 3.1 holds for every nonnegative ϕ ∈ C1(Q) and, by a standard density argument,
for every ϕ ∈ C∞(Q). Similarly, one can use ϕ(1− ψ+

δ )ψ−
δ to obtain the asymptotic

behaviour result for μ−
c . Finally, in order to prove the last asymptotic behaviour result

on K in condition (3.2) it suffices to use a similar argument of (4.25).

Step 6. Strong convergence of truncations Now, we are able to prove that Tk(uε) con-

verges to Tk(u) in L p(0, T ; W 1,p
0 (Ω)), k > 0, as ε goes to zero. By using a standard
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argument, see [5,24,84] for more details. We just need to remark that by the coercivity
of the vector filed “a”, the a.e. convergence of uε , ∇uε and Fatou’s lemma, that

∫
Q

a0(t, x, Tk(u),∇Tk(u)) · ∇Tk(u)dxdt

≤ lim inf
ε→0

∫
Q

aε(t, x, Tk(uε),∇Tk(uε)) · ∇Tk(uε)dxdt .
(4.59)

Therefore, the choice of Bn(uε)Tk(uε) as test function in (4.14) and letting n then ε

tend to their limits, we get

lim sup
ε→0

∫
Q

aε(t, x, Tk(uε),∇Tk(uε)) · ∇Tk(uε)dxdt

≤
∫

Q
a0(t, x, u,∇u) · ∇Tk(u)dxdt . (4.60)

Finally, assumptions (1.4)–(1.5) on “aε”, the a.e. convergence of∇Tk(uε) and Vitali’s
theorem imply

∇Tk(uε) → ∇Tk(u) strongly in L p′
(Q)N , (4.61)

which completes the proof of Theorem 3.1. ��

4.2 Proof of existence result (Theorem 3.2)

Until now, we have assumed that H ≡ G ≡ E ≡ 0 mainly to simplify our expo-
sition. Using a change of the form of problem (3.17) one can prove that the terms
Hε(t, x, uε,∇uε) and Gε(t, x, uε) converges strongly in L1(Q) with similar argu-
ments of Theorem 3.1.

Proof of Theorem 3.1 It suffices to check that the solution uε of (3.17) belongs to W

and satisfies

(uε)t − div[a(t, x, uε,∇uε) + Kε(t, x, uε)] = Φε − div(F) + div(E), (4.62)

in the sense of distributions, where

Φε = fε − Hε(t, x, uε,∇uε) − Gε(t, x, uε) + λ⊕
ε − λ�

ε is bounded in L1(Q).

(4.63)

Indeed, the growth assumption (3.20) on Hε , Proposition 3.1 and the generalized
Hölder inequality (2.51), imply that
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‖Hε(t, x, uε,∇uε)‖L1(Q) =
∫

Q
|Hε(t, x, uε,∇uε)|dxdt

≤
∫

Q
b0|∇uε |λdxdt +

∫
Q

b1(t, x)dxdt

≤ ‖b0‖L N+2,1(Q)

∥∥|∇u|λ∥∥
L

N+2
N+1 ,∞

(Q)
+ ‖b1‖L1(Q)

≤ C . (4.64)

Moreover, using the growth condition (3.21) on Gε , the generalized Hölder inequality
(2.51) and the fact that 0 ≤ r ≤ p − N

N+1 , we get

‖Gε(t, x, uε)‖L1(Q) =
∫

Q
|Gε(t, x, uε)|dxdt

≤
∫

Q
d1(t, x)|uε |ιdxt +

∫
Q

d2(t, x)dxdt

≤ ‖d1‖Lz′,1(Q)

∥∥|uε |ι
∥∥

Lz,∞(Q)
+ ‖d2‖L1(Q)

≤ C‖d1‖Lz′,1(Q)

∥∥|uε |ι
∥∥

Lz,∞(Q)
+ ‖d2‖L1(Q)

≤ C‖d1‖Lz′,1(Q)

∥∥∥|uε |p−1
∥∥∥

L
pN+p−N

(N+1)(p−1) ,∞
(Q)

+ ‖d2‖L1(Q).(4.65)

The use of Tk(uε) as test function in (4.62) implies, in virtue of the argument of
Proposition 3.3, that there exist two constants M and L such that

sup
t∈[0,T ]

∫
Ω

|Tk(uε)|2dxdt +
∫

Q
|∇Tk(uε)|pdxdt ≤ Mk + L, (4.66)

for every k > 0 and every ε > 0. Moreover, the a priori estimates and the growth
assumption (3.19) on Kε imply, by using the technical results of [5,84,96], that, up to a
subsequence still denoted by ε, there exists a function uε and a measurable function u,
a.e. finite in Q such that Tk(u) ∈ L∞(0, T ; L2(Ω))∩ L p(0, T ; W 1,p

0 (Ω)), satisfying

⎧⎪⎨
⎪⎩

uε → u a.e. in Q,

∇uε → ∇u a.e. in Q,

∇Tk(uε)⇀∇Tk(u) weakly in L p′
(Q)N ,

(4.67)

for every fixed k ∈ N. The estimate (4.66) imply, by Fatou’s Lemma, that

sup
t∈[0,T ]

∫
Ω

|Tk(u)|2dxdt +
∫

Q
|∇Tk(u)|pdxdt ≤ Mk + L, (4.68)

which gives, by using Proposition 3.1, that

|u|p−1 ∈ L
p(N+1)−N

N (p−1) ,∞
(Q) and |∇u|p−1 ∈ L

p(N+1)−N
(N+1)(p−1) ,∞(Q). (4.69)
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Then, we conclude, by (4.67), that

Hε(t, x, uε,∇uε) → H(t, x, u,∇u) a.e. in Q. (4.70)

In particular, it is enough to remark by (3.20)–(3.21), (2.51), Proposition 3.1 and
(4.64)–(4.65), that Hε(t, x, uε,∇uε) and Gε(t, x, uε) are equi-integrable, which
imply by using Vitali’s theorem that

{
Hε(t, x, uε,∇uε) → H(t, x, u,∇u) strongly in L1(Q),

Gε(t, x, uε) → G(t, x, u) strongly in L1(Q),
(4.71)

that is to say, the function uε ∈ W, solution of problem (4.62), satisfies the “modified”
problem

(uε)t − div[a(t, x, uε,∇uε) + Kε(t, x, uε)]
= fε − Ψε − div(F) + div(E) + λ⊕

ε − λ�
ε , (4.72)

in the sense of distributions and the convergence results (4.67) hold, where

Ψε = Hε(t, x, uε,∇uε) + Gε(t, x, uε) → H(t, x, u,∇u)

+ G(t, x, u) strongly in L1(Q), (4.73)

and F, E, fε, λ⊕
ε and λ�

ε are defined as before. Since the weak solution uε of (4.73) is
also a renormalized solution of the same problem, then by virtue of the stability result
(Theorem 3.1), the function u is a renormalized solution of

⎧⎪⎨
⎪⎩

ut − div[a(t, x, u,∇u) + K (t, x, u)] + H(t, x, u,∇u) + G(t, x, u)

= f − div(F) + μ+
c − μ−

c + div(E) in Q,

u(0, x) = u0(x) in Ω, u(t, x) = 0 on (0, T ) × ∂Ω,

(4.74)

which concludes the proof of Theorem 3.2. ��
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